
REVIEW ARTICLE OPEN

Stem cell-derived intestinal organoids: a novel modality for IBD
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The organoids represent one of the greatest revolutions in the biomedical field in the past decade. This three-dimensional (3D)
micro-organ cultured in vitro has a structure highly similar to that of the tissue and organ. Using the regeneration ability of stem
cells, a 3D organ-like structure called intestinal organoids is established, which can mimic the characteristics of real intestinal
organs, including morphology, function, and personalized response to specific stimuli. Here, we discuss current stem cell-based
organ-like 3D intestinal models, including understanding the molecular pathophysiology, high-throughput screening drugs, drug
efficacy testing, toxicological evaluation, and organ-based regeneration of inflammatory bowel disease (IBD). We summarize the
advances and limitations of the state-of-the-art reconstruction platforms for intestinal organoids. The challenges, advantages, and
prospects of intestinal organs as an in vitro model system for precision medicine are also discussed.
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FACTS

● ISCs in the intestinal crypts maintain the integrity of the
intestinal epithelium.

● ISCs or PSCs can self-organize and differentiate into “intestinal
organoids” by specific 3D culture.

● SCs-derived intestinal organoids are ideal models of the
intestinal tract and have obvious advantages in the study of
intestinal physiology and intestinal diseases.

● SCs-derived intestinal organoids have been successfully
transplanted into the intestinal mucosa and have been shown
to have a repairing effect on the intestinal epithelium, which
holds great prospects for the treatment of intestinal diseases.

OPEN QUESTIONS

● How to optimize the culture system and culture process of
intestinal organoids?

● How to improve the simulation and homogeneity of intestinal
organoid models?

● Can new therapeutic targets be identified using intestinal
organoids?

● Can intestinal organoid transplantation be a method to repair
intestinal epithelial damage?

INTRODUCTION
Inflammatory bowel disease (IBD) is a chronic disease with an
increasing incidence worldwide [1]. The intestinal epithelial
barrier plays a major role in IBD [2, 3]. However, the lack of
techniques for long-term culture of human primary epithelial
cells in vitro hinders the study of the role of intestinal epithelium
in IBD. In recent years, intestinal stem cells (ISCs) have become
the focus of research on intestinal injury and regeneration,
colorectal cancer, and other intestinal diseases [4]. At present,
leucine rich repeat containing G protein coupled receptor 5+
(Lgr5+) stem cells (SCs) play an important role in maintaining
normal intestinal epithelial structure by renewing the intestinal
epithelium by generating billions of cells at an alarming rate
every day [5]. Studies have shown that ISCs and crypts in vitro
can form hollow spheres with intact intestinal epithelial-like
structures, known as “intestinal organoids”, through 3D culture
mode in matrix glue (Matrigel) under the action of appropriate
growth factors [6]. In addition, pluripotent SCs (PSC) or induced
pluripotent SCs (iPSC) derived from patients with IBD are also
capable of forming intestinal organoids under in vitro induction.
These organs are hollow globules with complete intestinal
epithelioid structures. Intestinal epithelial organs cultured
in vitro for several months retain their cellular characteristics
and functions because they are fully integrated into the
recipient epithelial cells [7–9]. They retain their original cell
characteristics and functions even after several months of
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in vitro culture, making them ideal physiological models of the
intestinal epithelium and unique disease models, and can be
transplanted intact into the recipient intestinal mucosa to
achieve repair of intestinal epithelial damage [10, 11]. Cellular
sources and methods for the generation of intestinal organoid
have illustrated in Fig. 1.
This review discusses the progress of research on the

formation of intestinal organoids by SCs in culture. And
discusses the research progress and current limitations of
intestinal organoids in establishing intestinal epithelial models
and treating patients with IBD. Finally, we outline the urgent
need to technically standardize laboratory procedures for
intestinal organs in order to make them more widely used in
clinical IBD studies.

IBD INTESTINAL MODEL
Clinical studies and applications of IBD are subject to strict technical
and ethical restrictions, and high-quality preclinical studies are
needed to ensure the efficacy and safety of clinical studies [12, 13].
The main preclinical research models for IBD are animal models and
cellular models. For a long time, animal models have been the
mainstay of intestinal research due to the lack of representativeness
of cellular models [14]. However, animal models have long time
cycles and racial differences from humans with being expensive and
subject to animal ethics [14]. Therefore, it requires effective, safe, and
feasible cellular models to avoid unnecessary animal experiments as
much as possible. Besides, animal models are difficult to be widely
carried out in disease research [15, 16]. The intestinal cell model is
limited by the technology of intestinal epithelial cell culture, and the

