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Reprogramming of metabolic genes and subsequent alterations in metabolic phenotypes occur widely in malignant tumours,
including glioblastoma (GBM). FOXM1 is a potent transcription factor that plays an oncogenic role by regulating the expression of
many genes. As a SET domain containing protein, SET7 is a protein lysine methyltransferase which monomethylates histone
proteins and other proteins. The epigenetic modification of histones regulates gene expressions by epigenetically modifying
promoters of DNAs and inter vening in tumor development. Activation of FASN increased de novo fatty acid (FA) synthesis, a
hallmark of cancer cells. Here, we report that FOXM1 may directly promote the transcription of SET7 and activate SET7-H3K4me1-
FASN axis, which results in the maintenance of de novo FA synthesis.
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INTRODUCTION
Glioblastoma (GBM) is a lethal brain malignancy with limited
effective medications. Due to its heterogeneous genetic
phenotype and complex tumour microenvironment (TME),
simple gene-targeted therapies cannot be easily translated
into the clinic, and many more biological characteristics of
GBM, including metabolism, the TME, etc., need to be
recognized and studied.
As a member of the Forkhead Box(Fox) family of transcription

factors, Forkhead box M1 (FOXM1), was designated as the 2010
Molecule of the Year for its powerful ability of transcriptional
regulation and potent effect on tumorigenesis. FOXM1 protein is
comprised of a C-terminal transactivation domain, an N-terminal
repressor domain and a forkhead DNA-binding domain. FOXM1
exerts its oncogenic role by transcriptionally regulating the
expression of a wide spectrum of downstream genes associated
with diverse cellular processes such as energy metabolism, cell
cycle, invasion, metastasis, drug resistance, and DNA damage. For
example, FOXM1 promotes the proliferation by regulating the
expression of cell cycle proteins like CyclinD1, CyclinE2 [1, 2].
FOXM1 also promotes the invasion by regulating the expression of
MMP2, MMP9, E-cadherin and so on [3, 4]. FOXM1 also promotes
aerobic glycolysis through the direct activation of metabolic genes
like IDH1, LDHA, GLUT1 and HK2 [5–7].
Through alterations in gene expression, malignant tumour

cells undergo metabolic reprogramming, including increased
anaerobic glycolysis and altered glutamine and lipid metabo-
lism, to sustain their rapid proliferation in the oxygen-depleted
TME. Lipids are essential for the proliferation of cancer cells
because they are the building blocks of cell membranes and
function as signalling molecules. As the substrates of lipid

synthesis, fatty acids (FAs) are usually taken up exogenously by
normal cells but synthesized de novo in cancer cells [8].
Elevated FA synthesis has been indicated to promote tumor-
igenesis through several pathways and thus may be considered
a hallmark of cancer. FAs can be reversibly oxidized to produce
energy to meet the demands of growing tumours, and
inhibition of FA oxidation suppresses the proliferation of
glioma cells [9, 10].
During the synthesis of FAs, the main substrate, acetyl-CoA, is

converted by fatty acid synthase (FASN) into palmitate, most of
which is then desaturated by stearoyl-CoA desaturase (SCD) to
generate monounsaturated FAs (MUFAs) and some of which
desaturated by other FA desaturases (FADS) to generate
polyunsaturated FAs (PUFAs). FASN is unimportant in normal cells
because of their sufficient uptake of dietary FAs [11] but is
overexpressed in nearly all epithelial cancers and is closely related
to poor prognosis in several cancers, including breast cancer,
prostate cancer, bladder cancer, stomach cancer, ovarian cancer,
hepatocellular carcinoma and glioma [8, 12–18].
MUFAs are mainly endogenous and protect cells against

peroxidation in the presence of reactive oxygen species (ROS),
which results in the peroxidation of lipids in the cell membrane.
MUFAs have been reported to reduce cell death in GBM [19].
Excess accumulation of ROS and lipid peroxidation products is
lethal to cells and initiates a programme of regulated cell death
called ferroptosis [20]. Ferroptosis has recently been reported to
suppress the malignant phenotype of GBM, inhibiting prolifera-
tion, metastasis, angiogenesis and malignant transformation
[21, 22]. By increasing the relative MUFA/PUFA ratio, enhanced
de novo FA synthesis inhibits lethal membrane peroxidation and
protects cells [23].
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Here, we demonstrated that elevated FA synthesis promotes
self-renewal and suppresses ferroptosis in GBM and investigated a
new mechanism involving FOXM1. FOXM1 promotes the synthesis
of FAs by regulating the expression of relevant genes at the
transcriptional level. Our study suggests that targeting of FOXM1
combined with inhibition of FA synthesis might be a new strategy
for the treatment of GBM.

