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Single-cell trajectory analysis reveals a CD9 positive state to
contribute to exit from stem cell-like and embryonic diapause
states and transit to drug-resistant states
Xi Li 1,2✉, Alfonso Poire1, Kang Jin Jeong1, Dong Zhang1, Gang Chen2, Chaoyang Sun2 and Gordon B. Mills 1
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Bromo- and extra-terminal domain (BET) inhibitors (BETi) have been shown to decrease tumor growth in preclinical models and
clinical trials. However, toxicity and rapid emergence of resistance have limited their clinical implementation. To identify state
changes underlying acquisition of resistance to the JQ1 BETi, we reanalyzed single-cell RNAseq data from JQ1 sensitive and
resistant SUM149 and SUM159 triple-negative breast cancer cell lines. Parental and JQ1-resistant SUM149 and SUM159 exhibited a
stem cell-like and embryonic diapause (SCLED) cell state as well as a transitional cell state between the SCLED state that is present
in both treatment naïve and JQ1 treated cells, and a number of JQ1 resistant cell states. A transitional cell state transcriptional
signature but not a SCLED state transcriptional signature predicted worsened outcomes in basal-like breast cancer patients
suggesting that transit from the SCLED state to drug-resistant states contributes to patient outcomes. Entry of SUM149 and SUM159
into the transitional cell state was characterized by elevated expression of the CD9 tetraspanin. Knockdown or inhibition of CD9-
sensitized cells to multiple targeted and cytotoxic drugs in vitro. Importantly, CD9 knockdown or blockade sensitized SUM149 to
JQ1 in vivo by trapping cells in the SCLED state and limiting transit to resistant cell states. Thus, CD9 appears to be critical for the
transition from a SCLED state into treatment-resistant cell states and warrants exploration as a therapeutic target in basal-like breast
cancer.
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FACTS

● TNBC breast cancer models have cells in multiple states
including a stem cell/embryonic diapause state, a transitional
state and multiple drug-resistant states.

● TNBC cells transit from stem cell-like and embryonic diapause
states to drug-resistant states.

● CD9 is elevated when cells enter the transitional state and
appears to be required for transit to drug-resistant states.

● A transitional state transcriptional signature but not the stem
cell/embryonic diapause state signature predicts poor out-
comes in TNBC.

● Knockdown of CD9 sensitizes cells to multiple therapeutic agents.

OPEN QUESTIONS

● How do TNBC cells survive JQ1 treatment stress and what are
the specific transcriptional states TNBC cells utilize to enter
drug resistant state?

● How do TNBC cells transit among persisting states and drug-
resistant states under treatment pressure of JQ1?

● What is the key modulator promoting transition among
different cell transcriptional states?

● Can we target the transitional states to prevent resistance
development?

INTRODUCTION
Bromo- and extra-terminal domain (BET) inhibitors (BETi) including
bromodomain 4 inhibitors (BRDi) displace BET proteins from
chromatin resulting in altered oncogenic transcriptional programs
and cell states that are associated with decreased tumor growth in
preclinical models and clinical trials [1, 2]. However, toxicity and
rapid emergence of resistance have limited their clinical
implementation [3, 4].
Persister cell states represent major contributors to therapy

resistance. The defining characteristics of the persister cell state
are that the resistance is due to an epigenetic change (ie non-
genomic) and that the resistant state returns to a drug-sensitive
state following the removal of therapy. Recent data suggests that
tumor cells can co-opt an embryonic diapause state, used by
embryonic stem cells to survive under stress by entering a
dormant state, to survive the stresses associated with cancer
therapy [5–7]. A stem-like state has also been proposed to drive
drug tolerance, cancer metastasis, and recurrence [8–11]. As cells
exit from the stem cell-like state they can acquire more
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differentiated states that can contribute to worsen outcomes
[12, 13]. JQ1, a potent BETi with selectivity for bromodomain 1 of
BRD4, has been reported to induce expansion and self-renewal of
hematopoietic stem cells [14], suggesting that the ability of JQ1 to
de-differentiate cells could also contribute to stem cell enrichment
and development of a drug-resistant persister cell state. Thus, the
transcriptional state changes that allow cancer cells to enter and
exit stem cell-like and embryonic diapause states and to transit to
a drug-resistant persister cell state could represent a new class of
therapeutic targets. Our current understanding of the state
changes that allow entry and exit from stem cell-like and
embryonic diapause states and transition to persister cells states
are not sufficient to enable therapeutic targeting.
Recent studies, based on parental JQ1-sensitive (SUM149P and

SUM159P) and resistant (SUM149R and SUM159R) TNBC cell lines,
have explored underlying mechanisms associated with the
acquisition of resistance to JQ1 [3, 15]. In these models, over
time a subset of the JQ1-resistant cells reverts to a JQ1 sensitive
state consistent with resistance being due to a persister cell state.
Analysis of genomic changes between JQ1 resistant and sensitive
populations failed to identify driver mutations that would explain
the emergence of JQ1 resistance. This was supported by CRISPR
and drug screens that identified a series of synthetic lethal
approaches that demonstrated activity in sensitive and resistant
cells but again could not be explained by genomic changes. Based
on these observations, we hypothesized that epigenomic “state
changes” likely underlie the acquisition of JQ1 resistance in
SUM149R and SUM159R cells. We thus treated SUM149P and
SUM159P as representative of JQ1 sensitive cells and SUM149R
and SUM159R as representative of resistant persister cells that
provide a model for exploring state changes associated with
transition into resistant cell states.
Single-cell transcriptomic analysis (scRNAseq) enables visualiza-

tion of cell states, transit between cell states, cellular differentia-
tion and lineage expansion at single-cell resolution. RNA trajectory
and velocity analysis by combining information from newly
transcribed unspliced RNA and mature spliced mRNA allows the
assignment of single cells along a dynamic trajectory represented
as latent time as well as transition speed represented as velocity
length [16]. To understand the changes in cell states that
contribute to the development of BETi resistance, we visualized
cell communities in parental and resistant SUM149 and SUM159
treated with and without JQ1. We show that stem cell-like and
embryonic diapause (SCLED) cell states form a precursor for the
development of JQ1-resistant states. Cells exit from the SCLED
state and move to resistant states through a transitional cell state
characterized by the acquisition of high CD9 expression. Interest-
ingly, a transcriptional signature of the transitional cell state but
not of the SCLED state correlates with poor outcomes in basal-like
breast cancer patients, suggesting that the ability to transit
between cell states is a key contributor to patient outcomes. CD9
knockdown or anti-CD9 sensitized SUM149 to multiple targeted
and cytotoxic drugs in vitro, indicating a generalized role of CD9 in
drug resistance. CD9 knockdown and blockade sensitized SUM149
to JQ1 in vivo by trapping cells in the SCLED state and limiting
transit to resistant cell states. Thus, CD9 appears to be critical for
the ability of triple-negative breast cancer cells to escape from a
stem cell-like/embryonic diapause state and transition into a
treatment-resistant persister cell state.

RESULTS
Cells in stem cell-like and embryonic diapause transit to JQ1-
resistant states in breast cancer cell lines
SUM149R and SUM159R represent a model of epigenome-
mediated cell state transition to a drug-resistant persister cell
state [15]. We thus obtained and evaluated scRNA-seq datasets
from SUM149 and SUM159 parental and resistant cells using a

dynamic trajectory analysis approach (scVelo) to identify cells
states associated with the transition to drug resistance. To resolve
heterogeneity during the transition to a resistant state, a density-
preserving uniform manifold approximation and projection
(densMAP) was used to visualize community relationships (aka
Louvain clusters, [17]). DensMap incorporates single-cell transcrip-
tional variability as well as the local density of data spaces to
provide a more representative visualization of cell state alterations
[17]. We identified 10 distinct densMAP clusters or communities in
parental and resistant SUM149 and 9 clusters in parental and
resistant SUM159 with and without treatment with JQ1 (Fig. 1A
and Fig. S1A).
Similar to previous analysis [15], after batch effect removal

