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Being a broad-spectrum anticancer drug, doxorubicin is indispensable for clinical treatment. Unexpectedly, its cardiotoxic side
effects have proven to be a formidable obstacle. Numerous studies are currently devoted to elucidating the pathological
mechanisms underlying doxorubicin-induced cardiotoxicity. Nrf2 has always played a crucial role in oxidative stress, but numerous
studies have demonstrated that it also plays a vital part in pathological mechanisms like cell death and inflammation. Numerous
studies on the pathological mechanisms associated with doxorubicin-induced cardiotoxicity demonstrate this. Several clinical
drugs, natural and synthetic compounds, as well as small molecule RNAs have been demonstrated to prevent doxorubicin-induced
cardiotoxicity by activating Nrf2. Consequently, this study emphasizes the introduction of Nrf2, discusses the role of Nrf2 in
doxorubicin-induced cardiotoxicity, and concludes with a summary of the therapeutic modalities targeting Nrf2 to ameliorate
doxorubicin-induced cardiotoxicity, highlighting the potential value of Nrf2 in doxorubicin-induced cardiotoxicity.
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FACTS

1. The pathological mechanisms of doxorubicin-induced car-
diotoxicity are complex.

2. Nrf2 is involved in multiple pathological mechanisms of
doxorubicin-induced cardiotoxicity, especially in cell death
as well as oxidative stress.

3. Targeting Nrf2 may help to mitigate doxorubicin-induced
cardiotoxicity.

OPEN QUESTIONS

1. Which of these are specifically included in the pathological
mechanisms of doxorubicin-induced cardiotoxicity?

2. How does Nrf2 participate in the pathological mechanisms
of doxorubicin-induced cardiotoxicity?

3. How to ameliorate doxorubicin-induced cardiotoxicity
through targeting Nrf2?

INTRODUCTION
For decades, doxorubicin, a wide-ranging anticancer agent, has
been extensively utilized in clinical settings to treat a variety of
cancers due to its great therapeutic efficacy [1]. According to
published studies, however, long-term administration of doxor-
ubicin can cause severe damage to numerous organs in the body,
with the heart being the primary target of doxorubicin toxicity
[1, 2]. Long-term administration of doxorubicin can cause

structural alterations in the heart, most notably reduced left
ventricular ejection fraction,arrhythmias, reduced ventricular wall
thickness, increased ventricular internal diameter and even heart
failure [3–11]. According to the most recent epidemiological data,
however, up to 5% of patients will exhibit varying degrees of
cardiotoxic manifestations after doxorubicin administration, and
the toxic effects become more severe with increasing cumulative
doses, with the probability of heart failure reaching 48% when the
cumulative dose reaches 700 mg/m2 [12, 13]. These severe
cardiotoxic effects impose a considerable societal and familial
economic and emotional burden.
Many years of research have been devoted to determining the

pathogenesis of doxorubicin-induced cardiotoxicity. Nevertheless,
the specific etiology remains controversial, and the majority of the
available research concentrates on the following factors. Firstly, it is
well-established that oxidative stress/nitrosative stress in cardiomyo-
cytes is the primary mechanism in doxorubicin-induced cardiotoxi-
city. It has been demonstrated that doxorubicin can trigger cardiac
production of large quantities of reactive oxygen species (ROS) and
reactive nitrogen species (RNS), while concurrently suppressing
antioxidant mechanisms such as nuclear factor erythroid 2-related
factor 2 (Nrf2). This is analogous to “double insurance” against
cardiomyocyte damage [14, 15]. Likewise, there are studies on
doxorubicin-induced cardiomyocyte programmed death. Several
studies have demonstrated that doxorubicin can stimulate cardio-
myocyte apoptosis by inducing ROS accumulation which results in
mitochondrial damage, induce ferroptosis by regulating mitochon-
dria and thereby promoting lipid peroxide and Fe2+ accumulation,
inhibit cardiomyocyte autophagy, and induce cardiomyocyte pyr-
optosis by activating inflammasomes [14–20]. In addition, the
findings of doxorubicin-induced inflammation in cardiomyocytes
indicate that doxorubicin generates an inflammatory response by
boosting the accumulation of inflammatory factors and nuclear
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expression of nuclear factor-κB (NF-κB) [21]. Of course, the
pathogenesis of doxorubicin-induced cardiotoxicity goes far beyond
those, as recent advances have revealed that doxorubicin can inhibit
AMP-activated protein kinase (AMPK) and p38 mitogen-activated
protein kinases (MAPK) energy metabolic pathways, thereby
suppressing energy metabolism in cardiomyocyte to cause DNA
damage [22, 23], and the pathway by which doxorubicin causes
damage to cardiomyocyte has also been reported to be associated
with cardiac fibrosis [24]. The pathological mechanism of
doxorubicin-induced cardiotoxicity is shown in Fig. 1.
Nrf2 is a well-known antioxidant factor that plays a crucial function

in mitigating oxidative stress [25]. However, available evidence
indicates that it also plays a regulatory role in anti-cell programmed
death and cell inflammation, as demonstrated by studies of
doxorubicin-induced cardiotoxicity [26]. As described in studies
pertaining to apoptosis, activation of Nrf2 can protect cardiomyo-
cytes by inhibiting ROS expression levels and, consequently, reducing
the mitochondrial apoptotic pathway in doxorubicin-induced
cardiomyocytes [27]. In contrast, autophagy research has revealed
that activation of Nrf2 can promote cell autophagy by regulating its
downstream autophagy-related factors [28]. In the study of
ferroptosis, it was also demonstrated that the Nrf2/glutathione
peroxidase 4 (Gpx4) signaling pathway plays an essential role in
regulating doxorubicin-induced ferroptosis in cardiomyocytes as a
key regulatory pathway to inhibit lipid peroxidation [29]. In the study
of pyroptosis, it was also found that regulation of Nrf2 expression
substantially enhanced the modifications of pyroptosis-related
proteins and reversed the doxorubicin-induced cardiomyocyte
pyroptosis [30]. The Nrf2-mediated anti-inflammatory signaling
pathway also plays a crucial role in cardiomyocyte inflammation [31].
In this review, we intend to emphasize the pivotal role of Nrf2 in

doxorubicin-induced cardiotoxicity, in particular, the involvement
of Nrf2 as a crucial mechanism in the pathology of doxorubicin-
induced cardiotoxicity, as well as compounds that target Nrf2 for
the treatment of doxorubicin-induced cardiotoxicity.

THE STRUCTURE AND REGULATION OF NRF2
The structure of Nrf2
Nrf2 is a 66 kDa protein that is encoded by the NFE2L2 gene and
belongs to the Cap‘n’collar (CNC) family of transcription factors [32,

33]. This protein consists of 605 amino acids and has seven highly
conserved functional structural domains, including Nrf2-ECH homol-
ogy 1 (Neh1)-Neh7 [32, 34, 35]. Neh1 is able to mediate the binding
of Nrf2 to the Nrf2 antioxidant response element (ARE) in the
nucleus, thereby promoting the transcription of various antioxidant
enzymes, primarily due to the presence of the basic region leucine
zipper (bZIP) gene sequence, which can bind to the small
musculoaponeurotic fibrosarcoma (sMaf) protein [36]. Neh2 has
two gene sequences, ETGE and DLG, that can interact with Kelch-like
ECH-associated protein 1 (Keap1) and promote its ubiquitination [37].
Neh3, Neh4, and Neh5 interact to related proteins in order to
increase ARE-dependent activation of associated genes [36, 38]. The
Neh6 structural domain is serine-rich, binds to β-transducin repeat-
containing protein (β-TrCP), and is linked to Keap1-independent Nrf2
negative regulation [39]. And, Neh7 can bind to retinoic X receptor
(RXR), reducing Nrf2’s expression activity [39, 40]. Figure 2 depicts the
basic structure diagram of Nrf2.