Fig. 1 Schematic diagram of intestinal tissue engineering by organoid technology. Intestinal organoid is generated from the intestinal
crypts of the small intestine, and Lgr5+ stem cells were isolated from small intestinal tissues are then embedded in Matrigel with a culture
medium. Clonal fibroblast subclones and clonal iPSCs were established in the parental fibroblast population and then co-generated with
fragmented intestinal tissue on 3D scaffold material to generate intestinal organoids.
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mechanism of intestinal epithelial damage for IBD patients is under-
researched and the treatment methods are limited. In the past
decade or so, SCs-derived intestinal organoid models have brought
a leap forward in IBD research and can provide new directions and
methods for IBD mechanism research and treatment development
[17, 18].

2D cellular model
The in vitro cell model is to isolate primary cells from in vivo
tissues, perform cell culture and generate different types of cell
lines [19, 20]. Until the ISCs were isolated, the intestinal cell model
could only be replaced by intestinal tumor cells. The developed
Caco-2, HT-29, and T84 cell lines were derived from human
colorectal adenocarcinoma [21–24].
The 2D cell culture environment is far from the complex cellular

environment in vivo, which affects the structure and function of
cells [21]. 2D culture cell lines have few cell types and confusing
tissue structure, and the cell lines will gradually flatten, abnormally
differentiate and lose their differentiation phenotype, which
cannot reflect the interaction between different cells and matrix,
and cannot form similar cellular tissue structure in vivo. It cannot
reflect the interactions between different cells and matrix, and
cannot form similar cellular tissue structures in vivo [20, 25]. It is
generally accepted that 2D cell models are difficult to reflect the
in vivo situation, have little reference value, and the experimental
results are not widely accepted [26–28].

3D cellular model
3D cell culture is an in vitro co-culture of carriers with 3D
structures and different materials with different cell types so that
the cells can migrate and grow in the carriers with 3D spatial
structure, forming 3D cell-carrier complexes [28, 29]. A 3D cell
model optimizes the limitations of a 2D cell model. 3D culture
environment can better simulate the in vivo cell growth
environment, mimic the in vivo cell growth environment, regulate
cell proliferation and differentiation, and cultivate more cell types
to form tissue structures similar to in vivo [30]. Currently, 3D cell
models are widely used in various fields such as organoid,
microtumor, and microcarrier [31, 32].
Lgr5(+) ISCs were successfully isolated in 2007, and have

become the most important cell source for intestinal cell models
[33]. In vivo, Lgr5+ crypt base columnar cells (CBC) are located at
the base of the intestinal mucosal crypt and differentiate to form
different intestinal mucosal cells by continuously proliferating and
migrating toward the top of the crypt [34]. In vitro, Lgr5(+) CBC
has a short survival time and cannot be cultured in a 2D culture
environment, but can survive for a long time in a 3D culture
environment [35]. In 3D culture, Lgr5+ CBC was found to divide
once every 24 h and could differentiate into all intestinal epithelial
cells (IEC) except mesenchymal cells and immune cells [36].

Intestinal organoid model
Intestinal organoid is a miniature hollow sphere with an intestinal
epithelial crypt structure formed by SCs in 3D culture, which
mimics the ecological niche of ISCs, and precisely regulates the
proliferation and differentiation of SCs [17, 37–48]. These spheres
contain most types of IEC, and when differentiated mature, they
have physiological functions such as absorption, secretion, mucus
production, and material transport [49, 50]. Intestinal organoids
have short culture cycles, can be stored frozen for long periods of
time, and can also simulate complex environments in vivo or be
adapted to the culture environment. Intestinal organoids are able
to preserve the intestinal epithelial crypt structure and maintain
stable phenotypic and genetic characteristics [7, 43, 51–53].
Compared with cell line models, organoids have similar tissue
structure and function to those in vivo, improving the realism and
reliability of the study [18, 27]. In addition, the culture cycle is
shorter than that of animal models, the process is easy to
manipulate, and there are no animal ethical issues involved,
allowing for a wider range of studies [16, 29, 54, 55]. Table 1
Summary of current intestine models. Figure 2 Intestinal
Organoids as models for IBD research.
The cell sources of intestinal organoids include ISCs from