(Methods), the resultant clusters demonstrated markedly different
frequencies of SUM149 cells from the different treatment
conditions (SUM149P: vehicle, SUM149P: JQ1, SUM149R: vehicle,
SUM149R: JQ1) (Fig. 1A–D) with marked separation of the majority
of the SUM149P and SUM149R cells. Cluster 0 and 5 were almost
exclusively parental cells incubated with and without JQ1,
respectively (<1% contamination with SUM149R cells). Similarly,
clusters 1,2,3,6,7, and 8 were almost exclusively SUM149R (<1%
contamination with SUM149P) with clusters 6 and 2 being almost
exclusively vehicle treated and clusters 1,3,7,8 being dominantly
SUM149R treated with JQ1 (Fig. 1A–D). In marked contrast, cluster
4.1, 4.2, and 9 contained a mixture of treatment naïve as well as
post-treatment sensitive and resistant cells with cluster 4.1 and 4.2
being enriched for JQ1-treated SUM149P and cluster 9 enriched
for SUM149R (Fig. 1A–D). In the presence of JQ1, there was a
marked decrease in the proportion of SUM149P that were in cell
cycle with a more modest decrease in SUM149R (Fig. 1E, F). The
mixed clusters (4.1, 4.2, and 9) all had a relatively high frequency
of cells in cycle.
Trajectory directionality was then overlaid on the densMAP

velocity clustering. On JQ1 treatment, cluster 4.1 transited to
cluster 4.2 (blue) that does not seem to be able to transit further
and to cluster 9 (yellow) that appears to be an intermediary
between cluster 4.1 and all other clusters (except for cluster 5)
including the SUM149R clusters. Cluster 5, which was dominantly
vehicle-treated SUM149P, appears to transit on JQ1 treatment to
cluster 0 that does not transit further. Interestingly, clusters 1,3,7,8
that are dominantly SUM149R treated with JQ1 appear to transit
to clusters 6 and 2 that are dominantly vehicle-treated SUM149R.
Since SUM149R was maintained in JQ1 [15], the JQ1 treated
condition is the “normal” condition and the vehicle-treated
condition is the “new” condition; thus, transit to cluster 6 and 2
is the expected directionality.
We subsequently focused on clusters 4.1 and 9 that were

common to both SUM149P and SUM149R treated with and
without JQ1 and that appeared to represent cells with the
potential to produce the remaining clusters and in particular the
resistant clusters (cR, clusters 1,2,3,6,7, and 8).
Cluster 4.1 that had low latent time and velocity length

appeared to be upstream of the other clusters (Fig. 1A, G). The
low-velocity length is consistent with cluster 4.1 representing a
relatively stable state. As indicated in Fig. 1G, cluster 4.1 (and also
4.2) had signatures consistent with a stem cell-like population
(asymmetric cell division, ABC, and ALDH scores) as well as a high
embryonic diapause score (Fig. 1G, [7, 18]). We thus designated
cluster 4.1 as stem cell-like population/embryonic diapause
(SCLED). Interestingly, both stem cell-like cells and embryonic
diapause cells have been proposed to mediate drug resistance
[6, 7, 13].
We designated cluster 9, which was positioned between cluster

4.1 and the cR clusters (Fig. 1A, G), as the “transitional” cluster. A
subset of cells in cluster 9 had a high-velocity length, high
percentage of cells in cycle, high intratumoral heterogeneity (ITH)
score and a high stem cell differentiation score (GO: 0048863) (Fig.
1G). The ITH score is consistent with transitional cluster 9 being
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highly plastic and the high stem cell differentiation score is
consistent with cluster 9 being an intermediary population
between SCLED cluster 4 and the remaining clusters. Supporting
cluster 9 as a transitional cluster, CytoTRACE [19] showed that the
majority of the cells in cluster 9 have a much higher “development
potential” than cells in cluster 4.1 and 4.2 (Fig. 1H). In contrast, the
resistant clusters and SCLED cluster have low-velocity scores and
likely represent more stable states.
The densMAP clusters of SUM159 recapitulated those of

SUM149 with cluster 0 and 5 being almost exclusively SUM159P,

and clusters 1,2,3,6, and 7 being almost exclusively SUM159R
(Figure S1A–F). Again, similar to SUM149, SUM159 cluster 4 and 9
contained cells from all treatment conditions (Figure S1A–F).
Trajectory directionality of SUM159 was also similar to that of SUM
149 with cluster 4 (blue) appearing to transit to cluster 9 (yellow)
which represents a transitional state between cluster 4 and the
SUM159R clusters. Again, similar to SUM149, the mixed SUM159
clusters (4 and 9) had a relatively high frequency of cells in cycle.
Cluster 4 SUM159 had higher asymmetric cell division, ABC, and
embryonic diapause scores consistent with a SCLED designation
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(Fig. 1G and Figure S1G). As in SUM149, the velocity length of
SUM159 cluster 4 was consistent with it being relatively stable
with limited entry and exit and the velocity length of cluster 9
consistent with it being relatively unstable and rapidly transiting.
The similarity in clusters and processes between SUM149 and

SUM159 is further supported by the overlap in differentially
expressed gene signatures (DEG) consisting of the top 15 DEGs for
each SUM149 and SUM159 cluster compared to all other clusters
(Figure S1H). However, cluster 2 and 7 in SUM159 did not have a
strong equivalent in SUM149. SUM159 cluster 6 and 3 had
representation from multiple different clusters in SUM149 that
constitute the SUM149 cR cell population.
Thus, the overall structure and transitions of clusters and in

particular, SCLED cluster 4 being a precursor to the remaining
clusters and cluster 9 being a transitional cluster between cluster 4
and JQ1 resistant clusters is consistent between SUM149 and
SUM159. This suggests that the transitional cluster could represent
an interesting therapeutic target.
We next sought to determine whether the SCLED and

transitional cell state were unique to the SUM149 and SUM159
models or generalizable across cell lines. We thus trained a
prediction model with SUM149 scRNA data (Fig. 1A), and then
classified individual cells in a pan-cancer scRNA dataset of 196 cell
lines [20] to a SCLED or cluster 9-like subtype (from Fig. 1A) using
scPred, which is designed to accurately classify single cells [21].
We found that SCLED and cluster 9-like cells pre-existed in
multiple treatment naïve cell lines (Figure S1I, J). Indeed,
approximately half of the cell lines contained 1%–5% cluster
9-like cells (95% confidence) similar to the levels in SUM149 and
SUM159 lines (Fig. 3B). Interesting, in the 196 cell line set [20],
similar to SUM149, the cluster 9 signature and to a lesser degree
the SCLED state was associated with an increased ITH score
(Figure S1K).

The transitional but not the SCLED cluster is associated with
metastatic potential and worsened patient outcomes
We used DEGs to explore features defining the SCLED (cluster 4)
and transitional cluster (cluster 9), (Fig. 2A–D). The greater number
of upregulated DEGs in transitional cluster 9 is consistent with
increased cluster 9 ITH. In SCLED cluster 4, two long non-coding
RNA (lncRNA, MALAT1 and NEAT1) that are implicated in stem cell
renewal [22] were strikingly up-regulated (Fig. 2A–C). This is
consistent with the stem cell-like characteristics of cluster 4 noted
in Fig. 1H. Transitional cluster 9 had higher levels of heat shock
proteins (HSP90AA1, HSP90AB1) (HSP) as well as proteasome
proteins (PSMA4, PSMA7, PSMA3, PSMB3) that have been
implicated in apoptosis, cell proliferation and differentiation (Fig.
2A, D, Fig. S2A, B). A subset of DEGs from SUM149 SCLED cluster 4
and transitional cluster 9 were also overexpressed in SUM159
cluster 4 and 9, respectively (Fig. S2A). Interestingly, a protein-
protein interaction network derived from 6 overlapping DEGs of
SUM149 and SUM159 transitional cluster 9 was associated with
HSP chaperon-mediated autophagy and cell cycle progression
(Fig. S2B).