The activation of Nrf2
The role of Nrf2 is dependent on its intranuclear migration to
connect with other ARE-carrying genes, hence, the regulation of
Nrf2’s intranuclear migration is the key to promoting its role [41].
We have detailed two types of approaches for regulating the
nuclear translocation of Nrf2 based on the existing literature. The
first is to “break the stranglehold” of Keap1, a specialized E3
ubiquitin ligase binding protein that functions as a significant
“sensor” for the redox state of the cell and is a negative regulator
of the nuclear translocation of Nrf2, and sometimes referred as a
Nrf2 “inhibitor” [42, 43]. Under normal physiological conditions,
Keap1 keeps Nrf2 in the cytoplasm and promotes Nrf2 breakdown
by ubiquitination. However, in the presence of oxidative stress,
Keap1 dissociates from Nrf2, resulting in intranuclear translocation
of Nrf2 and a cascade of biochemical reactions [44]. The primary
mechanisms of action of Keap1 activation of Nrf2 are hotly
contested, but focus mostly on the three modes of action listed
below. The first is the theory of Keap1 dissociation. It has been
demonstrated that the cysteine residues in Keap1 can be
modified, resulting in the separation of Nrf2 and Keap1 [44]. The
“hinge and latch” notion of Keap1 is also pertinent. In academic
circles, this view appears more far-reaching. It was found that Nrf2
can bind to Keap1 through a high-affinity ETGE gene sequence

Fig. 1 Pathological mechanisms of doxorubicin-induced cardiotoxicity. Produced using Servier Medical Art (smart.servier.com). Pathologic
mechanisms of doxorubicin-induced cardiotoxicity include cardiomyocyte oxidative stress/nitrosative stress, programmed cardiomyocyte
death (e.g., apoptosis, pyroptosis, autophagy, and ferroptosis), cardiomyocyte inflammation, and other mechanisms.
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and a low-affinity DLG gene sequence, which are more like a
“hinge” and a “latch.” However, in the presence of oxidative stress,
the modification of cysteine residues in Keap1 leads to a change in
Keap1 conformation, which seems to be more pronounced at the
low-affinity “latch” site, resulting in the inability to ubiquitinate
Nrf2 [45, 46]. The last is the Keap1 ubiquitination theory. The
change of Nrf2 ubiquitination to Keap1 results in the destruction
of Keap1 ubiquitination while Nrf2 is driven to detach [34]. The
second type of strategy directly stimulates the phosphorylation of
Nrf2, independent of Keap1. Certain kinases, including as c-Jun N-
terminal kinase (JNK) and extracellular regulated kinase (ERK), are
able to directly phosphorylate Nrf2 and induce its nuclear
translocation to play a comparable role [47–50]. Figure 3
summarizes the activation of Nrf2.

The function of Nrf2
The preceding part described how Nrf2 is triggered to reach the
nucleus, and this section will describe Nrf2’s function within the

nucleus. According to majority of research, the function of Nrf2 is
intrinsically connected to oxidative stress. Research indicates that
Nrf2 reaches the nucleus and attaches to AREs in antioxidant-
related proteins such as heme oxygenase 1 (HO-1) via the “tracker”
it carries, so stimulating the production of antioxidant compo-
nents and generating antioxidant effects [25, 51]. It has been
discovered, however, that Nrf2’s involvement is not limited to
antioxidant effects alone. As stated in the introduction, Nrf2 also
plays a key role in the regulation of programmed cell death, and
this role is closely linked to mitochondria [52]. Nrf2 can affect
apoptosis by regulating mitochondrial ROS expression, and
ferroptosis by regulating mitochondrial accumulation of Fe2+,
ROS and lipid peroxides [17, 27, 52–57]. And Nrf2 also plays a very
crucial role in autophagy and mitophagy [28, 58]. And Nrf2 can
also influence pyroptosis by affecting mitochondria [59, 60].
Moreover, by inhibiting inflammatory signaling pathways such as
NF-κB, Nrf2 can also reduce the expression level of inflammatory
factors, thereby exerting an anti-inflammatory effect [61, 62]. In

Fig. 3 The activation of Nrf2. Produced using Servier Medical Art (smart.servier.com). The activation methods of Nrf2 include two major
categories, the first one is related to Keap1, including the separation of Keap1, the ubiquitination of Keap1 and the reduced degradation
ability of Keap1 to Nrf2 thus leading to the separation of Keap1 from Nrf2, allowing Nrf2 to enter the nucleus, and the second method is
independent of Keap1, namely, the phosphorylation of Nrf2 on its own to achieve intranuclear migration.

Fig. 2 The basic structure diagram of Nrf2. Produced using Servier Medical Art (smart.servier.com). The basic structure of Nrf2 contains
seven different structural domains, each of which plays a different function.
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addition, it has been demonstrated that Nrf2 can influence cell
proliferation by activating cell proliferation-related factors such as
IGF-1, and that Nrf2 expression has a crucial relationship with
matrix reconstruction [25, 63]. Interestingly, mitochondrial biogen-
esis was also discovered to be closely related to Nrf2 [25, 64].
It is unquestionably true that Nrf2 plays a major role when it

enters the nucleus. Consequently, future research should investi-
gate Nrf2 with greater attention to detail. The functions of Nrf2 are
summarized in Fig. 4.

THE ROLE OF NRF2 IN DOXORUBICIN-INDUCED
CARDIOTOXICITY
The pathogenesis of doxorubicin-induced cardiotoxicity is intri-
cate and multifaceted, and Nrf2 is a critical regulator of this
pathogenesis. Thus, this part will discuss the intimate connection
between doxorubicin-induced cardiotoxicity and the Nrf2 signal-
ing pathway.

The role of Nrf2 in doxorubicin-induced oxidative stress in
cardiomyocytes
Currently, oxidative stress is regarded as one of the trendiest
topics in the whole medical field, but its definition is contested. In
our opinion, oxidative stress should be defined as an imbalance
between antioxidants and oxidants in the body, with the
imbalance favoring the increase of oxidants, which leads to more
ROS aggregation and body injury [65]. However, existing studies
have also shown that ROS do not only act as a “behind the scenes”
to damage cells, but that appropriate ROS can act as a second
messenger to transmit signals to maintain redox homeostasis in
the body, and this is the process of redox signaling [66–68]. In fact,
it has been shown that redox is actually a precursor to oxidative
stress [69, 70]. Under normal conditions, ROS in the body is in a
dynamic equilibrium at a low level in which redox signaling plays

a crucial role. However, when this equilibrium is disturbed, ROS
accumulate, which disrupts the redox balance and causes
oxidative stress [69]. And doxorubicin is a significant contributor
to this imbalance [71–73]. According to the summary of existing
studies, there are three main ways in which doxorubicin induces
oxidative stress in cardiomyocytes by causing abnormal changes
in ROS levels and thus disrupting redox signaling [24]. Initially,
doxorubicin can lead to the accumulation of ROS by disrupting
the ROS “production plant,” i.e., mitochondria. According to
studies, doxorubicin can bind to cardiolipin in mitochondria to
form a complex that is retained in the inner mitochondrial
membrane, preventing the binding of related proteins to
cardiolipin and producing high levels of ROS in cardiomyocytes
[71]. Further, the details of oxidative stress in cardiomyocytes
caused by disruption of iron metabolism by doxorubicin leading
to iron overload are discussed in detail in the ferroptosis section of
this chapter, along with a brief explanation of how disruption of
iron homeostasis results in the formation of iron-doxorubicin (Fe-
Dox) complexes that cause free radical cell damage [72]. However,
the third one promotes ROS elevation by increasing NADPH
oxidase, an essential redox marker. It has been demonstrated that
doxorubicin treatment results in a very high level of NADPH
oxidase, which in turn causes a significant increase in ROS levels in
cardiomyocytes, thereby disrupting redox signaling and causing
oxidative stress [73].
Long acknowledged as an antioxidant factor, Nrf2 has proved

its high antioxidant potential in a number of disease-related
research [25, 74, 75]. Recent research has demonstrated that the
Nrf2 antioxidant pathway is closely associated with the develop-
ment of doxorubicin-induced oxidative stress in cardiomyocytes.
Nrf2 exerts its antioxidant effects primarily by entering the nucleus
through the isolation of Keap1, where it binds to the ARE on
antioxidant-related proteins such as HO-1 and NAD(P)H dehy-
drogenase quinone 1 (NQO1) [76]. Intriguingly, various upstream