RESULTS
FA metabolism dysregulation in GBM
To generate metabolic profiles of GBM, we collected 5 GBM
samples and paired paratumoral normal tissues and subjected
them to LC‒MS metabolomic analysis. The metabolites were
identified by mass accuracy (<300 ppm), and the MS data were
matched with data in HMDB (http://www.hmdb.ca), MassBank
(http://www.massbank.jp/), LipidMaps (http://www.lipidmaps.org)
mzCloud (https://www.mzcloud.org) and KEGG (http://
www.genome.jp/kegg/). The differential metabolites (DMs) were
subjected to pathway analysis with MetaboAnalyst and were
finally visualized using the KEGG Mapper tool. The DMs were
defined as those with p < 0.05 and variable importance in
projection (VIP) > 1. An orthogonal partial least-squares discrimi-
nant analysis (OPLS-DA) plot was generated to verify the quality
(SFig. 1A). The heatmap of the metabolites is shown in Fig. 1A. The
details of the top DMs are listed in Fig. 1B. Mapping to KEGG
pathways identified differential metabolic pathways (SFig. 1B), and
FAs attracted our attention among the DMs. The total amount of
FAs was significantly higher in GBM samples, and the principal
components differed between GBM and normal brain samples
(Fig. 1B). We next measured the total FA content in 112 GBM and
10 normal brain samples, and the clinical features of the GBMs are
detailed in Supplementary Table 1. FAs accumulated in GBMs and
predicted poor outcome (Fig. 1C, D; ***p < 0.001). We next
collected neural stem cells (NSCs) and glioma stem cells (GSCs)
and subjected them to LC‒MS analysis to measure the FA content.
The FA content was higher in GSCs than in NSCs (Fig. 1E;
***p < 0.001). We next detected the amounts of lipid droplets in
the different cells using the BODIPY™ FL NHS detection probe.
GSCs contained greater amounts of FAs and detected lipid
droplets (Fig. 1F, G; ***p < 0.001).

Identification of the upstream transcription factor by a
CRISPR-Cas9 gRNA library screen
The specific tumour metabolome is determined by the enzymes in
different metabolic processes. Under metabolic stress, specific
transcription factors are induced, the downstream gene cluster is
activated, and finally, the enzyme is activated or suppressed. To
identify potential transcription factors regulating FA metabolism,
we transfected GSC 4121 cells with 112 gRNAs to knock out
specific transcription factors and measured the total FA content in
each cell line (Fig. 2A). The fold change (FC) in each cell line was
then calculated, and FOXM1 was finally identified as one of the
most important FA metabolism regulators (Fig. 2B). We next
collected 4 GBM and paired normal brain samples and subjected
them to immunoblotting and LC‒MS to analyse FOXM1 and FAs.
GBM samples with higher levels of FOXM1 contained greater
amounts of FAs (Fig. 2C; ***p < 0.001). We next determined the
relative FOXM1 expression levels and FA contents in a large-scale
cohort, and performed regression analysis to detect correlations
(Fig. 2D; ***p < 0.001).

FOXM1-mediated FA metabolism promotes the self-renewal of
GSCs
We previously identified FOXM1 as a potential transcription
factor regulating FA metabolism. For further verification, we
established cell lines with stable knockout of FOXM1 and
determined the total amount and the principal components of

FAs (Fig. 3A). The total amount of FAs decreased, and the
components were altered (Fig. 3B; ***p < 0.001). In FOXM1
knockout (K.O.) cells, the amounts of both PUFAs and total FAs
were decreased compared with those in wild-type (WT) cells.
The key PUFAs were also evaluated for verification (Fig. 3C, D;
***p < 0.001). We next treated FOXM1 K.O. cells with exogenous
FAs. The FA content was completely restored, indicating that
the FA uptake ability remained unaffected after FOXM1
knockout (Fig. 3E; ***p < 0.001).

