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Inflammatory bowel diseases (IBDs), including ulcerative colitis, and Crohn’s disease, are intestinal disorders characterized by
chronic relapsing inflammation. A large proportion of patients with IBD will progress to develop colitis-associated colorectal cancer
due to the chronic intestinal inflammation. Biologic agents that target tumour necrosis factor-α, integrin α4β7, and interleukin (IL)
12/23p40 have been more successful than conventional therapies in treating IBD. However, drug intolerance and loss of response
are serious drawbacks of current biologics, necessitating the development of novel drugs that target specific pathways in IBD
pathogenesis. One promising group of candidate molecules are bone morphogenetic proteins (BMPs), members of the TGF-β
family involved in regulating morphogenesis, homeostasis, stemness, and inflammatory responses in the gastrointestinal tract. Also
worth examining are BMP antagonists, major regulators of these proteins. Evidence has shown that BMPs (especially BMP4/6/7) and
BMP antagonists (especially Gremlin1 and follistatin-like protein 1) play essential roles in IBD pathogenesis. In this review, we
provide an updated overview on the involvement of BMPs and BMP antagonists in IBD pathogenesis and in regulating the fate of
intestinal stem cells. We also described the expression patterns of BMPs and BMP antagonists along the intestinal crypt-villus axis.
Lastly, we synthesized available research on negative regulators of BMP signalling. This review summarizes recent developments on
BMPs and BMP antagonists in IBD pathogenesis, which provides novel insights into future therapeutic strategies.
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FACTS

● Inflammatory bowel diseases (IBDs) are intestinal disorders
characterized by chronic relapsing inflammation; novel
biologics or drugs are needed to optimize treatment outcome.

● BMPs can modulate morphogenesis, homeostasis, stem cells
and inflammatory responses in the gastrointestinal tract.

● BMPs and their antagonists have distinct expression patterns
in the villus-crypt axis.

● Recent developments on BMPs and BMP antagonists in IBD
pathogenesis offer novel insights into future therapeutic
strategies.

OPEN QUESTIONS

● What’s the precise function of other BMPs and BMP
antagonists that have not been well studied?

● What’s the specific role of BMPs and BMP antagonists in the
intestinal stem cell niche of IBD patients?

● In addition to the five well-known extracellular BMP antago-
nists, will other negative inhibitors of BMPs play important
roles in IBD as well?

INTRODUCTION
The aetiology of inflammatory bowel diseases (IBDs) involves
susceptibility genes, environmental impacts on the microbiome
and abnormal immune responses [1]. Two common IBDs include
ulcerative colitis (UC) and Crohn’s disease (CD). Chronic inflamma-
tion during IBD increases the risk of developing colitis-associated
colorectal cancer (CAC) [2].
Biologic agents to treat IBDs are more effective than conven-

tional therapy. Common options include anti-tumour necrosis
factor-α (infliximab and adalimumab), anti-integrin α4β7 (vedoli-
zumab), and anti-IL12/23p40 (ustekinumab) agents. Nevertheless,
these compounds have major drawbacks, including drug intoler-
ance among patients [3]. Novel biologics are thus needed to
optimize treatment outcome.
Abnormal bone morphogenetic protein (BMP) signalling and

disruption of intestinal homeostasis are increasingly recognized as
components of IBD pathogenesis. Originally, BMPs were under-
stood only as regulators of bone and cartilage formation, but now
they are also known to modulate morphogenesis, homeostasis,
stem cells, and inflammatory responses in other tissues, including
the gastrointestinal tract [4, 5].
Notable negative regulators of BMP action are BMP antagonists,

which prevent the BMPs from binding to their cognate receptors
at the cell surface [6]. BMP antagonists are characterized by
cysteine-rich domains and are divided into five types based on the
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distance of cysteine residues. The first is the DAN family,
comprising Gremlin (Grem1), sclerostin (SOST), uterine
sensitization-associated gene 1 (USAG-1), Dante (Dte), protein
related to DAN or Cerberus (PRDC/Grem2) and Coco. The other
four types are Noggin (Nog), Chordin (Chrd), follistatin (FST) and
twisted gastrulation (Twsg) [6, 7].
This review summarized current research on BMP signalling in

the intestines, focusing on the roles of BMP2, BMP3, BMP4, BMP6,
BMP7 and BMP9 in intestinal inflammation and IBD pathogenesis.
We also discussed the involvement of BMP antagonists, including
Grem1, SOST, Nog and FST, in IBD. Our third topic of focus was the
involvement of BMPs and BMP antagonists in intestinal stem cell
(ISC) fate. Finally, we covered expression patterns of BMPs and
BMP antagonists along the intestinal crypt-villus axis, while also
highlighting other negative regulators of BMP signalling.