We next explored whether the SUM149 cluster signatures were
associated with outcomes in basal-like breast cancer using
microarray data from the KM plotter database (442 patients).
Surprisingly, a signature comprised of DEGs with Log2(FC) higher
than 5 as well as adjusted p-value less within SUM149 SCLED
cluster 4 was associated with a favorable outcome (Table S2).
Interestingly, the same embryonic diapause transcriptome was
associated with a statistically significantly improved outcome in
basal breast cancer (Fig. S2C) and lung adenocarcinoma (Fig. S2D)
consistent with the outcomes associated with the cluster 4
transcriptome suggesting that entry into the embryonic diapause
state is associated with a lineage-specific effect on outcomes.
However, when we assessed a previously described embryonic
diapause transcriptome that was associated with a poor outcome
in colorectal cancer [7], it was also associated with a worsened
outcome in lung squamous cell carcinoma, and gastric, and
ovarian cancer (Fig. S2D). In support of an ability to exit from a
stem cell-like or embryonic diapause state and transit to a
resistant state being associated with a poor outcome, the
signatures of SUM149 transitional cluster and resistant clusters
were associated with a statistically significant worsened survival in
basal-like breast cancer patients (Fig. 2E–H). To further test the
association of the cell states with patient outcomes, we repeated
the analysis with SUM159 signatures (Table S3). SUM159 SCLED
cluster 4 signature was once again associated with an improved
outcome, whereas the SUM159 transitional cluster 9 signature and
the resistant cluster signature were associated with statistically
significant worsened outcomes (Fig. 2I–K). The data suggests that
an ability to transit (transitional cluster 9) from a stem cell or
embryonic diapause state (SCLED cluster 4) to a drug resistant
state (cluster cR) rather than the stem cell or embryonic diapause
state per se is associated with a worsened outcome in basal-like
breast cancer.
Based on the association of the cluster 9 signature with

worsened patient outcomes, we sought potential underlying
mechanisms. The SUM149 transitional cluster 9 signature demon-
strated concordance with a previously published signature that
predicts a poor outcome in basal-like breast cancer [23, 24] (Fig.
3A). Further SUM149 transitional cluster 9 signature was highly
concordant with a previously published micrometastasis signature
[25] consistent with metastasis from the primary lesion being the
key cause of a worsened outcome in basal-like breast cancer (Fig.
3B). The cluster 9 signature was also significantly enriched in 2 of 3
lung metastatic compared to primary TNBC PDX (Fig. 3C, D) [25].
scATAC-seq datasets of lung and breast cancer cell lines selected
for metastatic propensity [26] also demonstrated a statistically
significant association with the cluster 9 signature (Fig. 3E, F). In
two colon lines, the cluster 9 signature was associated with a
partial EMT signature [27], which has been implicated in
metastatic potential (Fig. 3G, H) [28]. Finally, the cluster 9 signature
was significantly associated with cycling persister cells in both skin
and lung cancer cell lines (Fig. 3I, J) [29].
Taken together, the data support a concept wherein the

ability to exit from a SCLED state and transit to resistant cell

Fig. 1 SUM149 cells in stem cell-like and embryonic diapause states transit to JQ1 resistant states. A Partition-based graph abstraction
(PAGA) representation of Louvain community velocity clustered using latent time in scVelo were mapped on a density preserving uniform
manifold approximation and projection map. (densMAP) of SUM149 cells. Each cluster community is indicated by a unique color. Frequency of
cells undergoing different treatments is shown by the pie chart mapped on each cluster and bar chart displayed in (D). cluster0: n= 638,
percentage of mitochondrial reads (pctMT)= 8.51. cluster1: n= 362, pctMT= 7.12. cluster2: n= 55, pctMT= 11.04. cluster3: n= 457,
pctMT= 9.67. cluster4.1: n= 95, pctMT= 42.18. cluster4.2 n= 293, pctMT= 47.16. cluster5: n= 341, pctMT= 8.38, cluster6: n= 518,
pctMT= 11.04. cluster7: n= 121, pctMT= 8.77. cluster8: n= 444, pctMT= 8.81. cluster9: n= 262, pctMT= 6.09. B The origin of each cell from
SUM149P and SUM149R and treatment conditions are mapped on the densMAP in A. C Fraction of cells of each cluster in each treatment
condition. D Fraction of cells of each treatment condition in each cluster. E Fraction of cells in different cell cycle phases in each treatment
condition. F Fraction of cells in different cell cycle phases in each cluster. G Single cells are colored by normalized latent time, velocity length,
embryonic diapause score, ABC score, ALDH score, asymmetric division score, ITH score and stem cell differentiation score mapped on to A.
Scale is at the left bottom of the latent time panel. H CytoTRACE score is embedded in three-dimensional visualization of single cells from
cluster 4 and cluster 9.
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states through a cluster 9-like state is associated with a
worsened outcome in multiple cancers. It also further demon-
strates that cells with the cluster 9 signature are present in
multiple different model and cell line systems and not restricted
to SUM149 and SUM159.

CD9 expression is increased in transitional cluster 9
We next attempted to identify processes associated with SUM149
leaving SCLED cluster 4, entering transitional cluster 9 and
transiting to JQ1-resistant clusters (cR). We utilized Cox-
regression to identify DEGs from cluster 9 that correlated with

Fig. 2 The transitional but not the SCLED cluster is associated with metastatic potential and worsened patient outcomes. A Heatmap of
normalized expression (log2(TPM+ 1)) of top 30 DEGs across cluster 4.1, cluster 4.2 and cluster 9 in SUM149. DEGs present in both cluster 4.1
and cluster 4.2 are indicated as cluster 4. B–D Volcano plot shows differentially expressed genes in cluster 4.1, 4.2 and cluster 9 in SUM149.
Each pink dot represents a gene with Log2(FC) higher than 5 as well as adjusted p-value less than 0.01. E–G Kaplan–Meier curve of relapse-free
survival in patients with basal-like breast cancer (n= 442) based on DEGs with log2FC ≥ 5 and adjusted p-values < 0.01 for cluster 4.1 (E),
cluster 4.2 (F), cluster 9 (G) of SUM149. H Hazard ratio predicted by Kaplan–Meier curve of relapse-free survival in patients with basal-like
breast cancer (n= 442) based on DEGs with log2FC ≥ 5 and adjusted p-values < 0.01 for cluster 4.1, cluster 4.2, cluster 9, cluster 5 and cluster 0
and cluster R in SUM149. Significance levels were determined by log-rank test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
I, J Kaplan–Meier curve of relapse-free survival in patients with basal-like breast cancer (n= 442) based on DEGs with log2FC ≥ 5 and
adjusted p-values < 0.01 for cluster 4 (J) and cluster 9 (K) in SUM159. K Hazard ratio predicted by Kaplan–Meier curve of relapse-free survival in
patients with basal-like breast cancer (n= 442) based DEGs with log2FC ≥ 5 and adjusted p-values < 0.01 for cluster 4, cluster 9 and cluster R in
SUM159. Significance levels were determined by log-rank test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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movement along the velocity pseudotime axis. The use of velocity
pseudotime avoids the identification of events associated with
changes in cell cycle and renewal that correlate best with the
latent time axis [30]. Of DEGs associated with cluster 9, CD9 was
most highly upregulated upon exit from SCLED cluster 4 and entry
into transitional cluster 9 in velocity pseudotime (HR: 31, p= 1.2 ×
10−19, Fig. 4A, B, Supplemental Table S4). CD9 was co-expressed
with several targets (EP300, PSMA3 and PSMD13) previously
shown to be synergistic with JQ1 and was mutually exclusive with
targets (CDKN1A) associated with resistance to JQ1 (Fig. S3A–C)

[15]. It was also mutually exclusive with the embryonic diapause
signature genes (ALDH6A1 and CTSL) (Fig. S3C) [7]. In K562 and
MDAMB468 scATAC-seq datasets, CD9 enriched clusters demon-
strated higher chromVAR scores of SNAI1 (MA1558.1), TWIST
(MA1123.2), RUNX2 (MA0511.2), ZEB1 (MA0103.3), and SOX2
(MA0143.4) consistent with higher transcription plasticity in CD9
high cells [31–35] (Fig. 4C). CD9 expression alone was able to
recapitulate the cluster9 signature in 10 out of 14 individual
scRNAseq datasets analyzed in Fig. 3 as well as an additional
human TNBC scRNA-seq dataset (Fig. 4D, [36]). CD9 RNA levels did