FOXM1-mediated FA metabolism inhibits ferroptosis
The components of FAs and the MUFA/PUFA ratio have been
reported to affect ferroptosis. To verify this observation, we next
treated GSCs with the ferroptosis inducers (1 S,3 R)-RSL3 and
erastin and determined the cell viability and apoptosis rates.
Erastin and (1 S,3 R)-RSL3 impaired the proliferation of GSCs, and
in FOXM1 K.O. cells, ferroptosis was significantly enhanced
compared with that in WT cells (Fig. 4A, B; ***p < 0.001). We next
detected total ROS and lipid ROS levels using BODIPY™ C12.
Treatment with erastin and (1 S,3 R)-RSL3 increased the lipid
peroxidation, and this effect was enhanced in FOXM1 K.O. cells
(Fig. 4C–H; ***p < 0.001).

FOXM1 promotes de novo FA synthesis through regulation of
FASN
To further reveal the mechanism by which FOXM1 regulates FA
metabolism, we collected cells and subjected them to RNA
sequencing (RNA-seq) analysis. KEGG pathway enrichment analy-
sis and gene set enrichment analysis (GSEA) were then performed
(Fig. 5A). De novo FA synthesis was significantly dysregulated in
FOXM1 K.O. cells. Acetyl-CoA is used to synthesize FAs through a
series of enzymatic reactions catalyzed by Acetyl CoA carboxylase
(ACC), FASN and SCD (Fig. 5B). Before we examined the change in
the de novo FA synthesis pathway, we first determined the FA
uptake efficiency using a FA uptake kit and measured the
expression of the key FA transporter CD36. The FA uptake
efficiency and the expression of CD36 did not differ appreciably
between the groups (Fig. 5C, D). We next treated cells with C13-
labelled acetic acid, which is converted into acetyl-CoA, which is
further used for FA synthesis. The FA synthesis efficiency was
decreased in FOXM1 K.O. cells; consistent with this finding, the
expression of the key enzymes, especially FASN, was decreased, as
shown by qRT‒PCR and immunoblotting (Fig. 5E–G; ***p < 0.001).
To determine the sufficiency of FASN for FOXM1-mediated FA
metabolism, we reexpressed FASN in FOXM1 K.O. cells and
measured the total FA content. The FA content was completely
restored. (Fig. 5H; ***p < 0.001).