intestinal crypts, PSCs, embryonic SCs (ESCs), and iPSCs [18, 56]. In
2009, Hans et al. reported for the first time in Nature the formation
of murine intestinal organoids with intestinal epithelial crypt
structure using Lgr5(+) ISCs from mouse intestinal crypt in vitro
[6]. In 2011, Hans et al. cultured human intestinal organoids with
intestinal epithelial crypt structure using Lgr5(+) ISCs from human
intestinal crypt [47]. After more than a decade of development,
ISCs-derived intestinal organoid cultures have matured with high
success rates, and are currently the main source of intestinal
organoid cultures [57, 58]. However, the cultures do not contain
MSCs and immune cells [42, 59]. In 2011, Spence et al. reported
the use of PSCs or embryonic SCs to culture human intestinal
organoids [10]. In 2017, Miura and Suzuki reported the formation
of intestinal organoids using mouse and human iPSCs cultures,
respectively [60]. PSC, ESC, and iPSC cultures form intestinal
organoids with crypt structures of the intestinal epithelium and
contain various types of IEC, but the differentiated IEC is not
sufficiently mature [61, 62]. There is a potential risk of genetic and
epigenetic variation during induction, with some differences in
structure, function, and genetic characteristics from the IEC in vivo
[60, 62]. Currently, the success rate of various PSCs cultured to
form intestinal organoids is low and the technique is still flawed,
pending subsequent improvements [10, 43, 61].

INTESTINAL ORGANOID CULTURE TECHNOLOGY
Organoid culture technology was named one of the "Top Ten
Breakthroughs" by Science in 2013 and Nature Methods in 2017,

Table 1. Summary of current intestine models.

Intestinal models Advantage Limitation Ref.

Intestine animal
models

Traditional model; Technology maturity;
Approaching the stage of clinical studies.

long time cycles; expensive; racial differences from
human; subject to animal ethics.

[15, 16]

2D intestine
cellular model

The culture is simple, the technology is mature, the
cost is low, and it is adapted to simple preclinical
studies.

Planar culture environment, monolayer cell culture,
gradually planarizing and losing differentiation
phenotype, inability to form intestinal epithelial
structures.

[168–173]

3D intestine
organoid model

3D culture environment that mimics the growth
environment of ISCs in vivo, forms intestinal
epithelial structures, and maintains stable
phenotypic and genetic characteristics.

Culture process and technology is relatively
complex, and cost is relatively high. There are still
limitations that hinder clinical translation.

[174–178]

Intestine Organoid
microarray

More precise regulation of the cultivation
environment, simulating the physical and microbial
environment in the body.

The culture system and process lack standards, the
culture technology needs to be improved, and the
cost is high.

[179–184]
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and an excellent preclinical disease model by The New England
Journal of Medicine in 2019 [63]. The organoid culture technology
includes core technologies such as 3D culture, detection, and
identification, as well as basic technologies such as stem cell
isolation, organoid extraction, and organoid preservation [58, 64].
In addition, emerging technologies such as 3D bioprinting,
organoid microarrays, and gene editing technologies can be
combined to increase environmental simulation conditions or
expand the scope of research [53, 65, 66]. To better simulate the
intestinal epithelial growth environment in vivo, organoid culture
is systematized and a 3D culture system for intestinal organoids is
established [47, 67–69]. The current 3D organoid culture system
can be divided into scaffold-free culture system and scaffold-
based culture system according to the presence or absence of
scaffold deriving from natural components or artificially synthe-
sized [70].

scaffold-free culture system
The scaffold-free culture system has no support structures for cell
adhesion, growth, and spreading [64]. The 3D culture environment

is formed by various physicochemical principles, and the cells
aggregate in the medium to form microtissue spheroids similar to
the source tissue [55, 64]. Hanging drops, which have no plane of
attachment, can be prepared as a variety of hanging drop plates
allowing cells to self-assemble under the influence of gravity to
form microtissue spheroids [71–73]. The cells can be magnetized
and suspended in a magnetic field for 3D culture [74–76]. Special
synthetic polymer materials can be used to form microplate
structures with ultra-low adhesion surfaces on which the cells
migrate and adhere to each other to form microtissue spheroids
[64, 77]. Alternatively, the agar interface can be used to reduce the
stiffness of the culture surface to create a 3D Petri Dish in which
cells can migrate and spread to form microtissue spheroids
[43, 78].

Scaffold-based culture system
Scaffold-based culture systems allow cells to attach to a scaffold
composed of solid particles or liquid gels, which are made to float
in the culture medium by gentle agitation [38]. With the
development of technology, scaffold appears in more and more

Fig. 2 Intestinal Organoids as models for IBD research. Intestinal organoids can be used for intestinal development and IBD disease
modeling, drug/toxicity testing, and host-pathogen interaction studies. In cultures of intestinal organoids from IBD patients, we can add
multiple growth factors, cytokines, or drug molecules to modulate the culture environment, add autoimmune cells for co-culture, or digest
into single cells. The functions can evaluate by phenotypic analysis, drug screening, qRT-PCR, single cell RNA sequencing, flow cytometry,
imaging, ELISA, and other kinds of indicators.
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forms to solve different problems [67]. According to the source of
scaffold, it can be divided into scaffold supported by natural
extracellular matrix (ECM) and scaffold supported by synthetic
materials [38, 67, 79].