Fig. 3 The association of cluster 9 signature and the feature of plasticity, micrometastasis, partial EMT and cycling persisters was
characterized in several scRNAseq and scATACseq datasets. A Scatter plot of Pearson correlation of cluster 9 signature (signature of cluster 9
as above) and a signature of poor outcome in single cells. Cells are colored based on Fig. 1A. B Scatter plot of Pearson correlation of cluster
9 signature (signature of cluster 9 as above) and micrometastasis signature in single cells. Cells are colored based on Fig. 1A. 231: MDA-MB-
231, 468: MDA-MB-468. C Uniform manifold approximation and projection map (UMAP) of 3 TNBC PDX tumor cells. Each condition is indicated
by a unique color. D Violin plot expression of cluster 9 signature in each indicated condition from datasets in A. E Uniform manifold
approximation and projection map (UMAP) of 3 TNBC cell lines. Each condition is indicated by a unique color. F Violin plot expression of
cluster 9 signature in each indicated condition from datasets in C. G Uniform manifold approximation and projection map (UMAP) of 2 colon
cancer cell lines. Each condition is indicated by a unique color. H Violin plot expression of cluster 9 signature in each indicated condition from
datasets in E. I Uniform manifold approximation and projection map (UMAP) of 3 skin cancer cell lines and 1 lung cancer cell line. Each
condition is indicated by a unique color. J Violin plot expression of cluster 9 signature in each indicated condition from datasets in G.
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not predict outcomes in all TNBC subtypes, but were sufficient to
predict a poor outcome in basal-like 2 breast cancer patients, a
therapy-resistant subtype (Figure S3D) [37]. CD9 protein levels
were sufficient to recapitulate the prognosis associated with the
cluster 9 transitional cell transcriptome in predicting shorter
relapse-free survival in two TNBC cohorts that included CD9
protein levels (Fig. 4E) [38, 39].

To determine whether the increase in CD9 contributed to exit
from SCLED cluster 4, we assessed the effects of CD9 knock-
down in stable SUM149P shRNA clones and anti-CD9 treatment
on effects of JQ1 on stem cell markers (SETD2, SETD6, NANOG,
POU5F1) and the top two DEGs in SCLED cluster 4 (MALAT1,
NEAT1) that are associated with stem-cell renewal [22]. The
relative level of these markers (SCLED stemness score) was

Fig. 4 CD9 expression is increased in transitional cluster 9 and regulates JQ1 resistance in SUM149. A Likelihood of cells remaining in the
SCLED cluster based on CD9 expression. B CD9 levels of individual cells are mapped on the graph in Fig. 1A. C Scatter plot shows Pearson
correlation of average CD9 expression and cluster 9 signature in each dataset in Fig. 3. D Violin plot shows indicated motif activity of CD9 high
cluster and CD9 low cluster in K562 and MDAMB468 cells. E Kaplan–Meier curve of relapse-free survival in patients with basal-like breast
cancer (n= 65 or n= 165) based on low or high CD9 protein split on median level. Significance is determined by log-rank test. F Changes of
in vitro stemness score of SUM149 transfected with shCON or shCD9-1 lentivirus treated with JQ1 (100 nM) for 96 h, 8 days and 10 days. In
vitro stemness markers included SETD6, NANOG, POU5F1, MALAT1, and NEAT1 were assessed by RT-PCR and in vitro stemness score
calculated as un weighted sum of relative fold change of each gene compared to shCON cells treated with DMSO and shCD9 cells treated with
DMSO, respectively. Data represent SEM of three replicates. G Changes of in vitro stemness score of SUM149 treated with JQ1 (100 nM), anti-
CD9 and combination for 96 h, 8 days and 10 days. H Cell viability assessed by prestoblue of SUM149 transfected with shCON, shCD9-1,
shCD9-2, and shCD9-3 lentivirus and treated with indicated doses of JQ1 for 96 h. I Scatter plot of correlation of cell growth assessed by
prestoblue and CD9 expression (left). Scatter plot of cell sensitivity to JQ1 and CD9 expression (right).
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increased on day 4 of JQ1 treatment of SUM149P (Fig. 4F, G). In
control cells, the stemness score decreased on day 8 and 10 of
JQ1 treatment consistent with JQ1 causing cells to exit SCLED.
In contrast, the high stemness score persisted in both shCD9
knockdown and CD9 antibody-treated SUM149P (Fig. 4F, G)
suggesting that the SCLED state is maintained in the absence of
CD9 activity. This is consistent with the concept that CD9
expression is required for SUM149 cells to exit SCLED cluster 4,
enter transitional cluster 9 and then progress to JQ1 resistant
states. Stable knockdown of CD9 with shRNA in SUM149P also
sensitized SUM149P to JQ1 (Fig. 4H) but importantly sensitized
cells to JQ1 in additional TNBC cell lines (Fig. S3E–G) providing
support for the concept that CD9 plays a generalized role in JQ1
responsiveness in TNBC. Furthermore, after co-expression of a
shRNA targeting the CD9 3’ untranslated region (UTR) and a CD9
expression construct that lacks the CD9 3’ UTR and is thus
rescues cells with the CD9 shRNA, CD9 positive SUM149 cells
were significantly enriched by JQ1 treatment (Figure S3H).
Based on the different levels of CD9 in SUM149P cells, we
performed single-cell cloning and were able to isolate clones
with low and high CD9 levels. Interestingly cells with elevated
CD9 levels had higher proliferative rates than cells with low CD9
levels (Fig. 4I). Strikingly, the four SUM149 clones with elevated
CD9 levels were markedly resistant to JQ1 (Fig. 4I and Fig.
S4A–C). Consistent with high CD9 and drug resistance due to a
state change rather than a genomic aberration, over time the
clones tended to lose their differential CD9 expression levels
and return to expression and drug sensitivity levels similar to
parental cells, a characteristic associated with persister cells
(Fig. S4D, E).
JQ1 dissociates BRD4 from chromatin, allowing it to move to

the cytosol [40]. We thus assessed the effect of JQ1 on BRD4
location in SUM149P clones with different CD9 levels. In JQ1-
treated SUM149P, cells that lacked nuclear BRD4 were not in
cycle based on Ki67 levels (Fig. S5A–D). There was, however, a
small population of JQ1-treated SUM149P cells with nuclear
BRD4 and retained Ki67 expression (Fig. S5A–D). Strikingly, in
SUM149P clones with high CD9, BRD4 nuclear localization and
Ki67 staining were maintained in the majority of JQ1-treated
cells. In contrast, JQ1 excluded BRD4 from the nucleus and
decreased Ki67 in SUM149P clones with low CD9 levels (Fig.
S5A–D). Furthermore, stable knockdown of CD9 with shRNA was
associated with a marked decrease in nuclear BRD4 and Ki67 (Fig.
S5A–D). Interestingly, CD9 knockdown was associated with
micronuclei formation and mitotic dysfunction (Figure S5A–D).
Thus, elevated CD9 levels are associated with resistance to the
effects of JQ1 on BRD4 nuclear localization and thus DNA
binding.
Together the data support a mechanistic role for CD9 in

response to JQ1 in SUM149P.

CD9 mediates resistance to multiple but not all drugs
Based on the role of CD9 in mediating state transition, we
assessed the effects of CD9 levels using SUM149P clones and CD9
knockdown as well as anti-CD9 on responses to a suite of targeted
agents and found that decreased CD9 activity was associated with
increased sensitivity to a proteasome inhibitor (MG132), kinase
inhibitors (mTORi), DNA damage checkpoint inhibitors (PARPi,
CHK1i, WEE1i), heat shock family inhibitors (HSP70i, HSP90i) and
chemotherapy (cisplatin) (Fig. 5A, B). Interestingly, of the drugs
tested, CD9 knockdown or CD9 inhibition did not increase
sensitivity to MEK or CDK4/6 inhibitors in SUM149P (Fig. 5A, B).
We subsequently explored the CTRPv2 database and found that
CD9 levels were associated with many of the drugs assessed in Fig.
5 (Fig. 5C) as well as additional BET inhibitors (AZD5153, OTX015, I-
BET-762), a combined mTOR PI3K inhibitor (BEZ225) and a PARP
inhibitor (BMN673). Thus, CD9 expression contributes to resistance
to multiple but not all drugs.