FOXM1 directly promotes the transcription of SET7
FOXM1 is a well-known transcription factor that directly
regulates the transcription of target genes. We first performed
a ChIP assay using an anti-FOXM1 antibody to determine
whether FOXM1 directly regulates the transcription of FASN (Fig.
6A). We next hypothesized that the decreased expression of
FASN was due to epigenetic repression. We next performed
assay for transposase-accessible chromatin and sequencing
(ATAC sequencing), and the results indicated that in FOXM1
K.O. cells, the chromatin exhibits a more closed conformation,
including at the FASN locus (Fig. 6B). Epigenetic regulation
includes two main processes: DNA methylation and histone
modification. We next performed a co-IP assay using anti-H3 and
anti-H4 antibodies in GSC 4121 cells, followed by quantitative
LC‒MS. A summary statistical analysis was performed to assess
the multiple functions of each site modification. H3K4 mono-
methylation (H3K4me1) was identified as the most significantly
dysregulated modification (Fig. 6C), indicating that the decrease
in FASN expression may be due to the low level of H3K4me1.
We also measured the H3K4me1 protein level for verification
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Fig. 1 FA metabolism is dysregulated in GBM. A A total of 5 GBM and paired normal brain samples were collected and subjected to LC‒MS
metabolomic analysis. The DMs were defined as those with p < 0.05 and VIP > 1. The heatmap of the DMs is presented (P: paratumoral tissue;
T: tumor). B X-axis: details of the FAs; Y-axis: Z score of each DM; z= (x− μ) /σo, where X is the value of each DM in a certain sample, and μ and
σ are the average and the standard deviation in the control group (normal brain tissue). C A total of 112 GBM and 10 normal brain samples
were collected and subjected to LC‒MS analysis, and the relative FA contents were determined. NB normal brain, GBM glioblastoma;
***p < 0.001. D A total of 112 GBM patients were enroled, and the relative FA contents were determined. The patients were divided into two
groups according to the FA content. The mean of the whole cohort was considered the cut-off; patients with FA contents higher than the
mean were considered the FA-high group, while the other patients were considered the FA-low group. E NSCs and 5 patient-derived GSCs
were collected and subjected to LC‒MS analysis. The relative FA contents were determined. ***p < 0.001. F Lipid droplets were detected using
the BODIPY probe, and representative images were acquired by confocal microscopy. The lipid droplets in each cell were quantified (G); scale
bar, 20 μm. ***p < 0.001.
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(Fig. 6D). We next searched the target genes using the following
strategy: we downloaded the ChIP sequencing datasets and
mapped them to the differentially expressed genes (DEGs)
identified by RNA-seq, and we selected histone methyltrans-
ferases for further investigation (Fig. 6E). Only SET7 met all the
criteria, and we then measured the expression of SET7 using
both qRT‒PCR and immunoblotting (Fig. 6F, G; ***p < 0.001). To
determine the exact binding site, we designed 3 primers
targeting 3 promoter regions upstream of SET7 (ENCODE
SCREEN: P1: EH38E2329942, P2: EH38E2329943, P3:
EH38E2329943) and performed ChIP-PCR. The results indicated
that FOXM1 binds to P1 of SET7 and further promotes its
transcription (Fig. 6H; ***p < 0.001). We next transfected a
luciferase reporter plasmid into FOXM1 WT and K.O. cells and
evaluated the transcriptional activity. Based on our identification
of the P1 site, we next established a SET-MUT reporter plasmid
without the P1 site and determined the relative luciferase
activity (Fig. 6I, J; ***p < 0.001).

SET7 and H3K4me1 decrease DNA methylation of the FASN
promoter
We next performed ChIP-qPCR to detect the FASN promoter using
an anti-H3K4me1 antibody for verification (Fig. 7A). To determine
the functional importance of SET7 to H3K4me1 and FASN
expression, we reexpressed SET7 in FOXM1 K.O. cells and treated
cells with exogenous expression of FOXM1 with the SET7-specific
inhibitor PFI-2. H3K4me1 and SET7 were then evaluated using
immunoblotting, and the FA content was measured (Fig. 7B–D;
***p < 0.001). We next performed bisulfite sequencing PCR (BSP).
The representative methylation levels and statistical analysis are
shown in (Fig. 7E, F (***p < 0.001)). As DNA methylation is

mediated mainly through DNMTs, we next examined the
involvement of different DNMTs using a ChIP assay. In FOXM1-
overexpressing (OV) cells, more DNMT1/3B was recruited to the
promoter region of FASN (Fig. 7G, H; ***p < 0.001). We next
collected GBM samples and evaluated the protein levels of
FOXM1, SET7, H3K4me1 and FASN (Fig. 7I). We also determined
the DNA methylation levels in the GBM samples and found that
the promoter of FASN was hypermethylated in FASN-low samples
but hypomethylated in FASN-high samples (Fig. 7J). This pattern
was consistent with the expression patterns of SET7 and
H3K4me1.

DISCUSSION
Fatty acid metabolism in tumor has been intensively explored in
recent years. It is now clear that dysregulation of FAs synthesis
plays important roles in the initiation, progression and drug
resistance in many tumors. Glioma cells reprogram their lipid
metabolism pathway to synthesize FAs de novo for energy
production, membrane synthesis and signalling molecule synth-
esis. Elevated synthesis of FAs increases the MUFA/PUFA ratio and
thus inhibits lethal membrane peroxidation and protects cells [23].
Previous studies reported that overexpression of FASN in glioma
correlated with higher WHO tumour grade and poorer prognosis
[18, 24, 25]. Targeting FASN induces apoptosis and autophagy in
glioma cells and decreases the expression of stemness markers in
GSCs [24, 26]. Nevertheless, the molecular mechanism leading to
the difference of FA metabolism in cancers from normal tissues
still needs to be further illustrated.
In this study, we showed that the FA synthesis pathway was