Fig. 4 The function of Nrf2. Produced using Servier Medical Art (smart.servier.com). The role of Nrf2 is not only limited to antioxidant activity,
but also plays an important role in apoptosis, pyroptosis, ferroptosis, autophagy, cell inflammation, matrix reconstruction, cell proliferation,
and mitochondrial biosynthesis.
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factors and pathways can influence the Nrf2-mediated oxidative
stress signaling pathway, and it is likely that doxorubicin
suppresses the intranuclear translocation of Nrf2 by regulating
other upstream factors.
The primary finding is that the sirtuin-1 (SIRT1) signaling

pathway can modulate the Nrf2-mediated antioxidant signaling
pathway, which is identical to the apoptosis mechanism covered
in the subsequent section. Recent studies have demonstrated that
doxorubicin decreases the nuclear translocation of Nrf2 and the
expression levels of its downstream antioxidant-related indicators,
whereas SIRT1, a nicotinamide adenine dinucleotide (NAD+)
dependent deacetylase. And SIRT1 downstream phosphorylated
liver kinase B1 (p-LKB1) and p-AMPK are also affected by
doxorubicin. Further, inhibitor experiments demonstrate that
SIRT1 is an upstream regulator of Nrf2. Those indicate doxorubicin
can induce oxidative stress in cardiomyocytes through inhibition
of the SIRT1/LKB1/AMPK/Nrf2 signaling pathway [77–79].
Obviously, a more in-depth investigation of the SIRT1 signaling
pathway revealed that its function is largely dependent on the
signaling of AMPK and its downstream factors, including Nrf2 or
the mammalian target of rapamycin (mTOR) signaling pathway
[78]. In addition, the protein kinase B (AKT) signaling pathway can
regulate the Nrf2 antioxidant signaling pathway, and the
phosphatidylinositol-3 kinase (PI3K)/AKT signaling pathway is
one of the most well-known signaling pathways. It has been
demonstrated that doxorubicin can inhibit the Nrf2 antioxidant
signaling pathway by regulating the PI3K/AKT signaling pathway,
resulting in myocardial oxidative stress. Several studies have
demonstrated that doxorubicin has a heightened sensitivity to
oxidative stress indicators, specifically the inhibition of Nrf2 and its
downstream antioxidant factors HO-1 and NQO1. This inhibition
naturally extends to the expression of PI3K and AKT related
proteins [31, 80]. Exploring further the link between PI3K/AKT and
Nrf2, this experiment indicated that PI3K inhibitors can greatly
diminish the nuclear translocation of Nrf2, indicating that PI3K/
AKT is an upstream regulator of Nrf2 and that doxorubicin can
induce myocardial oxidative stress by regulating PI3K/AKT for Nrf2

and its downstream antioxidant factors [80]. Existing investiga-
tions have demonstrated that in addition to the PI3K/AKT
signaling pathway, heat shock protein-20 (HSP20)/AKT/glycogen
synthase kinase 3 β (GSK3β)/FYN/Nrf2 plays a crucial role in
doxorubicin-induced cardiac oxidative stress. This study initially
demonstrated the stimulatory effect of doxorubicin on myocardial
oxidative stress and the inhibitory effect of doxorubicin on the
phosphorylation of AKT and other components. And further
investigations were undertaken to investigate the relationship
between this signaling axis. The observation that the use of AKT
inhibitors in cardiomyocytes leads to activation of GSK3β, which in
turn promotes activation of FYN, resulting in nuclear export and
degradation of Nrf2, and that previous studies have demonstrated
that HSP20 is closely associated with AKT activation [81–83]. This is
sufficient to demonstrate that doxorubicin-induced oxidative
stress in cardiomyocytes can occur through the HSP20/AKT/
GSK3β/FYN/Nrf2 signaling pathway [81]. Lastly, there are studies
that explore the MAPK signaling system, represented by JNK and
p38, and the Nrf2 antioxidant signaling pathway in doxorubicin-
induced oxidative stress in cardiomyocytes. As described above,
these studies discovered the effect of doxorubicin on cardiomyo-
cyte oxidative stress markers and the expression levels of Nrf2 and
its downstream antioxidant proteins. Additionally, they demon-
strated that the effect of doxorubicin on JNK and p38
phosphorylation could increase and then decreasing [54]. Further
exploration of the association between the MAPK signaling
pathway represented by JNK and p38 and the Nrf2 mediated
antioxidant signaling pathway revealed that inhibition of the JNK
and p38 signaling pathways in cardiomyocytes resulted in
decreased nuclear expression of Nrf2 and instead increased Nrf2
expression levels in the cytoplasm, which demonstrates a close
upstream and downstream connection between JNK and p38 and
Nrf2, and it can be boldly speculated that the MAPK signaling
pathway represented by JNK and p38 is an important control
point for doxorubicin inhibition of the Nrf2 antioxidant signaling
pathway [54, 84]. Figure 5 summarizes in detail the important role
of Nrf2 in doxorubicin-induced oxidative stress in cardiomyocyte.

Fig. 5 Specific molecular mechanisms of doxorubicin-induced oxidative stress in cardiomyocytes. Produced using Servier Medical Art
(smart.servier.com). Doxorubicin can exacerbate the generation of oxidative stress in cardiomyocytes by inhibiting the nuclear translocation of
Nrf2 through the inhibition of four different signaling pathways.
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Doxorubicin-induced oxidative stress in cardiomyocytes is the
main pathological mechanism responsible for cardiotoxicity, and
interestingly, the available studies also suggest a possible “cross-
talk” between oxidative stress and programmed cell death and
cell inflammation in this process, which suggests that targeted
oxidative stress therapy may cascade with treatment of pro-
grammed cell death and cell inflammation. However, whatever in
oxidative stress or programmed cell death or cell inflammation,
the Nrf2 is a ray hope certainly.

The role of Nrf2 in doxorubicin-modulated autophagy in
cardiomyocytes
In recent years, cell autophagy has been widely researched as a
distinct sort of controlled death. Autophagy is a highly conserved
cellular degradation process that isolates damaged organelles and
cytoplasm into autophagosomes and transports them to “cellular
degraders,” i.e. lysosomes, to form autophagic lysosomal com-
plexes that degrade and recycle the available macromolecules
produced by degradation [85]. And the AMPK and mTOR
pathways are the two primary autophagy pathways. When the
AMPK pathway is activated or the mTOR pathway is inhibited, the
autophagosome is activated, while the light chain 3 (LC3) protein
on the autophagosome membrane recruits LC3-interacting region
(LIR)-containing proteins into the autophagosome and p62/
Sequestosome 1 (SQSMT1) recruits ubiquitinated aggregates into
the autophagosome as well, resulting in degradation of the
damaged components [18, 86, 87]. However, mitochondria also
play a significant role in autophagy. When inflammation, oxidative
stress, and other stimulation are applied to cells, mitochondrial
DNA is mutated, and simultaneously, the mitochondrial mem-
brane potential is reduced and depolarization occurs in the cell,
leading to cell death. In this case, the damaged mitochondria will
“wrap” themselves up and degrade automatically to protect the
cell, a process known as mitophagy [88, 89]. As a specific form of
cell autophagy, the occurrence of mitophagy also involves two
main pathways, namely the ubiquitin-dependent pathway asso-
ciated with PTEN-induced kinase 1 (PINK1) and its E3 ubiquitin
ligase Parkin (PRKN), and the non-ubiquitin-dependent pathway
associated with the direct binding of LIR-containing proteins to
LC3 [88, 90, 91].
Many factors affect the autophagy process, and the effect of the