BMP SIGNALLING IN THE INTESTINES
BMP signalling is critical to development, stem cell homeostasis
and intestinal diseases [5, 8]. Enabled through differential
expression and localization of ligands, receptors, and antagonists,
BMP signals exhibit a polarized gradient along the crypt-villus axis,
being highest at the top of the villus [9]. Activities of BMP
signalling in the intestines can be inhibited by a group of
antagonists, including the DAN family members (Grem1 [10], SOST
[11]), Nog [12], Chrd [9], FST [13] and Twsg [14] (Fig. 1).
As dimers, BMPs can bind to two distinct receptor types (I and

II), both with serine/threonine kinase activity at the plasma
membrane [15] (Fig. 1). Type I receptors include activin receptor-
like kinase (ALK)-2, ALK-3 (BMPR-IA), and ALK-6 (BMPR-IB) (Fig. 1).
Type II receptors are further subdivided into three categories: BMP
type II receptor (BMPR-II), activin type II receptor (ActR-II), and
activin type IIB receptors (ActR-IIB) (Fig. 1). Of the 15 BMP types
identified in humans [16], BMP2 [17] and BMP4 [18] are dominant
in the intestines.
BMPs evoke downstream responses via canonical Smad [19]

and non-Smad pathways [20] (Fig. 1). Smad proteins can be
divided into receptor-regulated Smad (R-Smad, Smad1/5/8),
common Smad (Co-Smad, Smad4), and inhibitory Smad (I-Smad,
Smad6/7) [21] (Fig. 1).
The canonical Smad pathway is triggered when extracellular

BMPs bind to a type II receptor, a receptor complex of type II and
type I receptor is formed, leading to the phosphorylation and
activation of type I by type II receptors (Fig. 1). The activated type I
receptor then recruits and phosphorylates downstream Smad
1/5/8 (R-Smad), two of which forms a complex with one Smad4
(Co-Smad; Fig. 1). This Smad complex is transported to the nucleus
and regulates the transcription of downstream inhibitor of DNA-
binding (ID) proteins (ID1 [22], ID2 [23] and ID3 [24]) and inhibitory
Smads (Smad6) [19] (Fig. 1). Significantly, ID proteins are identified
as functional markers for ISCs [22–24]. Smad6/7 (I-Smad) are
inhibitors of Smad1/5/8 phosphorylation and complex formation
between p-Smad1/5/8 and Smad4 [21] (Fig. 1).
The non-Smad signalling pathway is also triggered upon BMPs

binding to receptors. The most notable pathways involve
mitogen-activated protein kinases (MAPK) (p38, c-Jun amino-
terminal kinase (JNK), and extracellular signal-regulated kinases
(ERK1/2)), which activate downstream co-factors and then
regulates target gene expression with Smad [20] (Fig. 1).

ROLE OF BMPS IN IBD PATHOGENESIS
Several studies have shown that BMPs play critical roles in colitis
and IBD pathogenesis. Here, we review the latest research on
BMPs that may serve as potential targets for IBD treatment. BMPs
function via binding to BMP receptors with different forces. BMP2
and BMP4 bind strongly to ALK3 and ALK6, whereas BMP6 and

BMP7 have high affinities for ALK2 but low affinities for ALK6 [5]
(Table 1). BMP9 binds to ALK1 and ALK2 [25] (Table 1).