significantly upregulated in GBM, and the greater amounts of FAs
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Fig. 2 Identification of the upstream transcription factor by a CRISPR-Cas9 gRNA library screen. A Schematic showing the gRNA library
screening process. B Cells transfected with different gRNAs were collected and subjected to LC‒MS analysis to determine relative FA contents.
X-axes: gene names, Y-axes: log2 fold change values. FOXM1 is indicated. C A total of 8 GBM (n= 4) and paired normal brain samples (n= 4)
were collected, FOXM1 expression was determined using an immunoblot assay, and the relative FA content in each sample was determined
(uncropped western blots are details in Original Data File). D A total of 112 GBM samples were collected, and the relative FOXM1 levels and
relative FA contents were determined. Regression analysis was applied to analyse the correlation: R2= 0.386, p < 0.001.
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in GBM tissue and GSCs further verified the activation of this
pathway, consistent with previous studies. A subsequent gRNA
library screen for upstream transcription factors revealed that the
expression of FOXM1 was correlated with the level of FAs, and the
LC‒MS followed by immunoblotting in GBM samples and FOXM1-
KO GSCs ultimately confirmed this correlation. Functional experi-
ments in FOXM1-KO GSCs and mice suggested that FOXM1 could

promote stemness and inhibit ferroptosis through mediation of FA
metabolism. RNA-seq, PCR and immunoblotting results find out
FOXM1 regulates FA synthesis through FASN. Screening out ChIP
assay, RNA-seq and co-IP assay datasets, SET7 was selected as the
downstream regulation molecular of FOXM1. FOXM1 promotes
SET7 transcription, and then promotes histone modification in
FASN locus, finally causing the FAs metabolism enhancement.

Fig. 3 FOXM1-mediated alteration of FA components maintains the self-renewal of GSCs. A GSC 4121 and GSC 3691 cells were transfected
with gRNAs targeting FOXM1, and FOXM1 was detected using immunoblotting (uncropped western blots are details in Original Data File).
B The relative FA contents were determined in cells with the indicated modifications. Error bar represent three independent experiments,
***p < 0.001. C The relative amounts of PUFAs were determined in cells with the indicated modifications. Error bar represent three
independent experiments, ***p < 0.001. D The key components of PUFAs were C18:2, linoelaidate; C20:3, eicosatrienoate; C20:4, arachidonate;
C22:4, docosatetraenoate; and C22:5, docosapentaenoate. Error bar represent three independent experiments, ***p < 0.001. E GSC 4121 and
GSC 3691 cells were treated with exogenous FAs, and the relative FA contents were then determined. Error bar represent three independent
experiments, ***p < 0.001.
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FOXM1 is one of the most frequently overexpressed proteins in
human solid cancers. Several studies have found that FOXM1 level
is upregulated in GSCs by ALKBH5, SATB2 and other molecular to
keep glioma stemness [27, 28]. Few studies have reported the
relationship between ferroptosis and FOXM1, and our study
revealed that FOXM1 inhibits ferroptosis by increasing FA
synthesis, reducing the accumulation of ROS and lipid peroxida-
tion products in glioma cells.

As the 2010 Molecule of the Year, FOXM1 was considered a
promising target for cancer therapy, yet the results of few
studies have been clinically translated due to the insufficient
understanding of the role of FOXM1 in tumours. Increasing
evidence has shown that FOXM1 plays a central role in FA
metabolism, and Fan et al. identified a set of lipid metabolism
genes, including FASN, that might be regulated by the
FOXO3-FOXM1 axis [29, 30]. However, few studies have