anthracycline doxorubicin on cellular autophagy has been exten-
sively investigated in recent years. Many studies have demonstrated
that doxorubicin influences the activation of the AMPK pathway,
however more recent findings are inconsistent. Some studies have
showed that doxorubicin can suppress autophagy by inhibiting
AMPK activity [92–97]. However, others have demonstrated that
doxorubicin has no effect on the AMPK pathway [98–102]. Never-
theless, doxorubicin has an effect not only on the AMPK pathway,
but also on the mTOR pathway. Several studies have demonstrated
that doxorubicin can inhibit the mTOR pathway, however, this
inhibition has also been shown to cause cellular injury, which is
highly controversial [98, 103–107]. Certainly, long-term doxorubicin
treatment also influences the occurrence of mitophagy, which is
primarily attributable to doxorubicin’s inhibitory effect on the
mitochondrial ubiquitination-dependent pathway [108, 109].
Nrf2 has been in the public spotlight as an important target for the

regulation of oxidative stress, but existing studies also suggest that
Nrf2 may also be a key regulator of doxorubicin-modulated
autophagy in cardiomyocytes. In a recent study, it was discovered
that doxorubicin substantially decreased the expression level of Nrf2,
while the expression level of p62/SQSMT1, which is a downstream
factor of Nrf2 and represents the inhibition of autophagic flux,
increased significantly. This indicates that doxorubicin can inhibit
autophagic flux by inhibiting Nrf2 expression. This study probed
deeper on the reasons for the inhibition of autophagic flux by
doxorubicin and found that doxorubicin could alter the expression
levels of transcription factor-EB (TFEB), a master transcription factor

for lysosomal biogenesis, and lysosomal- associated membrane
protein 1 (LAMP1), which demonstrated that the mechanism of
doxorubicin to inhibit autophagy is through the inhibition of
lysosomal biogenesis [28]. However, the role of doxorubicin in the
regulation of Nrf2 is contentious. In a separate study, doxorubicin
was found to substantially increase the expression levels of p62/
SQSMT1 and ubiquitinated proteasome, which is ample evidence of
doxorubicin’s detrimental effect on cellular autophagy. Nevertheless,
the study also discovered that doxorubicin could increase Nrf2
expression levels. To demonstrate whether elevated levels of Nrf2
expression are beneficial, Nrf2 knockout mice were used in this
experiment. By comparing the expression levels of autophagy as well
as ubiquitinated proteasome before and after Nrf2 knockdown, it
was demonstrated that elevated Nrf2 was beneficial for autophagy as
well as clearance of ubiquitinated proteasome. Therefore, the authors
hypothesize that the high expression of Nrf2 following doxorubicin
induction is more of a “feedback” mechanism that inhibits the
accumulation of ubiquitinated proteasomes that cause toxic reac-
tions in the heart, thereby reducing the toxic effects of doxorubicin
on the heart [110]. Notably, there is no direct evidence that Nrf2
plays a role in doxorubicin-modulated mitophagy. But one study
suggests that phosphoglycerate mutase family member 5 (PGAM5)
protein, a substrate of Keap1 along with Nrf2, is closely associated
with mitophagy and that doxorubicin reduces its expression level to
promote the binding of Parkin to PINK1 in mitochondria, thereby
promoting mitophagy [17]. Since PGAM5 and Nrf2 are both
Keap1 substrates, we may postulate as to whether they exert a
synergistic or antagonistic effect, which may serve as a crucial link
between Nrf2 and mitophagy in doxorubicin-induced cardiotoxicity.
In any case, the evidence suggests that Nrf2 can be regulated

by doxorubicin and thus influencing the occurrence of autophagy
in cardiomyocytes. However, there is still much to discuss, and this
will be an important topic to investigate and debate in the future.

The role of Nrf2 in doxorubicin-induced apoptosis in
cardiomyocytes
Apoptosis is the most fundamental and extensively studied type
of programmed cell death. It is essentially a specific type of cell
injury, including chromatin condensation, fragmentation of the
nucleus, and the formation of cell contraction and apoptotic
vesicles, and it plays a crucial role in myocardial injury [111].
Among the various variables that trigger apoptosis, doxorubicin is
a specific inducer of apoptosis. Previous research has described
the primary methods by which doxorubicin produces apoptosis in
cardiomyocytes, which may be categorized into two levels: the
intrinsic apoptotic pathway and the extrinsic apoptotic pathway.
The intrinsic apoptotic pathway (mitochondrial pathway) occurs
because doxorubicin can disrupt the outer mitochondrial mem-
brane of cardiomyocytes, resulting in the release of cytochrome c
(Cyt C), which can activate caspase-3 by recruiting the production
of caspase-9, and the activated caspase-3 can be transferred to the
nucleus via the cytoplasm, thereby promoting DNA fragmentation
[112]. The Fas-mediated extrinsic apoptotic pathway initiates
apoptosis by activating Caspase-8, which in turn activates
Caspase-3/7 [113], in contrast to the intrinsic apoptotic process,
which mostly requires the activation of death receptors.
Although it is generally known that Nrf2 plays a crucial role in the