CD9 inhibition increases JQ1 sensitivity in vivo
In order to ascertain the role of CD9 in JQ1 resistance in a tumor
model, we determined the effect of CD9 knockdown and blockade
with an anti-CD9 antibody on response to JQ1 in SUM149
xenografts. CD9 knockdown SUM149P formed smaller tumors
than those from shCON cells suggesting that CD9 may contribute
to tumor growth independent of response to JQ1 potentially
through effects of proliferation noted above (Fig. 6A). As indicated
in Fig. 6A, JQ1, at the doses used, JQ1 had modest effects on
growth of shCON SUM149P cells. In contrast, growth of CD9
knockdown SUM149P was controlled by JQ1 during the 30-day
treatment period (Fig. 6A). Consistent with the effects of CD9
knockdown, anti-CD9 treatment combined with low doses of JQ1
(1/5 of dose used in a previous study) [15] markedly controlled
tumor growth (Fig. 6B). The effect on growth in the mammary fat
pad was recapitulated by tumor weight and tumor size at the end
of the study (Fig. S6A, B).
We subsequently performed scRNAseq on SUM149P tumors

isolated from mice at the end of the study. Prolonged treatment of
SUM149P with JQ1 in vivo (30 days) has the potential to induce
JQ1 resistance that could reflect characteristics of the SUM149R
cell line. scPred, which is designed to accurately classify single
cells [21], was trained on the SUM149 cell line clusters in Fig. 1A.
scPred identified 4 major clusters (Fig. S6C, Fig. 6C, D). Trajectory
analysis combined with densMAP was done with cell subtypes
classified by scPred. The transition of cells from the SCLED cluster
into cluster 9 and subsequently JQ1 resistant clusters was
recapitulated in shCD9 xenograft tumors (Fig. 6C, E). CD9
knockdown increased the number of cells in the SCLED state
with a decrease in the number of cells in cluster 9 and the
resistant cell clusters (Fig. 6F). This is consistent with trapping of
cells in the SCLED cluster. potentially contributing to the
decreased tumor growth induced by the combination. While a
number of targets reported to be synergistic with JQ1 [15] were
upregulated by shCD9, they were markedly downregulated by the
combination of shCD9 and JQ1 potentially contributing to the
decreased tumor growth induced by the combination (Fig. S6E).
MYC was modestly downregulated by JQ1 monotherapy and
similar, to the other targets, upregulated by shCD9. However, both
MYC and two Hallmark MYC target transcriptomes were markedly
downregulated by the combination of JQ1 and shCD9 (Fig. S6E).
When we explored the association of signatures of different

clusters identified in vivo with patient outcomes, we found once
again that signature derived from SCLED was associated with an
improved outcome whereas cluster 9 and cR signatures were
associated with worsened patient outcomes (Supplemental Table
S5, Fig. 6G).
The data is consistent with a model wherein CD9 in the

transitional cluster being required for cells to transit from the
SCLED state to a JQ1 resistant state.

Proteasome function mediated by CD9 is essential for
surviving JQ1
To explore how CD9 knockdown sensitized to JQ1 in vivo, we
assessed pathway profiles across the 4 treatment conditions using
GSVA. Interestingly, ubiquitin-mediated proteolysis was decreased
in shCD9 tumors and further decreased in shCD9 tumors treated
with JQ1 (Fig. 7A). Given the increase in the number of cells in the
SCLED cluster and a decrease in the number of cells in cluster 9 in
shCD9 tumors in vivo, the decrease in ubiquitin-mediated
proteolysis is consistent with the increase in ubiquitin-mediated
proteolysis in cluster 9 in SUM149 (Fig. 7B) and SUM159 (Fig. 7C).
Furthermore, in the 196 cell line data set noted above [20], the
cluster 9 signature correlated with a proteosome signature (Fig.
S7A, B).
We subsequently explored the effects of JQ1, shCD9 and anti-

CD9 treatment on the endosomal compartment. RAB4, a marker of
early endosomes, was distributed in cytoplasm of SUM149P and
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Fig. 5 CD9 contributes to resistance to multiple drugs. A Representative light microscopy images of 3D cultured cell lines treated with
indicated drug for 96 h. (JQ1= 100 nM, MG132= 400 nM, mTORi= 200 nM, HSP70i= 10 μM, HSP90i= 8 nM, cDDP=300 nM, CHK1i= 1 nM,
WEE1i= 60 nM, PARPi=600 nM, Tram=500 nM, CDK4/6i= 1 μM). Data are representative of three replicates. Scale bars: 200 μm. B Bar charts of
colony numbers with indicated diameter with indicated treatments in A. C Scatter plots of Pearson correlation of CD9 expression and
indicated drug sensitivity in cancer cell lines from CTRPv2. Each dot presents a cell line.
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shCON SUM149P (Fig. 7D, E). After JQ1 treatment, shCON
SUM149P colonies lost their circumscribed characteristics and
demonstrated complex morphology with spreading. RAB4 was
markedly upregulated in JQ1-treated shCON SUM149P including
the spreading regions of the colonies (Fig. 7D), while in 2D culture

a clear co-localization of RAB4 and CD9 was observed in JQ1-
treated SUM149P (Fig. 7E). Interestingly following JQ1 treatment,
there was an association between CD9 and RAB4 as indicated by
the yellow color. In both shCD9 and anti-CD9 treated SUM149P,
cell morphology was altered with marked changes in nuclear
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morphology including larger size and fused nuclei (Fig. 7E).
Although RAB4 expression was upregulated by JQ1 treatment, the
distribution was abnormal consistent with loss of CD9 or anti-CD9
disrupting early endosome function.
In support to the importance of endosome function in JQ1

resistance, JQ1 treatment of SUM149 increased both soluble (S)
and insoluble (P) ubiquitin with a much greater effect when
MG132 was added to prevent degradation of ubiquitinylated
proteins in the proteosome (Fig. 7F). There was a modest increase
in CHOP consistent with activation of an unfolded protein
response (Fig. 7F). While both JQ1 and MG132 decreased protein
thermal stability, JQ1 and MG132 together have a greater effect
on protein sensitivity to thermal stress (Fig. 7G). Furthermore, in
SUM149P, shCD9 and anti-CD9 increased soluble ubiquitin and
increased the effects of JQ1 on total and insoluble ubiquitin
implicating CD9 in proteosome activity (Fig. 7H).
We subsequently determined the effect of targeting HSP90

(HSP90i) and HSP70 (HSP70i) as well as proteosome activity
(MG132) on colony formation in 3 breast cancer cell lines, two
pancreatic cell lines, 1 ovarian cancer cell line and 1 colorectal cell
line in 2D culture (Fig. S7C). Strikingly inhibition of HSP90, HSP70,
or the proteosome sensitized each line to JQ1. To more closely
mimic the in vivo context, we assessed the effects of the inhibitors
on the activity of JQ1 in 3D culture. In the absence of the
inhibitors, in SUM149P JQ1 decreased the number of small
colonies (10 nm) but had no effect on larger colonies (20 nM, Fig.
7I). Strikingly, despite HSP90i, HSP70i and MG132 having minimal
activity on their own, they markedly sensitized SUM149P to JQ1
with a complete loss of larger colonies including those with a
more aggressive morphology and a marked decrease in smaller
colonies. Together, these data support the concept that protein
stability contributes to the ability of SUM149 cells to survive the
effects of JQ1.