BMP4
Despite targeting the epithelium, BMP4 is localized in mesench-
ymal cells expressing α-smooth muscle actin [26]. A major
function of BMP4 is mitigating colonic inflammation and
maintaining intestinal homeostasis [26]. Deletion of epithelial
Bmpr1a enhances BMP4 in dextran sodium sulphate (DSS)-
induced colitis, whereas inflammatory cytokines TNF-α and IL-1β
both inhibit BMP4 [26]. Recent research on DSS-induced colitis
found that expression patterns were associated with disease
progression; specifically, BMP4 and Smad4 expression in the crypt
was upregulated during early-stage DSS-induced colitis and
downregulated during the late stage [24]. The disease can be
ameliorated through treatment with exogenous BMP4 recombi-
nant protein, which targets an ID3 inhibitor to increase epithelial
proliferation and maintain Lgr5+ intestinal stem cells [24].
However, transgenic overexpression of BMP4 ligands in the
intestinal crypt-villus axis inhibits proliferation, accelerates term-
inal differentiation, and impairs intestinal regeneration in DSS-
induced colitis [27]. Moreover, BMP4 inhibition in intestinal
stromal cells promotes ISC proliferation and maintenance of
intestinal homeostasis [28]. Thus, multiple factors (e.g., localiza-
tion, concentration, targets) clearly influence whether BMP4 exerts
anti-proliferative or pro-proliferative effects on the intestinal
epithelium. Nevertheless, we can conclude that BMP4 exerts an
anti-inflammatory effect and is critical to ISCs in IBD pathogenesis
(Table 1).

BMP6
BMP6 function as a regulator of hepcidin expression and iron
metabolism [29]. Circulating iron levels modulate BMPs expres-
sion, and lack of BMP6 causes iron overload [30, 31]. Hepcidin and
iron homeostasis participate in the pathogenesis of intestinal
inflammation [32]. Anti-BMP6 reagents attenuate intestinal
inflammation in DSS-induced colitis mice and mitigate IBD
anaemia [33] (Table 1). The mechanism of actions appears to be
interacting with IL-6 expression and downregulating hepcidin
expression [34]. BMP6 thus plays an essential role in the
inflammatory response and iron homeostasis of IBD.
Interestingly, a recent study identified the mechanism of BMP6-

regulated angiogenesis as modulating vascular endothelial
growth factor receptor 2 via Hippo/TAZ signalling [35]. This
finding opens a new arena of research regarding the influence of
BMP6 on angiogenesis, an important pathological characteristic of
IBD that contributes to the disease’s initiation and perpetuation
[36, 37].

BMP7
Previous studies have revealed that although BMP7 has anti-
inflammatory effects, its levels significantly decrease in the acute
phase of TNBS-induced colitis [38, 39]. However, experiments with
rat models of colitis demonstrated the prominence of exogenous
BMP7 in lowering pro-inflammatory cytokine production (espe-
cially IL-6) and thus protecting mucosa [38] (Table 1). In addition,
while BMP7 also decreased significantly in the acute phase among
rats, exogenous BMP7 treatment elevated BMP signalling through
influencing the expression of several BMPs (BMP2 and BMP4),
connective tissue growth factor (CTGF), Nog, and BR-Smad (Smad3
and Smad4) [39].
Importantly, BMP7 expression increased in stenotic intestinal

tissue of Crohn’s disease patients [40]. As an antagonist of TGF-β1,
BMP7 can prevent epithelial-to-mesenchymal transition (EMT) and
induced intestinal fibrosis [41] (Table 1). These findings collectively
show that BMP7 is a promising therapeutic candidate for IBD,
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Fig. 1 BMP signalling in the intestines. Activities of BMP signalling in the intestines can be inhibited by a group of antagonists, including the
DAN family members (Grem1, SOST, Nog, Chrd, FST and Twsg. As dimers, BMPs can bind to two distinct receptor types (I and II), both with
serine/threonine kinase activity at the plasma membrane. The canonical Smad pathway is triggered when extracellular BMPs bind to a type II
receptor, a receptor complex of type II and type I receptor is formed, leading to the phosphorylation and activation of type I by type II
receptors. The activated type I receptor then recruits and phosphorylates downstream Smad1/5/8, two of which forms a complex with one
Smad4. This Smad complex is transported to the nucleus and regulates the transcription of downstream ID1/2/3 and Smad6. Smad6/7 are
inhibitors of Smad1/5/8 phosphorylation and complex formation between p-Smad1/5/8 and Smad4. The non-Smad signalling pathway is also
triggered upon BMPs binding to receptors. The most notable pathways involve MAPK (p38, JNK, ERK1/2), which activate downstream co-
factors and then regulates target gene expression with Smad.
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given its ability to alleviate intestinal inflammation and prevent
intestinal fibrosis.