Fig. 4 FOXM1-mediated FA metabolism inhibits ferroptosis in GBM cells. A Cells were treated with the ferroptosis inducer (1 S,3 R)-RSL3,
and the relative cell viability was evaluated. Error bar represent three independent experiments, ***p < 0.001. B Viability of each cell line with
the indicated modifications. Error bar represent three independent experiments, ***p < 0.001. C, D The total ROS level was measured in each
cell line with the indicated modifications. Error bar represent three independent experiments, ***p < 0.001. E, F The indicated cells were
treated with a ferroptosis inducer and incubated with BODIPY C12 to detect the nonoxidized/oxidized lipids; scale bar, 20 μm. G, H Lipid ROS
levels in cells with the indicated modifications. Error bar represent three independent experiments, ***p < 0.001.
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revealed how FOXM1 mediates the dysregulation of FA
synthesis. Though FOXM1 is a transcription factor, FASN locus
was not found in our ChIP sequencing dataset, and our
experimental results indicated that FOXM1 regulated FASN
epigenetically via SET7.
The specific mechanism by which FOXM1 reprograms the

synthesis of FAs has not yet been reported. The present study
showed a synergistic relationship among the expression of
FOXM1, FA synthesis, and the expression of FASN, whose
sufficiency was then evaluated. Collectively, our findings
suggest that FOXM1 regulates FA synthesis through FASN.

METHODS
LC‒MS metabolite analysis
Metabolites were identified by mass accuracy (<30 ppm) and MS/MS data,
which were matched with data in HMDB (http://www.hmdb.ca),MassBank
(http://www.massbank.jp/), LipidMaps (http://www.lipidmaps.org), mzCloud
(https://www.mzcloud.org) and KEGG (http://www.genome.jp/kegg/).
Ropls software was used for all multivariate data analyses and

modelling. After scaling the data, models were built by principal
component analysis (PCA), partial least-squares discriminant analysis
(PLS-DA) and OPLS-DA.
Metabolic profiles can be visualized as score plots, where each point

represents a sample. OPLS-DA allows the identification of discriminating

Fig. 5 FOXM1 promotes de novo FA synthesis. A RNA-seq and GSEA were performed, and the enrichment plot of de novo FA synthesis is
presented. B The graphical schematic of de novo FA synthesis. C The relative FA uptake rate was measured using a FA uptake kit, ns, Error bar
represent three independent experiments, not significant. D The expression of the key FA transporter CD36 was measured using
immunoblotting in cells with the indicated modifications (uncropped western blots are details in Original Data File). E Cells were treated with
C13-labelled acetic acid, and C13-labelled FAs were then detected. The relative amount of de novo-synthesized FAs was calculated. Error bar
represent three independent experiments, ***p < 0.001. F The relative RNA levels of the enzymes involved in the de novo synthesis of FA were
measured. Error bar represent three independent experiments, ***p < 0.001. G ACC and FASN were evaluated using immunoblotting
(uncropped western blots are details in Original Data File). H FOXM1 K.O. cells were transfected with a FASN overexpression plasmid, and the
relative FA content was then measured. Error bar represent three independent experiments, ***, p < 0.001.
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metabolites using the VIP. The p-value, VIP value determined by OPLS-DA,
and fold change value were applied to discover the contributing variables
for classification. Finally, metabolites with a p-value of <0.05 and VIP value
of >1 were considered statistically significant metabolites. The DMs were
subjected to pathway analysis with MetaboAnalyst, which combines the

results from powerful pathway enrichment analysis with pathway topology
analysis. The metabolites identified by metabolomic analysis were then
mapped to KEGG pathways for biological interpretation of higher-level
systemic functions. The metabolites and corresponding pathways were
visualized using the KEGG Mapper tool.
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GBM samples
Human GBM tumour tissues were obtained from the surgical suite in the
Department of Neurosurgery, The 1st Affiliated Hospital of Sun Yat-sen
University, after confirmation by board-certified neuropathologists. Tissues
were obtained after patients provided informed written consent under a
protocol approved by the institution’s Institutional Review Board.