field of antioxidants, recent research has also supported the
significance of Nrf2 in cardiomyocyte apoptosis. According to
research, excessively high or low levels of Nrf2 alters ROS levels,
which in turn cause mitochondria to reduce membrane potential and
ultimately cause apoptosis in cardiomyocytes [52, 57, 114–116].
However, doxorubicin has a significant role in the modification of
Nrf2 levels [117–119]. Certainly, doxorubicin’s regulatory effect on
Nrf2 is not always direct. Studies have shown that doxorubicin can
also control Nrf2 via changing some of its upstream components,
which causes the buildup of ROS and initiates apoptosis in
cardiomyocytes.
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Previously, it has been demonstrated that Nrf2 can be regulated
by PI3K/AKT. As stated in the section on oxidative stress, the
phosphorylated PI3K/AKT signaling pathway plays a crucial role in
enabling the separation of Nrf2 from Keap1 in order to complete
nuclear translocation. In a recent study, doxorubicin was
discovered to greatly enhance the expression of Caspase-3 and
BCL-2 associated X (Bax), while decreasing the expression of B cell
lymphoma-2 (Bcl-2) in cardiomyocytes, indicating that doxorubicin
can really alter apoptosis in cardiomyocytes [120]. Further
experiments revealed that doxorubicin decreased the expression
of Nrf2 and its downstream HO-1, glutathione cysteine ligase
modulatory subunit (GCLM), and p-AKT, and that pharmacological
intervention reversed the alterations of these factors, and that the
expression levels of Nrf2 and its downstream indicators were once
again reversed after AKT inhibition. Those demonstrate that PI3K/
AKT is indeed the upstream pathway of Nrf2 and that doxorubicin
can stimulate cardiomyocyte apoptosis by inhibiting PI3K/AKT
through and thereby inhibiting the Nrf2 pathway [120]. However,
we believe that the shortcoming of this study is the lack of
detection of mitochondrial damage indicators and their mem-
brane potential alterations, which is very crucial for further
investigation of the pathways by which Nrf2 affects the onset of
apoptosis in cardiomyocytes. And then, the p38 MAPK signaling
pathway has also attracted a lot of interest in the study of
cardiomyocytes as it is a crucial energy metabolic process. It has
been shown that phosphorylation of p38 MAPK is protective for
cardiomyocytes [121]. Nevertheless, a number of studies have
shown that activation of p38 MAPK is associated with various
pathological mechanisms of myocardial injury and that inhibition
of p38 MAPK reduces cardiac fibrosis, cardiac hypertrophy, and
oxidative stress in cardiomyocytes [121–123]. The controversy
regarding the p38 MAPK signaling pathway is also present in
doxorubicin-induced cardiotoxicity. It has been discovered that
doxorubicin can promote the activation of p38 MAPK and thus
inducing the activation of inflammatory signals such as NF-κB to
promote the expression of inflammatory factors such as inter-
leukin-1β (IL-1β), IL-6, IL-17 and tumor necrosis factor alpha (TNF-
α) to induce inflammation, while inhibiting this pathway has the
opposite effect [122, 124]. However, it has also been reported that
doxorubicin induces cardiomyocyte apoptosis by inhibiting p38
MAPK and its downstream factor Nrf2. Recent research indicates
that doxorubicin can substantially affect the phosphorylation of
the p38 MAPK signaling pathway, and p38 MAPK inhibitors were
reported to diminish the nuclear translocation of Nrf2 and its
downstream antioxidant-related markers, such as HO-1 and paired
related homeobox-1 (Prx1) expression levels, and to increase the
number of apoptotic cells in cardiomyocytes [125]. In addition, a
similar conclusion was found in a recent study. This experiment
found that doxorubicin did lead to an increase in cardiomyocyte
apoptosis, as evidenced by the number of apoptotic cells, the
expression levels of Cyt C and the apoptosis-related factors
Caspase-3, Caspase-9, Bax, and Bcl-2, and in an investigation of the
relationship between p38 MAPK and Nrf2, it was also found that
p38 MAPK inhibitors could inhibit Nrf2 activation. This demon-
strates that p38 MAPK is indeed an upstream expression factor of
Nrf2, and that doxorubicin can inhibit the Nrf2 signaling pathway
through p38 MAPK, leading to myocardial apoptosis [54].
Additionally, it has been shown that there is also a close
association between SIRT1 and Nrf2. In a recent study, doxorubicin
was found to significantly increase the expression levels of
apoptotic proteins Bax and Caspase-3 and significantly inhibit the
expression levels of anti-apoptotic protein Bcl-2 in cardiomyo-
cytes, and also significantly decrease the expression levels of
nuclear translocation of Nrf2 and its downstream factors such as
HO-1. And not only that, doxorubicin also affects the expression
levels of SIRT1 and its downstream p-AMPK and p-LKB1 expression
levels [77]. Further experiments were conducted to investigate
how SIRT1 and Nrf2 are linked. They found that the expression

levels of p-AMPK, p-LKB1 and Nrf2 were significantly reduced after
silencing SIRT1 in the non-interfering group, suggesting that SIRT1
may be the “leader” of Nrf2 and it is likely that doxorubicin cause
apoptosis by inhibiting SIRT1, thereby affecting the nuclear
translocation of p-LKB1 and p-AMPK and thus inhibiting Nrf2
pathway [77]. A recent study also confirmed this conjecture and
further investigated the link between SIRT1 and Nrf2 on the basis
of this conjecture, and found that the relationship between SIRT1
and Nrf2 was not only upstream and downstream, but also SIRT1
was affected by silencing Nrf2, which proved that there was a
significant “feedback” effect between SIRT1 and Nrf2 [27]. We
discovered an intriguing aspect of the SIRT1 signaling pathway.
Reviewing the literature, we discovered that there is also a
connection between the SIRT1 signaling pathway and the
previously mentioned MAPK signaling pathway, and the existence
of this connection was demonstrated in cardiomyocytes. This
study revealed that an increase in SIRT1 levels in cardiomyocytes
could mitigate the onset of apoptosis by inhibiting the
phosphorylation of p38 MAPK and JNK, while activating the
phosphorylation of ERK [126]. For this reason, a new research
direction comes to mind, namely, is the activation of Nrf2 related
to the role of the SIRT1 signaling pathway in regulating the MAPK
signaling pathway to exert an anti-apoptotic effect on cardio-
myocytes? If related, is the pathological mechanism underlying
doxorubicin-induced cardiomyocyte apoptosis associated with
inhibition of SIRT1/MAPK/Nrf2? We believe that these are two
future avenues worth investigating. Finally, one study found that
Myheart (Mhrt), a myosin heavy chain-associated RNA, is also
closely related to Nrf2 [127]. The effect of doxorubicin on
apoptosis in cardiomyocytes is like the one described previously,
but doxorubicin also affects the expression level of Mhrt and Nrf2,
and to explore the relationship between Mhrt and Nrf2, this
experiment overexpressed and silenced Mhrt, and it was found
that the expression level of Nrf2 changed with the change of Mhrt,
which proved the upstream and downstream relationship
between Mhrt and Nrf2 [128]. Further experiments determined
that Mhrt can regulate Nrf2 expression by prompting the Nrf2
promoter to bind to the H3 histone. This would suggest that the
effect of doxorubicin on Nrf2 is likely to be achieved by first
affecting the expression of Mhrt [128].
In conclusion, the apoptosis of cardiomyocytes induced by

doxorubicin is closely related to the Nrf2 signaling pathway.
Doxorubicin can elicit apoptosis by directly inhibiting the
antioxidant capacity of Nrf2, resulting in a significant accumula-
tion of ROS and mitochondrial damage. Doxorubicin also can
inhibit Nrf2 by inhibiting factors upstream of Nrf2 to induce
apoptosis in cardiomyocytes. In any case, Nrf2 must be a key
target of doxorubicin-induced cardiomyocyte apoptosis. Conse-
quently, selective modulation of Nrf2 may be a crucial method for
inhibiting doxorubicin-induced cardiomyocyte apoptosis. Figure 6
summarizes in detail the key role played by Nrf2 in doxorubicin-
induced apoptosis in cardiomyocytes.

The role of Nrf2 in doxorubicin-induced ferroptosis in
cardiomyocytes
Ferroptosis is a novel form of programmed cell death that is
triggered by significant iron buildup and lipid peroxidation, and it
is an essential mechanism for cellular injury [129]. Many causes
can promote ferroptosis in cardiomyocytes. However, doxorubicin
plays a crucial role in this process and has been intensively
investigated in recent years. The mechanism of ferroptosis in
cardiomyocytes caused by doxorubicin involves two aspects:
initially, the disruption of iron homeostasis. Normally, circulating
iron enters the body as Fe3+ by binding to transferrin (Tf) via
transferrin receptor (TfR1), and the Fe3+ entering the body
changed to Fe2+ and released into the cytoplasm via divalent
metal transporter 1 (DMT1) [130]. One portion of Fe2+ is stored as
a protein, one portion of Fe2+ is oxidized into Fe3+ and transferred
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outside the cell by ferritin transport protein (FPN), and the
remaining portion is stored in the unstable iron pool [130]. And
long-term doxorubicin intervention can result in a significant
accumulation of iron, which can disrupt iron homeostasis and
eventually cause ferroptosis. It has been discovered that
doxorubicin can boost iron intake by altering homeostatic iron
regulator (HFE) gene expression and, consequently, HFE-related
protein production, thereby allowing HFE to bind to TfR1 to
promote iron binding to Tf [131]. It has also been reported that
doxorubicin maybe impact TfR1 receptors; however, this conclu-
sion has not been confirmed. Moreover, it has been discovered
that doxorubicin can influence iron metabolism by modulating
iron-regulatory protein (IRP), resulting in iron accumulation [18,
132]. It was also discovered that doxorubicin could disrupt the
permeability of mitochondria and alter the expression of the
mitochondrial iron export protein ABC protein-B8 (ABCB8) protein
in order to induce ferroptosis by causing iron accumulation within
the mitochondria [131, 133].
The second element of ferroptosis in cardiomyocytes produced