Other BMPs that may be involved in IBD pathogenesis
BMP2 is expressed in the mature colonocytes of the epithelial
surface of the normal colon and it influences the same cells that
produce in an autocrine manner [17], but its expression increases
significantly during the acute phase of 2,4,6-trinitrobenzene
sulfonic acid (TNBS)-induced colitis [39]. In vitro, BMP2 inhibits
proliferation and induces apoptosis, decreasing the expression of
the cyclin proliferating cell nuclear antigen (PCNA) while increas-
ing caspase 3 and β-catenin expression [17] (Table 1). Additionally,
BMP2 is involved in VEGF-mediated endothelial sprouting through
regulating delta-like canonical Notch ligand 4 (DLL4) [35]. Taken
together, these findings suggest that BMP2 plays a role in the
pathogenesis of TNBS colitis, but the exact mechanism remains
unclear.
BMP3 competes with BMP2 for essential components in TGF-

beta/activin and BMP pathways [42] (Table 1). In colorectal cancer,
BMP3 is frequently inactivated via hypermethylation, and its active
form functions as a tumour suppressor [43]. Methylated BMP3 is
widely acknowledged as a faecal biomarker that can specifically
discriminate between IBD patients with or without colorectal
dysplasia and CAC. In a prospective blinded study carried out by
Kisiel [44], buffered stool-extracted DNA from 19 IBD cases with
dysplasia or CAC and 35 IBD controls without dysplasia or CAC

were analysed; BMP3 showed a high association in stools for
dysplasia and CAC.
Additionally, in a study done by Johnson at a single centre in 2

blinded phases, BMP3 methylation was higher in mucosae and
stool from 29 IBD patients with dysplasia compared to that of 44
matched IBD controls [45].
Recently, in an analysis of faecal samples from 3 independent

studies of 332 patients with IBD, levels of methylated BMP3
demonstrated a high sensitivity and specificity for identification of
colorectal dysplasia and CAC in IBD patients [46].
In conclusion, these studies suggest that BMP3 has the potential

to be a non-invasive faecal biomarker for early detection for
colorectal dysplasia and CAC in IBD patients.
BMP9, also called growth differentiation factor 2, regulates

phosphoinositide-3-kinase (PI3K)/AKT signalling [47, 48] inde-
pendent of Smad proteins. Through upregulating PTEN, BMP9
inhibits PI3K/AKT signalling, inhibiting proliferation and inducing
apoptosis in colon cancer cells [47]. A recent study further
revealed that combining BMP9 with ALK1 inactivates the PI3K/
AKT pathway, suppressing osteosarcoma proliferation and
metastasis [48].
In addition to inhibiting PI3K/AKT signalling, BMP9 activates

multiple MAPKs through phosphorylation [49], including ERK1/2,
p38, and JNK1/2. Therefore, BMP9 crosstalk is associated with
intestinal inflammatory responses and may affect IBD pathogen-
esis (Table 1).

Table 1. Role of BMPs in IBD pathogenesis.

BMPs Binding Function Refs.

BMP2 High affinity with ALK3/BMPRIA
and ALK6/BMPRIB

Inhibit proliferation, induce apoptosis, and mediate angiogenesis in
vitro

[17, 35, 39]

BMP3 / Antagonise BMP2; methylated BMP3 served as a faecal biomarker to
distinguish IBD patients with or without colorectal dysplasia and CAC

[42–44]

BMP4 High affinity with ALK3/BMPRIA
and ALK6/BMPRIB

Exert an anti-inflammatory role and play a critical role in the ISCs in the
pathogenesis of IBD

[24, 26–28]

BMP6 High affinity with ALK2, weakly
with ALK6/BMPRIB, hepcidin

Anti-BMP6 reagents attenuate intestinal inflammation in the DSS-
induced colitis mice and correct the anaemia of IBD

[29–32, 34, 35]

BMP7 High affinity with ALK2, weakly
with ALK6/BMPRIB

Alleviate inflammation in TNBS-induced colitis and prevent intestinal
fibrosis in the process of IBD

[38–41]

BMP9/GDF2 ALK1 and ALK2 BMP9 crosstalk with several pathways is associated with intestinal
inflammatory responses and may impact the pathogenesis of IBD

[47–49]

The binding targets and function of BMP2, BMP3, BMP4, BMP6, BMP7, and BMP9.