Cell lines and cell culture
GSC 456, GSC 4121, and GSC 3691 cells were gifts from Dr Jeremy. N. Rich at the
University of California, San Diego, CA, USA. The GSC 19 and GSC 23 cell lines
were generated through standard procedures. GSCs were cultured as glioma
tumour spheres in DMEM/F12 medium supplemented with B27, bFGF and EGF
(20 ng/ml each). hNSCs (primary) were obtained from Gibco (TM A15654) and
cultured with StemPro® NSC SFM (cat. no. A10509-01) supplemented with
2mM GlutaMAX™-I Supplement (cat. no. 35050), 6 U/ml heparin (Sigma, cat. no.
H3149), and 200 μM ascorbic acid (Sigma, cat. no. A8960).

Lipid droplets staining and quantification
The staining and quantification of lipid droplets was performed according
to the protocol of BODIPY™ FL NHS(D2184). The reaction reagent was
dissolved into DMSO at 10mg/mL, and 1.5 M hydroxylamine with PH 8.5
was used as stop reagent. Cells diluted into the same concentration were
rinsed with PBS, and then fixed in 4% Paraformaldehyde (PFA) for 30min.
Cells were then dyed with reaction reagent for 1 h and then stop reagent
was added. Confocal microscope was then utilized for observation and
quantification of lipid droplets.

Limiting dilution assay (LDA)
An in vitro LDA was performed according to the LDA protocol. In brief,
GSCs and NSCs were seeded into 96-well plates at a different densities
(cells per well), and the frequency of glioma spheres in each well was
determined. The glioma sphere formation frequency was calculated using
ELDA software (http://bioinf.wehi.edu.au/software/elda/).

Animal study
Athymic (Ncr nu/nu) mice at 6–8 weeks of age were purchased from
Nanjing University Farms. Five mice were grouped in each cage. All animal
experiments were conducted under Institutional Animal Care and Use
Committee (IACUC)-approved protocols at Sun Yat-sen University in
accordance with US NIH and institutional guidelines.

Apoptosis assay
Cells were treated with a ferroptosis inducer and subjected to apoptosis
assays following the manufacturer’s instructions for the assay kit
(Invitrogen™V35113), which detects the externalization of phosphatidyl-
serine in apoptotic cells by flow cytometry using recombinant annexin V
conjugated to red laser-excited allophycocyanin and detects dead cells
using a green nucleic acid stain. In brief, apoptotic cells are detected by
annexin V binding to externalized phosphatidylserine, and late apoptotic
and necrotic cells have compromised membranes that allow the green
stain access to cellular nucleic acids.

RNA-seq and GSEA
Total RNA was extracted using a TRIzol reagent kit (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s protocol. After digestion with

RNase R, RNA was purified with a RNeasy MinElute Cleanup Kit (Qiagen,
Venlo, Netherlands). After removing rRNA, RNA was reverse transcribed
into cDNA with random primers. Next, the cDNA fragments were purified
with VAHTSTM DNA Clean Beads, end repaired, poly(A) tailed, and ligated
to Illumina sequencing adapters. GSEA was performed by mapping the
DEGs to KEGG pathways and GO terms.

ATAC sequencing
The ATAC-seq was performed following a standard protocol. Briefly, cells
were collected at the same time points and conditions as for the RNA-seq
datasets, washed with PBS and treated with accutase. Cells (n= 1 × 106)
were used to perform the ATAC-seq libraries according to manufacturer’s
instructions (Nextera DNA sample preparation kit, Illumina) and size
selection (200–800 bp) was performed using Ampure XP beads (Beckman)
before next-generation sequencing.

Quantitative LC‒MS
Total protein was collected and separated by 12% SDS–PAGE, and the
band at ~25 kDa was excised and digested. The resulting peptides were
analysed by a QExactive mass spectrometer coupled to a nano-LC system
(AdvanceLC, Michrom Inc.) The acquired spectra were analysed with the
SEQUEST HT algorithm. The methylation levels at different sites were
quantified.