Natural ECM-supported scaffold. Natural ECM is used as the
support material to optimize the 3D culture matrix formulation
according to the cultured cell types meeting the culture needs of
different tissue cells [80]. Matrix gel is a natural ECM extracted
from the basement membrane of mouse sarcoma cells in liquid
gel form, which is a natural scaffold with good compatibility for
both human and mouse cell cultures [80, 81]. The main
components of matrix gel are laminin, type IV collagen, nestin,
heparan sulfate glycoprotein, and also contains growth factors
and matrix metalloproteinases, providing rich nutrition [43].
However, natural ECM has some immunogenicity and risk of
pathogenic infection and is less stable [82]. Natural ECM may have
the disadvantage of batch variability due to different matrices and
extraction techniques [81, 83].

Synthesized material-supported scaffold. The types of synthetic
scaffold materials are quite diverse. Synthetic materials have
consistency, stability, and biocompatibility bias, and cannot provide
growth factors and small molecule compounds needed for cell
culture. The synthetic scaffold can be divided into hydrogel and solid
scaffold according to the attachment method of cells [67, 79].

Hydrogels: The hydrogel is mimics of ECM and can be made
from natural polymers or synthetic polymers [64]. SCs are
dispersed in liquid hydrogels and then cross-linked to achieve
3D culture [38, 84]. The hydrogel scaffold has good stability and
adjustability [29, 38, 64]. Hydrogels can alter cell signaling by
increasing or decreasing protein concentration and changing the
density of cell adhesion ligands [39, 66]. Polymeric gelling agents
can be pre-designed, and functional additives can be adjusted as
required, allowing the hydrogel to obtain specific properties such
as temperature, magnetic properties, and pH, and meet a wider
range of research requirements [39, 40, 67].

Solid scaffold: Solid scaffold uses a variety of porous materials to
prepare a solid, porous microcarrier structure [85, 86]. SCs are
"seeded" in these solid scaffold porous microcarriers to achieve a
3D culture environment [86, 87]. Sponges or foams have high
porosity and homogeneous connectivity structures, and the
prepared porous microcarrier scaffolds are widely used in tissue
engineering [85, 88]. Solid scaffolds prepared by applying
biodegradable polymers, such as PLA, have been extensively
studied for their good biocompatibility and proper porous
structure [89, 90]. Enables efficient 3D cell attachment for superior
cell viability [67, 89, 91].

Organoid detection and identification techniques
Intestinal organoids are microtissue spheroids with intestinal
epithelial structure, and their detection and identification techni-
ques are different from traditional 2D cell lines [58]. It is necessary
to evaluate the quality of intestinal spheroids in culture, as well as
to evaluate the research results of intestinal spheroid models. The
development of various characterization techniques and assays
has enriched the identification and evaluation of organoids. The
application and promotion of intestinal organoid technology in
the study of intestinal diseases have been promoted
[29, 47, 58, 92]. The tests that can be performed now include
morphological structure, proliferative activity, intestinal epithelial
barrier function, and genetics [93–95].

Organoid microarray technology
Stationary 3D cell culture is performed in culture dishes or culture
plates, and the culture environment that can be regulated is very

limited [96]. The intestinal epithelial cells are regulated by multiple
systems of the organism and are also influenced by the intestinal
microecology and microenvironment [97, 98]. Organoid micro-
arrays are microfluidic microarray technology combined with 3D
organoid culture technology to form a dynamic 3D cell culture
environment in vitro by more rigorously mimicking the functional
units of human tissues and organs in a miniature organoid culture
vehicle [41, 99]. The organoid chip can simulate the physical
environment such as in vivo mechanics, and magnetic and electric
fields by dynamically regulating the culture medium and additives
through microfluidics [100]. It can add different cells or micro-
organisms to mediate cell-cell and cell-microbe interactions
[100–102]. Microarray technology can also be combined with
imaging instruments to monitor cell biological changes in real
time, record behavioral changes of cells in disease states, and
record the whole process of cellular response to drugs [103–105].
Microarray technology enables more systematic and mechanized
organoid culture, increases throughput, expands the scope of
research, and takes a firm step toward clinical translation
[69, 100, 106–108].