Table 2. Role of BMP antagonists in IBD pathogenesis.

BMP antagonists Binding targets Main functions Refs.

Gremlin (Grem1) High affinity with BMP2, BMP4,
and BMP 7

Ectopic epithelial expression of Grem1 can drastically accelerate
intestinal epithelial regeneration; mesenchymal Grem1
promotes intestinal proliferation and regulates aberrant
differentiation of tissue-resident mesenchymal stem cells in UC
colonic mucosa.

[27, 50–53]

Sclerostin (SOST) High affinity with BMP6 and
BMP7 and low affinity with BMP2
and BMP4

Act as the novel biomarkers to predict the presence of axial
joint inflammation in IBD patients

[54–56]

Noggin (Nog) High affinity with BMP2 and
BMP4 and low affinity with BMP7

Nog is involved in the colonic organoid differentiation in
humans and mice; overexpression of Nog in the developing
neurons of increases the ultimate number of enteric neurons
and aggravates intestinal inflammation in the dextran sodium
sulphate (DSS)/2,4,6-trinitrobenzene sulfonic acid (TNBS)-
induced colitis

[17, 18, 39, 59–61]

Follistatin (FST) High affinity with BMP4 and
BMP6 and low affinity with BMP7

Administration with FST promotes tissue repair and alleviates
the severity of DSS colitis, TNBS colitis, and IL-10 gene
deficiency-induced spontaneous colitis; FSTL1 regulates
macrophage polarisation and exacerbates DSS-induced colitis

[63–66]
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ROLE OF BMP ANTAGONISTS IN IBD PATHOGENESIS
The activities of BMPs are inhibited by a family of extracellular
secreted BMP antagonists. Here, we review the latest discoveries
on the role of BMP antagonists in IBD pathogenesis.

Gremlin (Grem1)
Grem1 binds to BMP2, BMP4, and BMP7 with high affinity,
preventing their interaction with BMPRs [50] (Table 2). Because it
is upregulated in human IBD and mouse DSS-induced colitis
tissues [27], targeting the Grem1-BMP pathway has therapeutic
potential for patients with IBD. Cumulative stromal
Grem1 secretion rapidly and continuously inhibits BMP signal-
ling in colonic ulceration or impairment, and ectopic epithelial
Grem1 expression accelerates intestinal epithelial regeneration
[27] (Table 2). Transcriptome profiling of colonic biopsies
revealed that UC patients with a long disease duration (and
thus, higher risk of developing CAC) had significantly lower
Gem1 expression than patients with short disease duration [51].

In UC colonic mucosa, mesenchymal Grem1 expression is
strongly associated with increased proliferation and aberrant
differentiation of tissue-resident mesenchymal stem cells [52]
(Table 2). In addition, aberrant epithelial Grem1 expression
contributes to colonic tumorigenesis [53]. Overall, the available
data supports Grem1 as a critical BMP antagonist in epithelial
regeneration and differentiation of IBD.

Sclerostin (SOST)
SOST is a high-affinity ligand of BMP6/7 and BMP antagonist,
although it only weakly binds to BMP2/4 [54] (Table 2). The early
diagnosis of IBD-associated spondyloarthritis (SpA/IBD) in IBD
patients is essential; however, there is a lack of serum biomarkers
to demonstrate joint inflammation. In a study done by Luchetti
[55], serum levels of SOST were substantially lower in IBD patients
with axial SpA and were associated with the articular symptoms
compared to that of IBD patients without axial SpA and healthy
controls. Serum levels of SOST and anti-SOST antibodies may serve