DISCUSSION
Shu et al have performed a number of studies to identify
mechanisms and therapeutic opportunities associated with
acquisition of resistance to BET inhibition with JQ1 based on
studies of JQ1-sensitive SUM149P and SUM159P and JQ1-resistant
SUM149R and SUM159R. Their studies have identified differences
and therapeutic opportunities between the JQ1 sensitive and
resistant cells. Although there were genomic differences between
JQ1 sensitive and resistant cells, they did not explain the
differences in JQ1 sensitivity nor the altered responses in CRISPR
and drug screening assays [15] suggesting that this is a model of
epigenomically related resistance mediated by persister cells. We
thus explored whether state changes as assessed by trajectory
analysis could explain the transition of JQ1-sensitive SUM149P and
SUM159P to JQ1-resistant SUM149R and SUM159R and impor-
tantly whether these state changes would represent new
therapeutically tractable processes.
We visualized cell communities in parental and JQ1-resistant

SUM149 and SUM159 treated with and without JQ1 using

densMAP onto a UMAP representation. A cluster that contains
independent populations of stem cell-like and embryonic
diapause cell (SCLED) states appears to be upstream of a
transitional cluster that contains a subset of rapidly transiting
cells and a drug-resistant cluster. Cells exit the SCLED state and
move through a transitional state to JQ1-resistant persister cell
states. These states were observed in multiple cells lines in
addition to the original SUM149 and SUM159 models supporting
generalizability of the process.
scRNAseq and associated RNA velocity analysis provide an

opportunity to understand both the subtypes and potential state
changes in single cells. However, the relatively new velocity
analysis approaches are confounded by potential technical
artifacts present in the approaches used to deconvolute scRNA-
seq data, the quality of the data and the assumptions underlying
the derivation of trajectories of single cells based on the frequency
of spliced and unspliced RNA [41]. DensMap that incorporates
single-cell transcriptional variability as well as the local density of
data space to provide a more representative visualization of cell
state alterations [17] was used to mitigate some of the challenges
with conventional RNA velocity analysis. Further, the identification
of similar state and state transitions in data sets from SUM149,
SUM159 and SUM149 shCD9 xenografts strengthens the con-
fidence in the output of the RNA velocity analysis. The ability to
map the states and state transitions in the in vitro SUM149 scRNA
data to the in vivo scRNA data with scPred provides further
support of the RNA velocity analysis. Importantly, the apparent
originating state in the RNA velocity analysis was composed of
cells with stem cell like and embryonic diapause-like states that
expressed both the expected transcriptomes and markers
associated with these states. Consistent with cluster 4 being the
originating cluster, both stem cell like and embryonic diapause
states are considered to be precursors to more differentiated
states.
While cells from the in vivo model mapped with scPred onto

the states identified in the in vitro studies, there were a number of
cells that were not mapped by scPred. The trajectory of these cells
and their role in resistance to JQ1 will require further investigation.
However, they likely represent a novel cell type engendered by
the combination of CD9 knockdown and treatment with JQ1 and
further emphasize the plasticity of the SUM149 model under
therapeutic challenge.
Interestingly, a signature of the transitional cell state, but not a

signature of the SCLED state, correlated with poor outcomes in
basal-like breast cancer patients suggesting that the ability to
transit between cell states is a key contributor to patient
outcomes. The transitional cell signature was also highly
correlated with a micrometastasis signature, which could con-
tribute to the association with outcomes as metastatic ability is a
key determinant of patient outcomes. Metastasis requires that
cells be able to transit between epithelial mesenchymal transition
(EMT) and MET. The observation that the signatures derived from
SCLED cluster were associated with an improved outcome in
breast cancer was consistent in independent analysis of signatures

Fig. 6 SUM149 cells are sensitive to the combination of JQ1 and CD9 inhibition. A Tumor growth curves of indicated groups. SUM149 with
or without stable CD9 knockdown were injected into mice. Five mice were treated with vehicle or JQ1 (25mg/kg intraperitoneal daily) for
30 days. Tumor volume was measured with calipers. B Tumor growth curves of indicated groups. Five mice were treated with vehicle and IgG
(1mg/kg, every second day), JQ1 (10mg/kg intraperitoneal daily), anti-CD9 antibody (1mg/kg, every second day) or JQ1 combined with anti-
CD9 antibody for 30 days. Tumor volume was measured with calipers. C scRNA data from tumors collected at 30 days was assessed and
visualized using densMAP as described in Fig. 1A. scPred trained on data from Fig. 1 was used to provide cell cluster identity. Frequency of
each treatment is shown by pie chart mapped on each cluster. D Cell distribute of each indicated treatment in densMAP. E Single cells are
colored by normalized latent time, asymmetric division score, ABC score, ALDH score, embryonic diapause score, ITH score and
cluster9 signature score (c9) and resistant cluster signature score (cR) mapped onto (C). Scale is at the left bottom of the latent time panel.
F Each cell in the in vivo analysis was assigned to a SUM149 cluster using scPred trained on data from Fig. 1A and frequency determined.
G Hazard Ratio predicted by Kaplan–Meier curve of relapse-free survival in patients with basal-like breast cancer (n= 442) based on DEGs with
log2FC ≥ 5 and adjusted p-values < 1e−9 for clusters in (C) in SUM149. Significance was determined by log-rank test. *p < 0.05.

X. Li et al.

11

Cell Death Discovery           (2023) 9:285 



derived from the SUM149 and SUM159 basal-like breast cancer
models including the in vivo model giving greater confidence in
the conclusions. Previous analysis of stem cell-like and embryonic
diapause signatures [7, 12] have suggested that these are
associated with a poor patient outcome in colorectal cancer.
Our analysis of the previously derived embryonic diapause

signature confirmed the association with a poor outcome in
colorectal cancer [7]. The embryonic diapause transcriptome was
also associated with a worsened outcome in lung squamous cell
carcinoma, and gastric, and ovarian cancer. However, the same
embryonic diapause transcriptome was associated with a statis-
tically significantly improved outcome in basal breast cancer and
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lung adenocarcinoma. This suggests that the signatures are
associated with lineage-specific effects that could be related to
the intrinsic characteristics of the lineages, the mutational patterns
associated with the lineages and also with the therapy approaches
used in each lineage. The demonstration that a cluster 9 signature
was associated with a worsened outcome in TNBC strongly
supports the contention that this cluster is required for the full
manifestation of drug resistance and further that it could
represent a novel therapeutic target. Indeed, we demonstrated
that targeting this cluster through knocking down or inhibition
the main DEG associated with the cluster CD9 markedly decreased
tumor growth and sensitized cells to an array of targeted and
chemotherapy agents.
We used velocity pseudotime to identify DEGs associated with

transit through transitional cluster 9. The CD9 tetraspanin was the
DEG most highly associated with velocity pseudotime (HR: 31,
P= 1.2 × 10−19). Both knockdown of CD9 and CD9 antibody
treatment combined with JQ1 resulted in improved tumor control
and also a marked increase in response to a suite of targeted and
chemotherapy agents. However, these effects were specific to a
number of different targets, as CD9 knockdown did not alter
sensitivity to MEK and CDK4/6 inhibitors. The difference in
sensitivity to different targeted agents remains to be explained.
Knockdown of CD9 was associated with a loss of normal
endosome function as indicated by changes in localization and
structure of RAB4 intracellular structures. Knockdown of CD9 was
also associated with changes in ubiquitination and proteosome
function. This could contribute to the altered sensitivity to JQ1 as
the effect of CD9 knockdown on JQ1 sensitivity was recapitulated
by treatment with MG132. These results are compatible with those
of Shu et al that demonstrated that a HSP90 inhibitor and MG132
as well as CRISPR of ubiquitination-related genes SPOP, UBE2M,
CUL3 and USP14 demonstrated synthetic lethality with JQ1 [15].
CD9, a member of the tetraspanin superfamily, shows wide

cellular and tissue distribution and is involved in cell motility,
proliferation and metabolism in both immune cell and tumor cells
[42, 43]. CD9 protein is found at the membrane and is associated
with a wide range of physiological and biological functions
including vesicular fusion, endocytosis and exosome biogenesis.
CD9 inhibition has also been reported to attenuate extracellular
vesicle uptake [44]. In addition to proliferation and exosome
function in tumor cells, CD9 is also broadly expressed by different
immune cell types with an important role in shaping both anti-
tumor immunity and pro-tumor immunity depending on the
different types of immune cells present in the tumor niche [45].
CD9 has been proposed to have anti- and pro-tumor capability

in different tumor lineages [43, 46, 47]. In breast cancer studies,
CD9 also has been reported to be involved in tumor invasion and
in inhibition of tumor progression that would be expected to have
opposite effects on outcomes [48, 49]. Notably, even in a single-
cell line, the effect of CD9 silencing has proven controversial with
proliferation promotion and inhibition being observed in MDA-
MB-231 after CD9 silencing in two different studies [50, 51]. We
found that CD9 protein levels were sufficient to predict a
worsened outcomes in two cohorts of basal-like breast cancer