by doxorubicin is the promotion of lipid peroxide accumulation in
cardiomyocytes. Doxorubicin can stimulate the accumulation of
Fe2+, thereby inducing the Fenton reaction to stimulate the
accumulation of lipid peroxides, which induces ferroptosis
[134–136]. Moreover, doxorubicin induces the accumulation of
significant quantities of DOX-Fe2+ complexes in mitochondria,
which is a major source of lipid peroxidation accumulation
[137–141]. Another target of doxorubicin to promote lipid
peroxide accumulation is Nrf2. Doxorubicin can restrict the
separation of Keap1 and Nrf2, thereby limiting the nuclear
translocation of Nrf2, to inhibit the expression of its downstream
anti-ferroptosis factors such as HO-1 and Gpx4, thereby permitting
a decrease in glutathione synthesis, which results in the
accumulation of lipid peroxides [29, 142, 143]. Nonetheless, the
effect of doxorubicin on Nrf2 is still contested. A handful of studies
have demonstrated that doxorubicin can overstimulate the
activation of Nrf2, thereby promoting the expression of HO-1,

which leads to the degradation of heme and the release of toxic
substances such as Fe2+, which leads to a large accumulation of
free iron in mitochondria to trigger lipid peroxidation damage
[17, 144, 145]. Regardless, there is no doubt that doxorubicin
induces ferroptosis in cardiomyocytes by regulating Nrf2. How-
ever, it was discovered that doxorubicin does not always regulate
Nrf2 directly, but can also regulate Nrf2 by regulating its upstream
factors. Currently, doxorubicin primarily regulates three important
upstream factors to activate Nrf2 and induce ferroptosis in
cardiomyocytes.
Initially, p62 can be involved in the Nrf2-mediated ferroptosis

signaling pathway. Studies have shown that ferroptosis inducers
can reduce the competitive binding of p62 protein to Keap1 by
reducing its expression [146]. That allows Nrf2 to bind more tightly
to Keap1 and thus decreasing the nuclear translocation expression
of Nrf2, which further reduces the expression of downstream anti-
cellular ferroptosis indicators such as Gpx4 [146]. In another study,
administration of doxorubicin significantly reduced the expression
levels of p62 with Nrf2 and its downstream anti-ferroptosis-related
proteins HO-1 and Gpx4, thereby promoting cardiomyocyte
ferroptosis, and p62 overexpression significantly increased the
expression levels of Nrf2 and its downstream anti- ferroptosis-
related proteins, demonstrating that doxorubicin can induce
ferroptosis in cardiomyocytes by regulating p62 expression and
thereby inhibiting Nrf2 expression [145, 146]. In addition, SIRT1, an
important member of the NAD-dependent deacetylase family,
plays a crucial role in mitochondrial damage and apoptosis
mechanisms, but previous research has also identified it as an
important upstream factor that can modulate the Nrf2-mediated
anti-ferroptosis signaling pathway [147]. In one study, doxorubicin
was found to drastically suppress the expression levels of SIRT1
protein and related Nrf2 as well as its downstream anti- ferroptosis
markers such as HO-1 and Gpx4, so it is possible that SIRT1 is one
of the key components of doxorubicin’s inhibition of Nrf2 that
induces myocardial ferroptosis. By increasing the expression level
of SIRT1 through pharmacological intervention, this hypothesis

Fig. 6 Specific molecular mechanisms of doxorubicin-induced apoptosis in cardiomyocytes. Produced using Servier Medical Art
(smart.servier.com). Inhibition of antioxidant signaling pathways such as Nrf2 by doxorubicin leads to increasing levels of ROS in the body,
which stimulates mitochondrial membrane damage in cardiomyocytes, leading to the production of apoptotic bodies, resulting in DNA
fragmentation and thus leading to apoptosis in cardiomyocytes.
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was confirmed. Inhibition of Nrf2 after activation of SIRT1 protein
had no effect on the level of SIRT1, but a comparison of Nrf2
expression levels between activation and inhibition of SIRT1
demonstrated SIRT1 is an upstream regulator of Nrf2, and SIRT1/
Nrf2 participates in doxorubicin-induced ferroptosis in cardiomyo-
cytes [148]. However, existing studies have only demonstrated
that SIRT1 can engage in the Nrf2-mediated ferroptosis signaling
pathway, but the relationship between the two, i.e., how SIRT1
activates Nrf2, has not been conclusively established, and this
issue must be investigated in future research. Finally, protein
arginine methyltransferase 4 (PRMT4), a type I protein arginine
methyltransferase, was discovered to be involved in the regulation
of the Nrf2-mediated ferroptosis signaling system [149]. In a
recent study, doxorubicin was found to significantly reduce the
expression of Nrf2 and its downstream Gpx4 and nuclear receptor
coactivator 4 (NCOA4), and this was exacerbated by PRMT4
overexpression. This led to the hypothesis that PRMT4 is involved
in the Nrf2-mediated ferroptosis signaling pathway, and further
studies demonstrated that PRMT4 can catalyze the methylation of
Nrf2-associated enzymes, thereby restricting Nrf2 nuclear translo-
cation. These indicate that PRMT4 is involved in doxorubicin’s
inhibition of Nrf2-induced ferroptosis in cardiomyocytes [143].
In conclusion, Nrf2 can be an important indicator of

doxorubicin-induced ferroptosis in cardiomyocytes, and targeting
Nrf2 can effectively reduce doxorubicin-induced ferroptosis in
cardiomyocytes. However, there are not enough studies in this
area, and there are still need a large number of preclinical studies
to support this, so future research should focus on this direction.

The role of Nrf2 in doxorubicin-induced pyroptosis in
cardiomyocytes
Cellular pyroptosis, an additional type of programmed cell death,
was first postulated in 2001 and is characterized by the rapid
breakdown of the plasma membrane and the rapid release of
cellular contents and pro-inflammatory mediators, which play a
significant role in myocardial injury [150, 151]. Interestingly, it has
been demonstrated that cellular is closely related to cellular
autophagy and redox signaling, and to be more specific, cellular
pyroptosis can be controlled by redox signaling and autophagy.
Although this is still debatable, it has been demonstrated that ROS
generated by NADPH oxidase may act as redox signaling
molecules to modulate NOD-like receptor family pyrin domain
containing 3 (NLRP3) expression and activate cellular pyroptosis
[152–157]. Activation of ROS has also been shown to directly
cause gasdermin D-N (GSDMD-N) oligomerization, which induces
cell pyroptosis by punching perforations in the cell membrane
[158]. In investigating the relationship between autophagy and
cellular pyroptosis, it was discovered that autophagy can
modulate cellular pyroptosis in the opposite direction. These
studies have focused on the “classical pathway” by which
autophagy regulates cell pyroptosis in response to damage-
associated molecular pattern molecules (DAMPs) and the “non-
classical pathway” by which pyroptosis is regulated in response to
pathogen-associated molecular pattern molecules (PAMPs) such
as LPS, thereby achieving precise regulation of cell pyroptosis
[159]. However, it is still unknown whether pyroptosis can affect
redox reactions and autophagy, a topic that will require future
research.
Being a key anticancer drug, doxorubicin has unquestionable

advantages in the treatment of a variety of cancers. Nevertheless,
investigations have indicated that long-term doxorubicin admin-
istration can result in cardiac harm, with myocardial cell pyroptosis
being a key cause. Based on current research, the primary causes
of doxorubicin-induced myocardial cell pyroptosis are “classical
pathways” and “non-classical pathways.” The initial pathway can
via the traditional pyroptosis pathway, also known as the Caspase-
1 activation pathway. Doxorubicin stimulates the activation of
tissue differentiation-inducing non-protein coding RNA (TINCR),