Fig. 2 ISC fate is related to expression patterns of BMPs and BMP antagonists along the intestinal crypt-villus axis. In the ISC
compartment, BMP signalling inhibits ISC activation and supports intestinal transit, amplifying cell differentiation into multiple mature cell
lineages. Through inhibiting Wnt/β-catenin pathways, BMP signalling suppresses ISC self-renewal. Importantly, epithelial BMP signalling
directly restricts Lgr5+ stem cells via Smad-mediated transcriptional inhibition of multiple signature ISC genes, independent of Wnt signalling.
BMPs and their antagonists have distinct expression patterns in the villus-crypt axis. BMPs, including BMP2/4/7 originate from stromal cells
below the epithelium and are highly expressed in the upper crypts before gradually dispersing to the bottom crypts. The intestinal expression
patterns of BMP receptors (e.g., BMPr1a, BMPR2) and Smad proteins (e.g., Smad7, phosphorylated (p)-Smad1/5/8) also have a gradient
distribution pattern along the crypt-villus axis. In contrast, BMP antagonists Grem1, Grem2, Chrdl1 and Nog are highly expressed at the
bottom of the crypt and barely expressed in the villus. These proteins are secreted from mesenchyme-derived tissue (myofibroblasts and
smooth muscle cells) and make contributions to the ISC niche via activating Wnt-beta-catenin signalling and suppressing intestinal
differentiation.
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as novel potential biomarkers to predict the presence of axial joint
inflammation in IBD patients [55, 56] (Table 2).

Noggin
The glycoprotein Nog is a BMP antagonist with high affinity for
BMP2/4 and low affinity for BMP7 [57, 58], expressed in mature
colonic epithelial cells [17] (Table 2). Treatment of mice with
recombinant Nog inhibits proliferation and apoptosis [17]. In both
humans and mice, Nog is implicated in colonic organoid
differentiation [59] (Table 2). Indeed, Nog-transgenic mice exhibit
numerous ectopic crypt villus units, suggesting that inactivation of
BMP signalling facilitates de novo crypt formation [18].
Nog expression is elevated in the acute stage of experimental

IBD models and decreases significantly with BMP7 therapy [39].
Nog’s effects may be related to the enteric nervous system, which
has also been implicated in IBD given its role in coordinating
digestive processes and gastrointestinal homeostasis [60]. Nog
overexpression in developing neurons of transgenic mice
increased the number of enteric neurons and significantly
worsened intestinal inflammation in DSS-/TNBS-induced colitis
[61] (Table 2).

Follistatin
FST is a single-chain glycosylated protein that binds and
neutralizes BMPs [62]. Studies have found that FST has high
affinity for BMP 4/6, but low affinity for BMP7 [63] (Table 2). In
mouse TNBS-induced colitis models, FST administration markedly
increased the mice survival rate and decrease plasma IL-6 levels
[64]. FST treatment also promotes tissue repair and alleviates the
severity of DSS colitis, TNBS colitis, and IL-10 gene deficiency-
induced spontaneous colitis [64] (Table 2).
The pro-inflammatory cytokine follistatin-like protein 1 (FSTL1)

is a member of the FST class that is upregulated in active colitis of
human and mice [65]. Serum FSTL1 levels were found to be
extremely higher in UC patients than in normal controls [66].
Importantly, FSTL1 greatly enhances the production of other

inflammatory cytokines through facilitating M1 pro-inflammatory
polarization and inhibiting M2 anti-inflammatory polarization of
macrophages; these activities then serve to aggravate DSS-
induced colitis [65] (Table 2).

ISC FATE IS RELATED TO EXPRESSION PATTERNS OF BMPS
AND BMP ANTAGONISTS ALONG THE INTESTINAL CRYPT-
VILLUS AXIS
The intestinal epithelium contains multiple cell types and is
renewed every 4–5 days [67]. The self-renewal and differentiation
of ISCs maintains intestinal homeostasis, while the ISCs themselves
are regulated by a unique niche environment [68]. Multiple
pathways modulate stemness within the ISC niche, including the
BMP, Wnt and Hh pathways [69]. In the ISC compartment, BMP
signalling inhibits ISC activation and supports intestinal transit,
amplifying cell differentiation into multiple mature cell lineages
[70, 71] (Fig. 2). Through inhibiting Wnt/β-catenin pathways, BMP
signalling suppresses ISC self-renewal [72] (Fig. 2). Importantly,
epithelial BMP signalling directly restricts Lgr5+ stem cells via
Smad-mediated transcriptional inhibition of multiple signature ISC
genes (e.g., Lgr5, Sox9 and Tnfrsf19); this inhibition occurs
independent of Wnt signalling [73] (Fig. 2).
BMPs and their antagonists have distinct expression patterns in