patients but that CD9 mRNA in the same samples did not predict
outcome. This could in part be due to discrepancies between
mRNA and protein levels that we have reported previously
[52, 53]. However, in the basal like 2 subset (also known as basal-
like immunosuppressed) that is associated with the worst
outcome, RNA levels were able to predict patient outcomes. Thus,
it is possible that RNA and protein levels of CD9 do identify an
ability to transition to a drug-resistant state at least in this subtype
of breast cancer. Consistent with this model, both CD9 knockdown
and anti-CD9 markedly increased sensitivity to combinations of
JQ1 with a number of targeted and therapeutic agents in multiple
cell lines in vitro. Perhaps more importantly, inhibition of CD9 in
xenograft models with low doses of JQ1 that did not demon-
strated toxicity in the murine models was associated with marked
tumor control. As CD9 has been implicated in both anti-tumor
immunity and pro-tumor immunity [45], the effects of blocking
CD9 in immune-competent mice requires further exploration prior
to implementation into clinical trials.
Thus, our data suggests that targeting CD9 could revitalize the

opportunities for BET family inhibitors in solid tumor both by
increasing their efficacy and also by decreasing the dose of BET
inhibitors required to mediate optimal effects. This contention
may apply to suite of targeted and chemotherapy agents in
addition to BET family inhibitors. The ability to increase efficacy
while decreasing toxicity and thus widening the therapeutic index
is especially attractive. These preclinical data provide support for
further exploration and potential development of CD9 as a
therapeutic target.

MATERIALS AND METHODS
Cancer cell lines
Breast cancer cell line MDA-MB-231 and MDA-MB-468 were
obtained from ATCC and cultured at 37 °C under 5% CO2 in
DMEM with 10% (vol/vol) fetal bovine serum. SUM149 was a gift
from Dr. Laura Heiser and cultured at 37 °C under 5% CO2 in F12
with 5% fetal bovine serum supplemented with 250ul insulin, 50ul
EGF and 5ml HEPES. Pancreatic cell line Pa02C and Pa16C were
gifts from Prof. Anirban Maitra (Division of Pathology/Lab
Medicine, The University of Texas MD Anderson Cancer Center)
and cultured at 37 °C under 5% CO2 in RPMI-1640 with 10% fetal
bovine serum. Ovarian cancer cell line HeyA8 was from MD
Anderson Cancer Center Characterized Cell Line Core and was
cultured at 37 °C under 5% CO2 in RMPI-1640 with 10% fetal
bovine serum. CT26 was obtained from ATCC and cultured at 37 °C
under 5% CO2 in DMEM with 10% fetal bovine serum. Cells were
fingerprinted before use with short tandem repeat (STR) testing.

Xenograft assays
For xenograft assays, female NSG (NOD.Cg-Prkdcscid
Il2rgtm1Wjl/SzJ) mice at 6 weeks of age were purchased from
the Jackson Laboratory. Animal experiments were performed by
X. Li in Animal Facility, Knight Cancer Institute, Oregon Health &
Science University according to the IACUC approved protocol:
Combination Therapy Targets Adaptive Resistance in Cancer

Fig. 7 CD9 contributes to endosome and proteosome function. A GSVA enrichment scores of KEGG pathways in scRNA Seq of xenograft
tumors from Fig. 6. B GSVA enrichment scores of top 50 DEGs for clusters 4.1, 4.2, 9 and 1 in SUM149. C GSVA enrichment scores of top 50 DEGs
for clusters 4, 9 and 1 in SUM159. D Representative immunofluorescence images of indicated protein expression in indicated SUM149 cell lines
(JQ1= 100 nM). Data are representative of three replicates. E Representative immunofluorescence images of indicated protein expression in
SUM149 cell lines treated with JQ1 (100 nM), anti-CD9 and combination. Data are representative of three replicates. F Representative western
blot of data from one of three independent experiments of indicated protein in SUM149 cell line treated with indicated treatments
(JQ1= 100 nM, MG132= 200 nM) for 96 h. G Whole-proteome thermal stability curve of SUM149 cell line treated with indicated treatments for
96 h. Data represent SEM of three replicates. H Representative western blot of indicated protein of indicated cell lines (JQ1= 100 nM, anti-
CD9= 1 μg/μl). Data are representative of three experiments. I Representative light microscope images of 3D cultured SUM149 cell line treated
with indicated drugs (JQ1= 100 nM, MG132= 400 nM, HSP70i= 10uM, HSP90i= 8 nM) for 96 h (left). Bar chart of colony numbers with indicated
diameter with indicated treatments (right). Data represent SEM of three replicates. *p < 0.05, **p < 0.01, ***p < 0.001.
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(TR01_IP00002062) following AALAC guidelines. Mice were
housed 5 to a cage with ad libitum access to food and water
in 20 °C, 40–50% humidity and a 12-h light/12-h dark cycle.
Animal numbers of each group were calculated by power
analysis and animals were randomly assigned to groups for each
experiment. For shCD9 xenograft model, 2 × 106 SUM149 cells
transfected with shCON or shCD9 lentivirus and suspended in
50 μL of culture medium/Matrigel Growth Factor Reduced
Basement Membrane Matrix, Phenol Red-Free (Corning,
CLS356231) in a 1:1 ratio were orthotopically injected into the
mammary fat pad. After 14 days, mice were assigned to
treatment groups (n= 5) based on randomization of tumor size.
Mice were treated with vehicle or JQ1 (25 mg/kg, intraperitone-
ally, daily, Selleckchem, #S7110) for 30 days. For anti-CD9 and
JQ1 combination assay, 2 × 106 SUM149 cells were injected as
described above. After 14 days, mice were assigned as described
above. Mice were then treated with vehicle and IgG (1 mg/kg,
intraperitoneally, every second day), JQ1 (10 mg/kg), CD9 anti-
body (ALB6, IM0117, Beckman Coulter, 1 mg/kg, every second
day) or combination for 12 days. Tumors were measured by
calipers every 3 days. Tumor volume was calculated according to
a modified ellipsoid formula V= 1/2 × (Length × Width2). Mice
were isoflurane anesthetized and tumors were collected and
fixed overnight in 10% formalin, stored in 70% ethanol followed
by paraffin embedding, 5μm-sectioning and hematoxylin and
eosin staining, or single-cell suspension generation for scRNAseq
at the end of treatment.

Antibodies and Inhibitors
Antibodies used for Western blotting were ubiquitin (P4D1, Santa
Cruz Biotechnology, #C0821), HSP90 (Cell Signaling Technology,
#4874), CHOP (Cell Signaling Technology, #2895S). Antibodies
used for immunofluorescence were RAB4 (EPITMICS, #2632-1),
CD9 (TS9, Abcam, #ab58989), ERK1/2 (Cell Signaling Technology,
#4695). Antibodies used for cytometry were CD9 (C-4, Santa Cruz
Biotechnology, #J0819), along with Calcein violet AM (Invitrogen,
#65-0854-39), Propidium Iodide (PI) (Invitrogen, 00-6990-50).
Antibodies used for treatment were CD9 (Abcam, # ab58989).
The proteasome (MG132), HSP90 (NVP-AAUY922), HSP70
(VER155008), PARP (Olaparib), BRD4 (JQ1), CHK1 (Prexasertib),
WEE1 (AZD1775), MEK (Trametinib), CDK4/6 (Palbociclib) inhibitors
were purchased from Selleckchem and were of the highest quality
available. cDDP was purchased from TSZ CHEM.

Membrane protein extraction
Membrane protein was extracted by Subcellular Protein Fractio-
nation Kit for Cultured Cells (#78840, ThermoFisher) according to
the manufacturer’s instructions. Briefly, first, cell pellet was
added to Cytoplasmic Extraction Buffer (CEB) and incubated at
4 °C for 10 min with gentle mixing. Then, after centrifugation at
500 × g for 5 min, cytoplasmic protein in the supernatant was
separated from the pellet that included membrane proteins. Ice-
cold Membrane Extraction Buffer (MEB) containing protease
inhibitors was added to the pellet. After vortexing for 15 s, the
tube was incubated at 4 °C for 10 min with gentle mixing. After
centrifuging at 5000 × g for 5 min, membrane protein was
localized in the supernatant.