which in turn induces a rise in insulin-like growth factor 2 mRNA-
binding proteins (IGF2BP) and prepares for the activation of NLRP3
[160]. Massive activation of inflammasomes not only initiates
inflammation, but also cellular pyroptosis. NLRP3 induces the
activation of Caspase-1, which results in the cleavage of GSDMD-
N, leading in the cleavage of cell membranes and the release of
vast quantities of inflammatory chemicals, including IL-1 and IL-18
[161]. Existing studies have also demonstrated another pathway of
doxorubicin-induced cardiomyocyte pyroptosis, namely the mito-
chondrial pathway, in which a large accumulation of doxorubicin
leads to increased expression of Bcl-2/adenovirus E1B interacting
protein 3 (Bnip3) protein in mitochondria, which activates
caspase-3 to cause GSDMD protein, a protein that can punch
holes in cell membranes, and the massive accumulation of this
protein leads to disruption of cell membranes and thus promoting
the resorption of cardiomyocytes [162, 163].
Recent research has showed that Nrf2 has a crucial role not only

in oxidative stress, but also in apoptosis, ferroptosis, autophagy,
and, of course, cell pyroptosis. In a recent study, it was discovered
that doxorubicin drastically decreased the expression levels of
Nrf2 and SIRT3 and considerably increased the expression of cell
pyroptosis-related proteins such as Caspase-1, associated speck-
like protein containing a CARD (ASC), GSDMD-N, and cytokines
such as IL-1 and IL-18 [30, 59]. Further experiments involving
overexpression of Nrf2 and SIRT3 revealed decreased expression
levels of doxorubicin-induced myocardial pyroptosis-related
proteins, indicating that the SIRT3/Nrf2 signaling pathway is
involved in doxorubicin-induced myocardial cell pyroptosis [30].
As for how SIRT3 relates to Nrf2 to cause doxorubicin-induced
cardiomyocyte pyroptosis, research reveals a link with
doxorubicin-induced oxidative stress. They hypothesize that
long-term doxorubicin treatment induces massive ROS produc-
tion, which accumulates ROS and disrupts the expression of SIRT3
in mitochondria, thereby inhibiting the Nrf2 signaling pathway in
cardiomyocytes and increasing the expression level of NLRP3 in
order to activate the classical cell pyroptosis pathway [30].
Cardiomyocyte pyroptosis is an essential pathological mechan-

ism of doxorubicin-induced cardiotoxicity, but it has not been
sufficiently studied currently, and the role of Nrf2 as an important
transcription factor against cardiomyocyte pyroptosis is not well
understood, so this void should be investigated thoroughly in
future research.

The role of Nrf2 in doxorubicin-induced inflammation in
cardiomyocytes
In practically all diseases, the inflammatory response is one of the
oldest and most thoroughly researched underlying pathogenic
mechanisms [164]. It is characterized by an imbalance in the
coordination of anti-inflammatory and pro-inflammatory factors,
which results in the buildup of excessive levels of pro-
inflammatory substances that can cause harm to the organism
[21]. Recent research has demonstrated that the pathogenic
mechanism of cardiomyocyte damage in doxorubicin-induced
cardiotoxicity is intimately connected to the inflammatory
response. Doxorubicin has been reported to cause elevated
expression of pro-inflammatory factors such as IL-1β, IL-8, and
TNF-α in the cardiomyocyte, and NF-κB, a complex that controls
the transcription of pro-inflammatory genes, is also regulated by
doxorubicin. The regulation of NF-κB by doxorubicin mainly leads
to myocardial cell inflammation by promoting the degradation of
IkappaB (IκB) and thus promoting the intranuclear translocation of
NF-κB and thus inspiring the activation of downstream pro-
inflammatory indicators [61, 165].
In addition to the discussion of Nrf2’s crucial function in

doxorubicin-induced programmed cell death and oxidative stress,
it has been observed that doxorubicin-induced inflammation in
cardiomyocyte may also be strongly connected with Nrf2. In a
recent study, nuclear NF-κB p65 expression levels were increased
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in cardiomyocytes after doxorubicin intervention and promoted
the expression of the pro-inflammatory factor IL-8. In addition,
doxorubicin intervention also reduced the expression levels of
Nrf2 and its upstream PI3K/AKT, while further experiments
showed that NF-κB p65 expression levels increased and IL-8
expression levels increased after PI3K/AKT or Nrf2 inhibition,
suggesting that the PI3K/AKT/Nrf2 signaling pathway may
regulate the NF-κB p65 signaling pathway thereby regulating
cardiomyocyte inflammation [31]. Where the p38/ NF-κB
p65 signaling pathway has been shown to play an important role
in doxorubicin-induced cardiomyocyte inflammation [166], there-
fore suggesting that the pathway of doxorubicin-promoted
cardiomyocyte inflammation is likely to be associated with
inhibition of the PI3K/AKT/Nrf2/p38/NF-κB p65 axis [31].
However, too few studies have been published on the promotion

of myocardial inflammation by doxorubicin via inhibition of the
Nrf2 signaling pathway, and the existing studies have primarily
focused on the relationship between the pro-inflammatory effect of
doxorubicin and NF-κB p65, while ignoring the connection with Nrf2.
Thus, we appeal that future research should place a greater emphasis
on the interaction between Nrf2 and NF-κB p65.

TARGETING NRF2 FOR DOXORUBICIN-INDUCED
CARDIOTOXICITY
The preceding mechanistic analysis demonstrates that the
pathogenesis of doxorubicin-induced cardiotoxicity is closely
linked to the inhibition of the Nrf2 signaling pathway, therefore,
targeting the activation of the Nrf2 signaling pathway is an
essential treatment strategy for doxorubicin-induced cardiotoxi-
city. Existing research suggests that a variety of clinical drugs,
numerous natural and synthetic compounds, and MicroRNAs can
activate the Nrf2 signaling pathway, which will be discussed in
detail in this article. Figure 7 integrates the multiple activators that
target Nrf2 to improve doxorubicin-induced cardiotoxicity. Table 1
summarizes all activators that can target Nrf2 to ameliorate
doxorubicin-induced cardiotoxicity.

Activation of Nrf2 by clinical drugs ameliorate doxorubicin-
induced cardiotoxicity
Clinical drugs have been the center of our attention. Moreover,
evidence suggests that the mechanism of action of a number of
clinical drugs involves modulation of the Nrf2 signaling pathway.
First, it has been demonstrated that Propofol, a common
intravenous anesthetic in modern medicine, inhibits the cardio-
toxic effects of doxorubicin by modulating the nuclear transloca-
tion of Nrf2, primarily by inhibiting ferroptosis in cardiomyocytes,
oxidative stress, and the onset of apoptosis in cardiomyocytes
[29, 167]. In addition to Propofol, Dimethyl Fumarate, a first-line
treatment for severe psoriasis and multiple sclerosis, performs a
crucial role in the treatment of doxorubicin-induced cardiotoxicity.
Dimethyl Fumarate substantially reduces the cardiomyocyte-
damaging effects of doxorubicin, as evidenced by serum CK,
LDH, and the reduction in cardiomyocyte apoptosis and oxidative
stress levels detected in biochemical assays [168]. Unfortunately,
only a limited number of studies have focused on clinical drugs to
reduce doxorubicin-induced cardiotoxicity by targeting Nrf2, so
we believe this is a promising area for future development and
investigation.

