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Lipid droplets (LDs) are the organelles for storing neutral lipids, which are broken down when energy is insufficient. It has been
suggested that excessive accumulation of LDs can affect cellular function, which is important to coordinate homeostasis of lipids in
vivo. Lysosomes play an important role in the degradation of lipids, and the process of selective autophagy of LDs through
lysosomes is known as lipophagy. Dysregulation of lipid metabolism has recently been associated with a variety of central nervous
system (CNS) diseases, but the specific regulatory mechanisms of lipophagy in these diseases remain to be elucidated. This review
summarizes various forms of lipophagy and discusses the role that lipophagy plays in the development of CNS diseases in order to
reveal the related mechanisms and potential therapeutic targets for these diseases.
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FACTS

● There are various diseases of the CNS, with complex
pathogenesis and difficult treatment.

● Expression of key genes involved in lipophagy regulation in
the CNS.

● Improving the prognosis of CNS diseases by regulating
lipophagy.

OPEN QUESTIONS

● What is the difference between the regulatory mechanism of
lipophagy in the central and peripheral systems?

● What are the specific regulatory mechanisms for lipophagy in
the CNS?

● Lipophagy regulatory targets in different neurological
diseases.

INTRODUCTION
Autophagy is the process of transferring specific substrates from
the cytoplasm to vesicles or lysosomes for degradation and re-
circulation. Autophagy also plays a key role in maintaining
cellular homeostasis and causing stress and inflammation in
tissues [1, 2]. Lipid droplets (LDs) have recently been found to
have an intimate association with autophagy. Indeed, LDs can be
selectively catabolized through autophagy. In this way, fatty acids
(FAs) enhance cellular energy levels [3]. These findings provide a
new perspective on the regulation mechanisms of lipid
metabolism.

The dysregulation of lipid metabolism has been associated with
a variety of central nervous system (CNS) diseases, accompanied
by abnormal lipid accumulation with the formation of LDs [4].
Previous studies suggest that the dysfunction of lysosomes and
autophagy possibly plays a role in the development of some
neurodegenerative diseases [5, 6], suggesting the process of
selective phagocytosis of lipids by lysosomes could be involved in
the development of CNS diseases.
Lipophagy refers to the process of selective autophagy of LDs

through lysosomes. In this cellular process, LDs are degraded
through the lysosomal degradative pathway. Although dysregula-
tion of lipid metabolism is associated with a variety of CNS
diseases, the specific regulatory mechanisms of lipophagy in these
diseases remain unclear. In this review, we summarize various
forms of lipophagy and further elucidate the importance of
lipophagy in the development of CNS diseases to reveal the
related mechanisms and potential therapeutic targets for these
diseases.

LIPID DROPLETS
The structure of LDs
LDs are spherical organelles with multiple proteins on the surface.
LDs consist of a hydrophobic core of neutral lipids (e.g.,
triacylglycerols (TAG) and cholesteryl esters (CE)), enclosed within
a phospholipid monolayer. A representative example of a class I
protein is spatacsin, which has been suggested to be involved in
the regulation of neurodegeneration [7, 8].
Class II proteins enter the LD surface from the cytoplasm,

binding through the amphiphilic helices or other hydrophobic
structural domains. One of the most representative members of
class II proteins is the perilipin (Plin) family (i.e., Plins1–5). They are
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involved in the process of LDs movement and signal exchange
between organelles, which protect LDs from lipase solubilization.
Therefore, Plins can be considered as key factors in the regulation
of LDs. Within the Plin family, Plin2, Plin3, and Plin5 are expressed
in the human brain, whereas Plin1 and Plin4 are rarely expressed
in the CNS [9]. The upregulation of Plin2 expression has been
observed in neurodegenerative diseases [9, 10]. In Parkinson’s
disease, Plin2 synergizes with α-synuclein (α-Syn), a membrane on
the surface of LDs, inhibiting enzymatic lipolysis and promoting
the deposition of LDs in the brain [11]. Meanwhile, the expression
of Plin3 is enhanced in astrocytes, possibly related to the
recruitment of LDs. Furthermore, Plin5 is expressed in other types
of cells, such as oligodendrocytes [9].