Bio-3D printing technology
Bio-3D printing technology has broken through cell printing and
manipulated cell-containing bio-ink to construct active structures
[109, 110]. The hybrid printing of SCs with biological scaffolds
through multi-jet 3D printing technology to form organoid
structures could be the next generation of organoid construction
methods [111]. It has been shown that ‘assembloids’ assembled by
cell-based 3D printing technology go beyond Organoid and are
closer to human tissues and organs in terms of structure and
function [112]. At present, bio-3D printing is mainly used for
in vitro research models, for forming 3D culture systems, organoid
chips, and printing biomimetic materials, such as gelatin, alginate,
and creating conditions for in vitro culture of SCs into desirable
organoids [113]. Currently, although it is possible to print cell-
containing structures that resemble in vivo tissues and organs in
shape and structure, there is still a big gap between them and the
complex physiological functions of real organs. There is still quite
a long way to go before active organs can be printed using for
transplantation [68, 77, 114].

INTESTINAL ORGANOID APPLICATIONS
The applications of Intestinal organoids are focused on both
research models and clinical treatments. The intestinal organoid
has the structural characteristics and physiological functions of the
intestinal epithelium, which is an ideal model of intestinal
epithelial physiology and intestinal diseases [55]. The organoid is
able to maintain stable phenotypic and genetic characteristics,
and has obvious advantages in individualized disease modeling
and precision medicine [7, 115]. As an intestinal epithelial
physiological model, the growth and development, tissue
structure, and physiological function of intestinal epithelium can
be studied. As a model of IBD disease, it can explore the
pathogenesis of IBD and test the treatment effect of IBD. Intestinal
organoids can be used in IBD treatment to repair intestinal
epithelial damage through organoid transplantation and to
improve genetic susceptibility and gene expression through gene
therapy [17, 50, 53, 116].

Studying intestinal physiology
Intestinal organoids maintain the structure and function of the
intestinal epithelium [29]. By observing the formation process of
the organoid, the complex environmental changes in vivo are
simulated, thus understanding the structure and physiological
functions of the intestinal epithelium. It also allows in-depth study
of the proteomics, lipidomics, genomics, and transcriptomics of
intestinal epithelial cells [29, 36, 63, 117, 118].
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It was found that mature absorptive cells, cupped cells, and
various intestinal endocrine cells could be detected in intestinal
epithelial organoids derived from Lgr5(+) CBC [36, 117]. These
cells have corresponding physiological functions such as trans-
porting substances, absorbing nutrients, and synthesizing secre-
tion [57, 59]. By comparing colonic epithelial organoids from
healthy humans with those from patients with ulcerative colitis
(UC), Dotti et al. found differences in DNA methylation profiles and
gene expression profiles. suggesting that the UC colonic organoid
model retains a disease-specific genetic and expression profile
[7, 9, 115].

Exploring the pathogenesis of IBD
Currently, the etiology and pathogenesis of IBD are unclear. In
order to explore the pathogenesis of IBD and find the etiology of
intestinal injury, colonic organoids are ideal models for disease
research. Being able to establish an individualized disease model,
preserving the morphological structure and genetic characteristics
of diseased tissue cells, can lead to more realistic and reliable
research results [9, 29].

In terms of genetics. A study comparing colonic epithelial
organoids of terminal ileal origin from UC patients and Crohn’s
disease (CD) patients found that they differ in DNA methylation
profiles and gene expression profiles, although they have similar
morphological structures [9]. It indicates that there are different
disease-related genetic genes and expression profiles in each of
UC and CD, which can provide a basis for subsequent differential
diagnosis and gene therapy for IBD [7, 9, 93].