the villus-crypt axis. BMPs, including BMP2/4/7 originate from
stromal cells below the epithelium and are highly expressed in the
upper crypts before gradually dispersing to the bottom crypts [9,
71] (Fig. 2). The intestinal expression patterns of BMP receptors
(e.g., BMPr1a [72], BMPR2 [9]) and Smad proteins (e.g., Smad7 [9],
phosphorylated (p)-Smad 1/5/8 [72]) also have a gradient
distribution pattern along the crypt-villus axis (Fig. 2). BMPr1a
and P-Smad1/5/8 are express in ISCs [72]. In contrast, BMP
antagonists Grem1, Grem2, Chrdl1, and Nog are highly expressed
at the bottom of the crypt and barely expressed in the villus
(Fig. 2). These proteins are secreted frommesenchyme-derived tissue
(myofibroblasts and smooth muscle cells) and make contributions to

Table 3. Negative regulators of BMP signalling.

Localisation Types Classification Name Function Refs.

Extracellular
matrix

BMP antagonists 1) The Dan family Grem1 Prevent BMP signalling by binding
BMPs extracellularly

[9–14]

SOST

USAG-1

Dte

PRDC/Grem2

2) Noggin Nog

3) Chordin Chrd

4) Follistatin FST

5) Twisted
gastrulation

Twsg

Plasma
membrane

Nonsignalling BMP
pseudoreceptors

BAMBI Block BMPs through interactions
with BMPRIA and BMPRIB

[74]

Cytoplasm BMPR inhibitor FKBP12 Suppress BMPRI/ALK2
phosphorylation

[75]

Inhibitory-Smads Smad6/7 Repression of the formation and
activation of Smads

[21]

MicroRNAs MiR-885-3p Silencing of BMP components [76]

Smad-binding protein Ski and Tob Directly binds with BMP-specific
Smad1/5 and Smad4 and interrupts
BMP signalling

[77, 78]

Ubiquitination and
degradation of Smads

Smurf1 and 2 Ubiquitinate and degrade Smad1/5 [79, 80]

Nucleus Methylation or
hypermethylation

Methylated
BMPs

Downregulate BMPs via gene
methylation or hypermethylation

[81]
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the ISC niche via activating Wnt-beta-catenin signalling and
suppressing intestinal differentiation [9, 71]. Further studies are
clearly necessary to expand on the role of BMP antagonists in the ISC
niche of IBD patients, as the results should offer novel insights into
future therapeutic strategies.

OTHER NEGATIVE REGULATORS OF BMP SIGNALLING
In addition to the five well-known extracellular BMP antagonists
(Table 3), other mechanisms can suppress BMP signalling. In the
plasma membrane, non-signalling BMP pseudoreceptors, like BMP
and activin membrane-bound inhibitor (BAMBI), block BMPs
through interactions with BMPRIA and BMPRIB [74] (Table 3). In
the cytoplasm, BMP activity can be blocked by numerous
mechanisms. First, BMPRI/ALK2 phosphorylation can be sup-
pressed by FK-binding protein-12 (FKBP12) [75], while I-Smads
(Smad6/7) can repress Smad formation and activation [21] (Table
3). MicroRNA silencing of BMP components (such as disruption of
BMPR1A by miR-885-3p [76]), direct binding with BMP-specific
Smad1/5 and Smad4, and interruption of BMP signalling by Smad-
binding proteins Ski [77] and transducer of Erb B-2 (Tob) [78] are
other documented mechanisms (Table 3). Finally, BMP activity is
inhibited through Smad1/5 ubiquitination and degradation by
Smad-specific E3-ubiquitin ligases, including Smad ubiquitination
regulatory factor 1 (Smurf1) [79] and Smurf 2 [80] (Table 3). In the
nucleus, methylation or hypermethylation are the mechanisms of
BMP downregulation [81] (Table 3).
Clearly, BMP signalling is under a complex regulatory system in

both extracellular and intracellular spaces. However, further
research is needed to uncover exactly how these negative
regulators of BMPs function in IBD.