Luciferase activity reporter system
The Renilla luciferase (Rluc) and firefly luciferase (Luc) sequences were
amplified from the psiCheck 2 vector (Promega, USA). The Rluc sequence
was inserted upstream of the promoter sequence, and Luc was inserted
downstream of the promoter sequence. The promoter sequence, along
with its 3′ UTR, was amplified and inserted between the Rluc and Luc
sequences. Relative activity was determined by normalization to Rluc
activity and the activity in control cells.

qRT‒PCR
Total RNA was extracted with a PureLink RNA Mini Kit (Thermo Fisher
Scientific). After reverse transcription, cDNA was purified and subjected to
real-time PCR with SYBR Select Master Mix (Thermo Fisher Scientific) in a
StepOne Plus real-time PCR system (Applied Biosystems). Target mRNA
expression in each sample was normalized to β-actin mRNA expression.

Bisulfite sequencing PCR
We extracted genomic DNA and accomplished bisulfite conversion from
4121 and 3691 GSC cell lines using EpiTect Fast DNA Bisulfite Kit (QIAGEN).
FASN BSP primers were designed for PCR amplification. Then, the PCR
products were purified and cloned into pTG19-T Vector. We chose ten
subclones from each cell line with three replicated experiments for further
sequencing. The number of CpG methylated loci/detected CpG loci was
calculated as the methylation level.

Immunoblot analysis
Equal amounts of protein were loaded into each well of 12% SDS–PAGE
gels. After separation and transfer to membranes, the membranes were
blocked with 5% BSA and incubated with the corresponding primary
antibody at 4 °C overnight. After incubation with the secondary antibody,
the bands were visualized with an ECL kit.

Fig. 6 FOXM1 directly promotes the transcription of SET7. A A ChIP-PCR assay was performed in GSC 4121 and GSC 3691 cells. B Left,
heatmap of gene peaks in GSC 4121 cells. Right, FASN peaks in GSC 4121 cells. C A Co-IP assay was performed in GSC 4121 cells using anti-H3
and anti-H4 antibodies, and histone methylation was detected using LC‒MS analysis. Y-axes: -log10 p-values. Activating and repressive indicate
different functions in epigenetic regulation. D H3K4me1 was detected using immunoblotting in GSC 4121 and GSC 3691 cells (uncropped
western blots are details in Original Data File). E Graphical schematic of the screening strategy and the resulting Venn diagram. F, G The mRNA
and protein levels of SET7 were measured in cells with the indicated modifications (uncropped western blots are details in Original Data File).
Error bar represent three independent experiments, ***p < 0.001. ***p < 0.001. H Graphical schematic of different primers. Relative mRNA
levels were determined using ChIP-PCR (ENCODE SCREEN: P1: EH38E2329942, P2: EH38E2329943, P3: EH38E2329943). I The luciferase reporter
plasmid was transfected into GSC 4121 and GSC 3691 cells. Relative luciferase activity was determined by calculating the Rluc/Luc ratio. Error
bar represent three independent experiments, ***p < 0.001. ***p < 0.001. J A SET-MUT reporter plasmid lacking the binding site P1 was
constructed. SET-WT and SET-MUT were transfected into GSCs, and relative luciferase activity was measured. Error bar represent three
independent experiments, ***p < 0.001. ***p < 0.001.
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Fig. 7 The FOXM1-SET7-H3K4me1 axis maintains FASN expression. A ChIP-PCR was performed using an anti-H3K4me1 antibody to detect
the FASN promoter. B FOXM1 K.O. cells were transfected with a SET7 overexpression plasmid, and FOXM1 OV cells were treated with the SET7-
specific inhibitor PFI-2. The levels of FOXM1, SET7, H3K4me1 and FASN were determined using immunoblotting (uncropped western blots are
details in Original Data File). C, D The relative FA content was measured in cells with the indicated modifications. Error bar represent three
independent experiments, ***p < 0.001. E, F BSP was performed to determine the FASN promoter methylation level. A representative image
and the statistical analysis results are presented. Error bar represent three independent experiments, ***p < 0.001. G, H ChIP was performed to
detect the involvement of DNMT1/DNMT3B. Error bar represent three independent experiments, ***p < 0.001. I The levels of FOXM1, SET7,
H3K4me1 and FASN in GBM samples were determined using immunoblotting (uncropped western blots are details in Original Data File). J The
relative FASN level was determined using qPCR, BSP was then performed to determine the FASN promoter methylation rate, and the
proportion of hypermethylation/hypomethylation was calculated. ***p < 0.001.
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