In terms of mucosal inflammatory damage. A study found that
transcript levels of IL-1β and γ-IFN were lower in colonic organoid
cultures than in their source mucosal biopsy specimens. The
investigators concluded that the levels of inflammatory factors in
mucosal specimens do not carry over to colonic organoids and
that overexpression of these inflammatory factors requires re-
stimulation [52]. In 2018, Biton et al. studied Th and its
inflammatory factors in intestinal organoids on the proliferation
and biochemistry of Lgr5(+) CBC [119]. Lgr5(+) CBC expressing
major histocompatibility complex II (MHC II) was found to be an
atypical antigen-presenting cell that interacts with Th via MHC II.
Th1, Th2, Th17 and their secreted pro-inflammatory factors IFN-γ,
IL-13 and IL-17A promote Lgr5(+) CBC differentiation [119, 120].
And regulatory Th (Treg) and the base-secreted cytokine IL-10
promote Lgr5(+) CBC regeneration [119]. A study found that the
regenerative capacity of ISCs and the rate of organoid formation
were reduced after short-term intervention of intestinal organoid
Interleukin-22 (IL-22), but the number of transiently expanded
progenitor cells increased and differentiated to various types of
epithelial cells, resulting in an increase in the volume of formed
organoids [121, 122]. It is hypothesized that IL-22 contributes to
the differentiation of transiently expanded progenitor cells to
various types of epitheliums, and promotes intestinal epithelial
repair during acute injury of intestinal epithelium [121, 123].
However, IL-22 may be detrimental to epithelial regeneration and
repair by causing damage to ISCs when chronic injury hampering
the intestinal epithelium [123, 124]. The clinical application of IL-
22 to promote mucosal repair in IBD patients should take into
account its long-term chronic damage to ISCs [121].

In terms of intestinal flora. Wang et al. combined 3D differentia-
tion technology at the air-liquid interface to construct an intestinal
epithelial organoid and cell co-culture system to simulate
pseudomembranous colitis caused by C. difficile infection of the
intestine and to explore the pathogenic mechanism of C. difficile
[125]. Hou et al. established a co-culture system of Lactobacillus,
intestinal lamina propria lymphocytes, and intestinal organoid,
and found Lactobacillus stimulated the proliferation and repair of

intestinal epithelium of Intestinal organoids by promoting the
secretion of IL-22 and TNF-α from lymphocytes in the lamina
propria of the intestine [126].

In terms of fibrosis and cancerization. One study isolated the crypt
from the mouse colon and cultured it into intestinal organoids.
Tumor necrosis factor-α (TNF-α) stimulation and Transforming
growth factor-β1 (TGF-β1) stimulation were successively adminis-
tered to intestinal organoids to induce IEC mesenchymal cell
transformation, providing a convenient and effective in vitro
model for studying intestinal fibrosis in IBD [127]. In another study,
cytokines (TNF-α, IL-1β, IL-6) and bacterial components (bacterial
lipopolysaccharide, flagellin) were mixed and added to mouse
colonic organoid medium on alternate days to simulate chronic
inflammatory stimuli for more than 1 year of continuous
intervention [128]. The results revealed that colonic organoid
underwent a cellular transformation that may be associated with
UC carcinogenesis after chronic inflammatory stimulation due to
activation of the nuclear factor kappa-B (NF-κB) signaling pathway
and impaired cell differentiation [128].

Testing the effect of IBD treatment
IBD is mainly treated with drugs, and the application of colonic
organoid models for drug testing is ideal. Colonic epithelial
organoids can be cultured to simulate a more reviewed in vivo
environment, and have a very high structural and functional
similarity to the in vivo intestinal epithelium. It is highly realistic
and reliable as a research model to study drug responses to
intestinal epithelial structures. There is a significant increase in the
success rate of clinical translation of IBD therapeutic agents or
treatments that pass the test in the colonic organoid model
[12, 118, 129, 130]. In precision medicine, colonic organoids
derived from ISCs or iPSCs established from IBD patients are
mostly used for drug testing [118]. Testing conventional
therapeutic drugs and exploring new drugs for IBD treatment
can help identify more optimal options for IBD patients
[118, 130, 131].
Glucocorticoids are commonly used in the treatment of IBD

[132]. Xu et al. observed the penetration of FITC-Dextran 4 (FD4)
markers in the lumen of intestinal organoids using coaggregation
microscopy [133]. It was found that exposure of the organoid to
the glucocorticoid prednisolone significantly reduced intraluminal
FD4 infiltration, and decreased inflammatory cytokine expression
in the culture medium, indicating that glucocorticoids are well
suited to suppress inflammation and reduce intestinal epithelial
permeability in IBD treatment [133]. One study added azathioprine
and 5-aminosalicylic acid to TNF-α-treated intestinal organoid
medium, respectively [134]. The results revealed that TNF-α-
treated intestinal organoids showed internalization and abnormal
disruption of E-calmodulin and reduced bridging granule core
protein-2 levels. The addition of 5-aminosalicylic acid or
azathioprine treatment restored E-calmodulin levels on cell
membranes. Addition of 5-aminosalicylic acid restored bridging
granule core protein-2 levels [134]. Studies have shown that
azathioprine and 5-aminosalicylic acid can repair the integrity of
the intestinal barrier [134, 135]. Infliximab is an anti-tumor necrosis
factor agent that can be used in the treatment of IBD [136]. One
study examined the effect of infliximab on IEC using intestinal
organoids from UC patients. The results found that concomitant
treatment of UC patient’s organoids with infliximab and TNF-α had
no significant effect on their viability or morphology, but resulted
in a significant decrease in ubiquitin D (UBD) mRNA expression
[136, 137]. UBD is a ubiquitin-like modifier involved in protein
degradation and is upregulated in inflamed intestinal tissues,
suggesting an anti-inflammatory effect of infliximab [136]. Lloyd
et al. used healthy human-derived colonic organoids organs
incorporating the macrolide clarithromycin and found that
clarithromycin exerted anti-inflammatory effects in the intestinal
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epithelium [138]. This suggests that in addition to its antibacterial
effects, clarithromycin has the potential to inhibit the inflamma-
tory response of the intestinal epithelium [138]. Table 2 Novel
molecular targets and therapy approach identified using intestinal
organoids.