DISCUSSION
Originally knowns as regulator of bone and cartilage formation,
BMPs can also modulate morphogenesis, homeostasis, stem cells,
and inflammatory responses in the gastrointestinal tract. Notable
BMP antagonists are divided into five types. The first is the DAN
family, comprising Gremlin (Grem1), sclerostin (SOST), uterine
sensitization-associated gene 1 (USAG-1), Dante (Dte), protein
related to DAN or Cerberus (PRDC/Grem2) and Coco. The other
four types are Noggin (Nog), Chordin (Chrd), follistatin (FST) and
twisted gastrulation (Twsg). Abnormal BMP signalling and
disruption of intestinal homeostasis are increasingly recognized
as components of IBD pathogenesis.
This review highlights new insight into the role of BMPs and

BMP antagonists in IBD pathogenesis. In addition, available
research strongly suggests that the BMP signalling pathway has
potential as a therapeutic target or novel biomarker for IBD/CAC.
Importantly, BMP4, BMP6 and BMP7 have been studied to play
essential roles in IBD. BMP4 exerts an anti- inflammatory role and
plays a critical role in the ISCs in the pathogenesis of IBD; Anti-
BMP6 reagents attenuate intestinal inflammation in the DSS-
induced colitis mice and correct the anaemia of IBD; BMP7
alleviates inflammation in TNBS-induced colitis and prevent
intestinal fibrosis in the process of IBD. Methylated BMP3 has
been suggested as a potential biomarker in stool DNA surveillance
testing for CAC surveillance in IBD patients. Regarding BMP
antagonists, Grem1, SOST, Nog and FST/FSTL1 have been reported
to involve in IBD pathogenesis or serve as biomarkers in IBD
patients. For instance, ectopic epithelial expression of Grem1 can
dramatically accelerates the intestinal epithelial regeneration;
Mesenchymal Grem1 promotes intestinal proliferation and reg-
ulates aberrant differentiation of tissue-resident mesenchymal
stem cells in UC colonic mucosa; SOST acts as the novel
biomarkers to predict the presence of axial joint inflammation in
IBD patients; Nog is involved in the colonic organoid differentia-
tion of human and mice; Overexpression of Nog in the developing

neurons of increases the ultimate number of enteric neurons and
aggravates intestinal inflammation in the DSS-/TNBS-induced
colitis; Administration with FST promotes tissue repair and
alleviates the severity of DSS colitis, TNBS colitis and IL-10 gene
deficiency-induced spontaneous colitis; FSTL1 regulates macro-
phage polarization and exacerbates DSS -induced colitis.
However, many unknowns remain. For example, we do not

know how IBD pathological processes will be affected by
combined intervention of two or more BMPs and BMP antagonists
with new or optimized function. Beyond the known BMP
antagonists, other negative regulators of BMP signalling and their
involvement in intestinal inflammation or colitis remain under-
studied. Even within BMPs and BMP antagonists, numerous
members of both groups are poorly understood, particularly with
respect to intestinal inflammation or IBD. BMP3 and SOST are
potential biomarkers for IBD with dysplasia or CAC and axial SpA/
IBD, respectively; however, other BMP-relevant molecules may
also have the potential to be novel biomarkers in IBD patients.
Current IBD treatment biologics mainly include anti-tumour

necrosis factor-α (infliximab and adalimumab), anti-integrin α4β7
(vedolizumab), and anti-IL12/23p40 (ustekinumab) agents. Addi-
tionally, there are emerging IBD treatment biological agents that
have achieved great clinical efficacy, including JAK1/3 inhibitors
and anti-IL6 agents [82]. In this review, we concluded that anti-
BMP6 reagents, exogenous BMP7 and FST all have impacts on
decreasing IBD-associated pro-inflammatory cytokines, especially
IL-6 which attenuates DSS-induced mice colitis. Stem cell
transplantation has shown favourable effects in IBD clinical trials
[83]. The intestinal organoid therapy for UC is now under
estimated in human clinical trial in Japan and is progressing well
[84]. Therefore, regulating the ISCs is also a potential therapeutic
approach to IBD treatment. BMP4 and Grem1 were revealed to
regulate the ISC function, which suggests BMP signalling is critical
to the regulation of ISC fate [72, 73]. A worthwhile direction of
research is exploring the impact of modulating BMP signalling on
intestinal organoid cultures and mesenchymal stem cell treat-
ments for IBD. These data highlight the significance of conducting
BMP-related research and the potential contribution to the clinical
treatment of IBD. As demand for novel IBD treatments increases,
targeting BMP signalling to manipulate the regulation of multiple
cell types will help to accelerate the development of additional
therapeutic options.
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