Activation of Nrf2 by natural compounds ameliorate
doxorubicin-induced cardiotoxicity
Numerous natural compounds, phytochemicals included, serve a
crucial role in activating Nrf2 in order to mitigate doxorubicin-
induced cardiotoxicity. According to research, the following phyto-
chemical categories can activate Nrf2 and reduce doxorubicin-
induced cardiotoxicity. The first is flavonoids. Existing research
indicates that flavonoids, such as quercetin, genistein, didymin, and
others, can ameliorate doxorubicin-induced cardiotoxicity by rever-
sing the inhibition of nuclear translocation of Nrf2 by doxorubicin
and promoting the nuclear expression of Nrf2, which can activate
downstream antioxidant-related indicators or inhibit pyroptosis,
ferroptosis, and apoptosis indicators, thereby mitigating the inci-
dence of cardiotoxicity [30, 77, 148, 169–175]. Not only may
flavonoids mitigate doxorubicin-induced cardiotoxicity by increasing

Fig. 7 Compounds target the Nrf2 signaling pathway to treat doxorubicin-induced cardiotoxicity. Produced using Servier Medical Art
(smart.servier.com). Many clinical drugs, natural compounds such as phytochemicals as well as others and synthetic compounds such as
inhibitors and agonists, synthetic proteins, and others and some MicroRNAs can ameliorate doxorubicin-induced cardiotoxicity by targeting
the Nrf2 signaling pathway.
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Nrf2 expression, but polyphenols can also exert this effect.
Researchers discovered that polyphenols such as punicalagin, tert-
butylhydroquinone, and resveratrol, etc. play an essential role in
promoting Nrf2 nuclear translocation in doxorubicin-inhibited
cardiomyocytes, regulating upstream factors of Nrf2, and promoting
the expression of Nrf2 downstream regulators [27, 146, 176–180].
Other types of phytochemicals, such as glycyrrhizic acid among
saponins [142, 181, 182], nerolidol among terpenoids
[80, 165, 183–188], β-LAPachone among quinones [78], tetrandrine
among alkaloids [120, 189], and sulfur-containing compounds such
as sulforaphane [190, 191], are present in a large number of studies
reporting their ability to reduce oxidative stress and cardiomyocyte
death in doxorubicin-induced cardiotoxicity by modulating the
nuclear translocation of Nrf2 and thus promoting the expression of
downstream antioxidant and other indicators.

Activation of Nrf2 by synthetic compounds ameliorate
doxorubicin-induced cardiotoxicity
Many synthetic compounds, in addition to clinical drugs and
numerous phytochemicals, can mitigate doxorubicin-induced cardi-
otoxicity by regulating the Nrf2 signaling pathway. Acute phase
proteins orosomucoid 1 and follistatin-like 1 reduce the adhesion of
Nrf2 to Keap1 in doxorubicin-induced cardiomyocytes, thereby
promoting the nuclear translocation of Nrf2 and reducing the
excessive accumulation of ROS in cardiomyocytes, thereby exerting
antioxidant and anti-apoptotic effects [28, 79, 125, 128, 192–195].
Numerous other agonists and inhibitors, such as lipocalin agonists
and phosphatase inhibitors, have been demonstrated in the available
literature to promote doxorubicin-induced nuclear expression of Nrf2
in cardiomyocytes, thereby reducing the generation of oxidative
stress in cardiomyocytes to reduce damage to the mitochondrial
membrane of cardiomyocytes and thereby ameliorating apoptosis
and oxidative stress in cardiomyocytes [14, 31, 196, 197].

Activation of Nrf2 by MicroRNAs ameliorate doxorubicin-
induced cardiotoxicity
In addition to clinical drugs, natural molecules and synthetic
compounds, there are many more substances, such as MicroRNAs,
that perform the same function. Several MicroRNAs, including
MicroRNA-140-5p, MicroRNA-200a, MicroRNA-24-3p, and Micro-
RNA-152, are implicated in doxorubicin-induced oxidative stress
and programmed cell death in cardiomyocytes, according to
existing research. These studies found that MicroRNAs such as
MicroRNA-200a could reduce ROS accumulation by targeting
Keap1 mRNA and thus causing Keap1 mRNA degradation, thus
promoting the intranuclear translocation of Nrf2, as well as
promoting the improvement of mitochondrial function and
activating the expression of downstream antioxidant and anti-
apoptotic factors [198–201]. Obviously, we think that there is still
much to be discovered in the field of RNA, and it is worthwhile to
investigate whether many of its small molecule RNAs, such as long
noncoding RNAs (LncRNA) and circular RNAs (CircRNA), also play a
role in doxorubicin-induced cardiotoxicity.
In summary, there are a large number of natural or synthetic

compounds that do not fall into the categories listed above and
are thus not mentioned in the text. The compounds are described
in the table below. To mitigate doxorubicin-induced cardiotoxicity,
however, clinical drugs and natural compounds, as well as
synthetic compounds and small molecule RNAs, play a crucial
part in targeting Nrf2.

FUTURE AND PROSPECT
Compared to other clinical anti-cancer agents, doxorubicin has a
broader anti-tumor spectrum, as a result, it has received increased
attention in cancer treatment. The most recent epidemiological
data indicates, however, that long-term doxorubicin treatment may
cause irreparable heart harm, as suggested by research. The area of

doxorubicin-induced cardiotoxicity that has received the most
attention is currently pathogenesis research. Many studies have
revealed that oxidative stress is the most important mechanism in
the pathology of doxorubicin-induced cardiotoxicity, and that this
pathology, which is accompanied by the production of high
amounts of damaging ROS, causes irreparable damage to
cardiomyocytes. In addition to oxidative stress, other complicated
mechanisms, including cardiomyocyte programmed cell death,
cardiomyocyte inflammation, and obstruction of cardiomyocyte
energy metabolism, are crucial pathogenic causes of doxorubicin-
induced cardiotoxicity. Nrf2 has been described as a unique
endogenous regulator of anti-oxidative stress, and indeed, it has
been discovered that its function is not limited to antioxidant
capacity, but also includes anti-cell death and anti-cell inflamma-
tion. Consequently, the question of whether Nrf2 plays a significant
role in doxorubicin-induced cardiotoxicity has generated a great
deal of controversy and several research findings. As hypothesized,
Nrf2 does play a key role in doxorubicin-induced cardiotoxicity, and
it can be stated that the pathophysiology of doxorubicin-induced
cardiotoxicity is mostly related to Nrf2 suppression. In this regard,
research on how to target Nrf2 to mitigate doxorubicin-induced
cardiotoxicity has become a hot topic, and numerous studies have
demonstrated that numerous clinical drugs, natural compounds,
synthetic compounds, and even numerous small molecule RNAs
can ameliorate doxorubicin-induced cardiotoxicity by activating the
Nrf2 signaling pathway. Until now, after reviewing the progress of
earlier studies, we discovered that there are still numerous areas of
research in this subject that require improvement. Initially, it was
determined that the overall experimental design of the available
studies was relatively cursory, whereas deeper processes exist in the
relationship between Nrf2 and the pathogenesis of doxorubicin-
induced cardiotoxicity that require further study. In addition, the
majority of the literature on the pathogenesis of Nrf2 in
doxorubicin-induced cardiotoxicity relates to cardiomyocyte oxida-
tive stress, cardiomyocyte death, and cardiomyocyte inflammation,
but not to other pathogenic mechanisms such as energy
metabolism and endoplasmic reticulum stress, so we believe this
is a research gap that needs to be filled with a substantial amount of
study. Moreover, the majority of approaches to target Nrf2 for the
treatment of doxorubicin-induced cardiotoxicity have centered on
compound therapy, and many natural plant compounds have been
studied more extensively. We are in favor of this direction of
research, but one concern is that many plant compounds are dose-
effective and toxic, and if not properly controlled, can lead to
increased cardiac damage. Hence, we offer a novel concept, namely,
if the recently studied and non-toxic aerobic exercise treatment can
be employed as an intervention for Nrf2 to treat doxorubicin-
induced cardiotoxicity, which is a previously unexplored field with a
great deal of untapped potential. Ultimately, we appeal that Nrf2
engineered mice can serve as the primary subject in preclinical
research. The majority of existing in vivo studies have used Nrf2
inhibitors and other methods to investigate Nrf2 at a deeper level,
and only a few studies have used Nrf2 engineered mice as
experimental subjects. However, compared to engineered mice,
inhibitors and other methods have many limitations in terms of
manipulation. Therefore, we believe that Nrf2 engineered mice may
be superior in this regard.
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