Cellular thermal shift assays for protein stability
Protein stability was measured by thermal shift assays as
described [54]. Briefly, 106 cells in 1 mL PBS supplemented with
2 × protease inhibitors were lysed by 3 freeze-thaw cycles in liquid
nitrogen with heating and vortexing briefly after each thawing.
Cell suspension lysates were cleared by centrifugation (13,000 rpm
for 30 min at 4 °C). Cell suspension lysates were divided into eight
100 μL aliquots, which were then heated in a gradient thermo-
cycler at 37, 38.7, 41.6, 46.4, 52.1, 56.7, 59.9, 62 °C for 10 min.
Protein concentrations were measured by BCA.

Insoluble ubiquitin aggregates and cell fractions
Isolation of insoluble ubiquitin aggregates was performed as
described [55]. Briefly, cells were incubated in stringent lysis
buffer (25 mM Tris, 150 mM NaCl, 1% NP-40, and 1% sodium
deoxycholate supplemented with 2X protease inhibitors) on ice
for 15 min and then sheared by passage through a 23 G needle.
Lysates were cleared by centrifugation (13,000 rpm for 15 min at
4 °C) and supernatant transferred to a new tube. Pellets were
washed 3 times with cold PBS with 0.1% Triton X-100 and 2X
protease inhibitors. Insoluble pellets were dissolved in Laemmli
sample buffer (Bio-Rad, #1610747). Protein concentrations of
soluble fractions were determined by BCA. Soluble fraction
volumes were adjusted to the same protein concentration.
Finally, equal volumes of soluble and insoluble fractions were
separated by western blotting.

Generation of CD9 Knockdown and CD9 rescue breast cancer
cells lines
shRNA (shCD9_1 #TRCN0000296954, shCD9_2 #TRCN0000291711,
shCD9_3 #TRCN0000296958, shCON #SHC201) were purchased
from Sigma Aldrich. Lentivirus were packaged in 293 T cell line by
cotransfected into 293 T cells with Lentiviral Packaging Mix
(#SHP001, Sigma Aldrich). 72 h after co-transfection, 293 T medium
with packaged lentivirus was harvested. SUM149, MDAMB231 and
MDAMB468 cells were transfected with 293 T medium containing
lentivirus by spinning (1000 × g) for 2 h at 25 °C. Cells were
selected in puromycin. SUM149 transfected with shCD9_3 which
targets the CD9 3’ untranslated region (UTR) was transfected with
CD9-mGFP (0.5 ng/μL, Addgene, #182864) that lacks the CD9 3’
untranslated region to rescue CD9 expression in SUM149 CD9
knockdown cells.

Software used in this study
SCANPY, scVelo, Cell Ranger v6.0.0, GSVA, Survival R, FlowJo,
samtools, CytoTrace, ImageJ, Prism (v8) were used. All statistical
analyses were done by GraphPad Prism software. Non-normally
distributed data was compared using the Mann–Whitney test.
Wilcoxon matched-pairs signed rank test was used for paired
data. Comparison among multiple groups was done by one-
way Anova.

Single-cell RNAseq data analysis
Single-cell RNAseq data generated by 10xGenomics was pro-
cessed by Cell Ranger count pipeline (v6.0.0) with command
argument: “include introns”. Output BAM files were further
processed by Velocyto to generate LOOM files containing UMI
of spliced RNA, unspliced RNA and ambiguous as separate
matrices with the default parameters. Cells with human hashtag
oligo reads were included for further analysis. Single-cell sample
demultiplexing was done by unsupervised Louvain clustering of
cell multiplexing oligo matrix and the Louvain community with
exclusively unique cell multiplexing oligo captured being assigned
to different treatment groups. Cells with fewer than 2000 genes
detected (UMI > 4000) or with more than 30% UMIs from
mitochondrial genes were excluded. Doublets were removed by
Scrublet with the expected doublet rate of 6 and doubletScore
larger than 95%. Filtered data were then normalized and scaled by
SCANPY and scVelo to remove unwanted source of variance such
as batch effects and cell cycle effects. Unsupervised clustering was
performed by Louvain cluster module in SCANPY. DEGs between
clusters were obtained by Wilcoxon rank-sum test. FDR was used
to correct for multiple testing. Asymmetric division score
(GO:0008356), embryonic diapause score, stem cell differentiation
score (GO: 0048863), (ATP binding cassette) ABC score and
(aldehyde dehydrogenase) ALDH score were calculated with score
gene module in SCANPY with the gene list indicated in
Supplemental Table S1. Density-preserving dimensionality reduc-
tion was done by densVis [17] package.
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Trajectory analysis
RNA velocity analysis was done by scVelo[30] with dynamic mode.
The calculated RNA velocity vectors were embedded to low-
dimension space by Partition-based graph abstraction (PAGA)
module in scVelo package. CytoTRACE score was calculated by
CytoTRACE R package [19]. Calculated CytoTRACE score was then
embedded with UMAP into a higher dimensional graph.

Cell state classification
scPred, a supervised classification-based automated cell type
annotation tool that applies support vector machines (SVMs) [21]
was used for cell subtype annotation. To provide additional
information to trajectory analysis done by scVelo, SUM149 scRNA-
seq matrix with only highly variable genes (HVGs) imputed by
scVelo and the velocity cluster information from Fig. 1 were used
as training matrix for scPred with “MDA” for a mixture discriminant
analysis training model. Once the model was trained and
evaluated, the trained model was applied to classify cell state
from the CD9 xenograft dataset. In order to maintain a single
normalization method as well as keep the imputed information
from scVelo, the cell state classification was applied to the CD9
xenograft dataset after imputation.

Pseudo-survival analysis
Cluster 9 DEGs expression were split into two high and low group
using a cut off of average expression of each gene. In order to
avoid embryonic diapause cell-cycle effects, the association
between each of the cluster 9 DEG events and velocity
pseudotime was assessed by the Cox-regression model by Survival
in R. The results are presented as hazard ratios with 95%
confidence intervals. The proportional hazards were visualized
by inspecting graphs of the cumulative baseline functions against
pseudo-survival time (1-velocity pseudotime).

Public data analysis
Single-cell RNAseq fastq files of SUM149, SUM149R, SUM159, and
SUM159R cell lines treated with JQ1 were obtained from
GSE131102 and processed as described above. Cell and gene
filter threshold were set described with minor modification as cells
with more than 55% UMIs from mitochondrial genes [15]. The
filtered data were then normalized and scaled by using SCANPY
and scVelo. The batch effect was removed by regress out total
counts, total genes and mitochondrial gene percentage. Single-
cell RNAseq data of TNBC patients was obtained from GSE118390.
Fastq files were aligned against GRCh38 human reference
including transcripts with STAR (v2.7.6a). Output BAM files were
then processed by Velocyto to generate LOOM files containing
UMI of spliced RNA, unspliced RNA and ambiguous as separate
matrices. Cells with fewer than 1000 genes were excluded from
further analysis. 868 epithelial cells were filtered for further
Louvain clustering and stem differentiation score analysis.
Processed scRNA-seq datasets of TNBC PDX models
(GSE123837), colon cancer cell lines (GSE154927), skin cancer cell
lines and lung cancer cell line (GSE150949) were utilized.
Processed scATAC-seq datasets (GSE162798) of lung cancer cell
line and breast cancer cell lines were utilized. CD9 and treatment
co-dependent data of cell lines were obtained from Cancer
Therapeutics Response Portal (CTRPv2).

Single-cell ATAC-seq data analysis
The cellranger processed ATAC-seq output was used as the input
to Signac package v1.7.0 [56]. Cells with lower strength of
nucleosome-binding pattern or lower transcription start site
enrichment score or lower total number of fragments in peaks
(<3000) or lower fraction of fragments in peaks (<15) or higher
percentage of reads in ENCODE-blacklisted genomic regions
(<0.05) were filtered out from further analysis. Normalization
and dimensionality reduction were performed using Signac with

default parameters. Transcript information was pulled from EnsDb
databases. Transcription factor motif enrichment was performed
using ChromVAR version 1.16.0 [57].
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(https://github.com/theislab/scvelo), densVis (https://github.com/hhcho/densvis/
tree/master/densmap). Data of SUM149, SUM149R, SUM159, and SUM159R cell lines
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