Repair of intestinal epithelial injury
IBD presents as chronic inflammatory colonic injury, most notably
colonic epithelial injury. In non-surgical resection therapy, there is
a lack of effective treatment to repair chronic colonic injury and
maintain the integrity of the intestinal epithelial barrier [2]. SCs
therapy has been shown to be effective in the treatment of IBD,
maintaining prolonged remission, repairing intestinal damage,
and achieving mucosal healing (MH) [139, 140]. Intestinal organoid
transplantation has significant advantages over stem cell trans-
plantation [141]. Colonic organoids are derived from colonic SCs,
which have colonic epithelial-like structural features and physio-
logical functions, and retain genetic characteristics [11]. Trans-
plantation into the body is more likely to integrate into the
damaged colonic epithelial tissue and achieve the therapeutic
goal of MH by regenerating and renewing intestinal epithelial cells
and repairing colonic epithelial damage [140, 142, 143]. Figure 3
shows regenerative medicine for intestinal diseases. The devel-
opment of direct repair of injured epithelial cells or partial
replacement of abnormal intestinal epithelial cells with normal
epithelial cells would be promising new therapeutic approaches
for IBD. Organoid cells can also be transplanted in vivo, which
provides a pre-clinical tool for regenerative medicine. For
example, one study described in detail how epithelial organoids
were transplanted into the colon of a mouse model of
inflammatory enteritis. In this experiment, they injected the
organoids into the luminal space at the anus. The injected
organoids then attach to the injured area and reconstruct the
donor-derived epithelium. This method has been successfully
applied to epithelial cell-derived organoid tissue from adult colon
and small intestine epithelium as well as fetal small intestine [144].
It has been shown that intestinal organoids are implanted through
the anus into the dextran sodium sulfate(DSS)-induced colitis
model, the clinical activity score can be significantly improved,

and the donor cells can be accurately targeted to localize in the
colitis-induced ulcer surface, and begin to reconstruct and repair
the crypt structure [145–147]. In 2012, Yui et al. reported that
in vitro cultured intestinal organoids were able to repair colitis
through anal enucleation in mice, and the donor cells were able to
target the colonic ulcer surface and start to reconstruct and repair
the crypt structure [142]. In 2022, the same mouse-derived
intestinal organoids were injected anally into UC mice by Tokyo
Medical and Dental University (TMDU), Japan, to repair colitis, and
these cultured organoids could precisely reach the location in the
damaged intestinal epithelium and repair the damaged intestinal
epithelium [148]. Subsequently, the TMDU research team
announced the first successful transplantation of "organoids" into
the intestinal mucosa of a patient with refractory UC [149]. The
"organoid" is derived from the patient’s normal intestinal mucosa
(including ISCs), and cultured in vitro in 3D to form 0.1–0.2 mm
diameter "organoids", which are then endoscopically transplanted
to the colon lesion site [148, 149]. Periodic endoscopic observation
of mucosal repair and improvement of colonic lesions was
performed. In addition, ISCs secrete a large number of extracellular
vesicles in the culture medium during the formation of intestinal
organoids [150–152]. The extracellular vesicles extracted from the
culture medium have regulatory repair functions similar to those
of mother cells [153–155]. It can be used as cell-free therapy and
applied in IBD treatment, which can achieve the effects of
repairing intestinal epithelium, promoting mucosal healing, and
regulating immune dysfunction [152, 155, 156].

Gene therapy
Organoid culture technology can be combined with gene editing
technology. The gene editing technology represented by clus-
tered regularly interspaced short palindromic repeats-associated
protein 9 (CRISPR/Cas9) is becoming mature [157–160]. Gene
editing of SCs or organoids using CRISPR/Cas9 for genetic
modification of intestinal organoids [157, 161]. Genetic correction
is performed in the case of genetic defects to achieve improve-
ment of genetic susceptibility factors for IBD, prevention of
carcinogenesis, or inhibition of tumor growth [94, 162, 163].
Alternatively, gene expression in intestinal organoids can be

Fig. 3 Transplantation of intestinal organoids for the regenerative medicine of ulcerative colitis tissues. Combining organoids with 3D
scaffold material can induce the maturation of intestinal organs into functional intestines by implantation into the host. Also in vitro
maturation of intestinal organs could repair the original intestinal structure and function.
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altered by DNA or RNA transfection, lentiviral infection, and other
methods [164, 165]. Clevers et al. removed a small number of ISCs
from patients with Cystic fibrosis (CF), modified the genes of these
SCs using CRISPR/Cas9 technology, inserted normal cystic fibrosis
transmembrane conductance regulator (CFTR) genes, and made
them develop into organoid. These organoids, if reintroduced into
the source patient, may partially cure CF disease [166].

LIMITATIONS OF INTESTINAL ORGANOIDS TECHNOLOGY
The organoid has more than 10 years of development and fruitful
research results, but there are still certain limitations [13, 29, 167].

Potential hazards
In the process of 3D culture and gene editing, the differentiation
of SCs and genetic modification needs to be precisely regulated,
and there is a possibility of abnormal differentiation and gene
mutation of SCs, and the chance of tumor formation increases.
Allogeneic organ transplantation requires consideration of immu-
nogenicity, which poses certain safety risks [13, 167]. Regarding
culture systems and culture additives, it is important to guard
against microbial contamination. It is important to consider the
toxic components contained in synthetic materials and the
immunogenicity of natural biological materials [67].

Tissue differences
Current organoid culture systems do not completely mimic the
complex growth environment of the in vivo intestine. In
comparison with the in vivo intestine, intestinal organoids also
have certain tissue differences and functional defects. The
intestinal organoid is dominated by intestinal epithelium and
lacks connective, muscular, and neural tissues. There are no blood
vessels, lymphatic vessels, and neurogenesis, and a lack of
immune cells and smooth muscle cells [54].

Defective culture system
Materials and techniques are the basis for establishing culture
systems. With the development and improvement of materials,
diverse culture systems can be established, but all have different
degrees of defects. It is still technically difficult to completely
simulate the complex environment in vivo and monitor the
culture process in real time, and there is still a long way to go
before the integrated culture and commercial application of
intestinal organoids [47, 61, 70].

Organoid heterogeneity
Both cell source and culture conditions affect the structure and
function of organoids. At present, the sources of SCs are diverse,
the cultural techniques are not uniform, and the research results
are obviously individual. There are certain obstacles to the sharing
of results and technology diffusion [43].

SUMMARY
Currently, organoids have a wide range of applications in organ
development, precision medicine, regenerative medicine, drug
screening, gene editing, and disease modeling. SCs-derived
intestinal organoid is an ideal intestinal epithelial physiological
model and intestinal disease model, which has obvious advan-
tages in individualized disease modeling and precision medicine.
As a model of IBD disease, it can explore the pathogenesis of IBD,
test the therapeutic effect of IBD, and find new therapeutic targets
again. Intestinal organoids transplanted into IBD patients can
repair intestinal epithelial damage. After gene therapy, intestinal
organoid transplants can also improve IBD genetic susceptibility
and improve gene expression. Intestinal organoid-derived extra-
cellular vesicles have also demonstrated a role in repairing
intestinal damage and regulating immune disorders.

However, the limitations of the intestinal organoid limit its
clinical translation, and continuous research is still needed to
break through its limitations. First of all, we need to expand the
scope of research, conduct more extensive model studies, explore
new therapeutic approaches, and prove the effectiveness, safety,
and feasibility of organoid applications. Within the scope of ethics,
we should optimize organoid transplantation and gene therapy
technology, and conduct more animal or clinical trials to promote
the clinical translation of organoids. Secondly, we need to
optimize the culture system. Through material and technical
improvements, we can better simulate the in vivo intestinal
physicochemical and microbial environment, homogenize culture,
and narrow the differences between organoid and in vivo organs.
To simulate in vivo cellular interactions and establish a multi-
cellular co-culture system in vitro. Table 3 Overview of the
currently established organoid–cell co-culture systems. With the
breakthrough of technical and ethical limitations, the clinical
translation of intestinal organoids can be widely carried out. The
future of intestinal organoids can bring a bright future to the
research and treatment of IBD.
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