The biogenesis of LDs in the CNS
Based on previous findings that the enzymes catalyzing TAG and
CE biosynthesis are localized in the Endoplasmic reticulum (ER),
the ER has been suggested to be the organelle where LDs are
synthesized [12, 13]. FAs are normally transported to the hepatic
ER and finally secreted as VLDL or stored as LDs [14, 15]. The
process of LD de novo synthesis can be divided into three main
steps: (i) nucleation, (ii) growth, and (iii) budding. With the
accumulation of TAG and CE, an oil lens structure is formed
between the two leaflets of the ER membrane [16, 17]. Afterwards,
the small LDs diffuse and fuse with the large LDs. Finally, the LDs
sprout out of the ER membrane. The resident protein family
BSCL2/seipin was found to be involved in targeted LDs formation
[12]. Seipin is a transmembrane protein at the ER-LDs junction,
which is also an important structure for LDs formation. Down-
regulation of seipin significantly increases the level of TAG and
aggregation of small LDs [18]. A mutation within seipin might lead
to the abnormality of LDs in both shape and number [19, 20].
Importantly, when colocalizing with LC3, seipin has also been
associated with autophagy [21]. A mutation within seipin could
induce abnormal vesicle generation and eventually affect
autophagy [21]. It has been reported that seipin is highly
expressed in adult mouse hippocampal CA1 pyramidal cells
[22, 23]. The knockdown of seipin in a mouse AD model could
inhibit autophagy through the mTOR pathway and increases tau

protein aggregation [22]. Therefore, knockdown of neuron-specific
seipin in mice induces deterioration in spatial cognition and
possibly leads to a variety of neurological disorders [23, 24].
In a healthy state, only a small amount of LDs are visible in the

brain, while aging, oxidative stress and various of neurodegen-
erative diseases could induce a large accumulation of LDs in the
brain, especially in glial cells, including astrocytes, microglia, and
oligodendrocytes [25]. Conversely, LDs are rarely gathered in
neurons, possibly because mitochondria cannot generate enough
energy through β-oxidation. Liu et al. [26] proposed the lactate
shuttle mechanisms in neuron-astroglial cells. Under pathological
conditions, especially in the presence of cellular mitochondrial
dysfunction and elevation of reactive oxygen species (ROS),
circulating blood glucose is taken up by the glial cells and
converted to lactate [26]. Lactate is then transported to neurons
via the monocarboxylate transporter protein (MCT) and converted
to FAs. Rather than storing these FAs, neurons excrete them into
glial cells with APOE-positive lipid particles or fatty acid-associated
transporter proteins (FATP) [26–28]. FAs entering glial cells are
then directed to ER for esterification. Diacylglycerol acyltransferase
(DGAT) 1 and 2 catalyze the reaction of free FAs to TG. Cholesterol
acyltransferase 1/sterol O-acyltransferase 1 (ACAT1/SOAT1) is
responsible for CE esterification [14, 16]. Nevertheless, APOEε4 (a
specific genetic variant) disrupts FA metabolism coupled between
neurons and astrocytes [26]. For PD patients, LDs appear to
relocate between the neurons and glial cells [29]. This pattern
indicates the significance of maintaining lipid homeostasis. The
structure of LDs and biological processes in the CNS are presented
in Fig. 1.

Function of LDs
LDs have traditionally been considered as sites for resident neutral
lipids. During starvation or cell growth, FAs in LDs can be
catabolized by lipolytic or lipophagic pathways to allow for cell
membrane expansion or biosynthesis of other lipid species,
subsequently, participate in β-oxidation to provide metabolic
energy [30]. LDs have been re-recognized as being involved in
lipid metabolism, protein storage, and signaling regulation [31].
Interestingly, the number of LDs increases during prolonged

Fig. 1 Biogenesis of LDs in general glial cells. During oxidative stress, glial cells take in glucose from the blood and turn glucose into lactate.
Lactate is subsequently transported to neurons and converted into FAs. The process of LD de novo synthesis is divided into three main steps:
(i) nucleation, (ii) growth, and (iii) budding. Firstly, an oil lens structure forms between two lipid monolayers of the ER, limiting membrane by
ER resident proteins such as BSCL2/seipin, which is the key step of nucleation. Afterwards, small-volume LDs diffuse and fuse with the large
ones. Finally, LDs sprout out of the ER membrane.
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nutrient deprivation or under oxidative stress, possibly due to the
prevention of lipotoxicity by isolating free FAs, such as ceramide,
acylcarnitine, and diacylglycerol [32]. LDs are then degraded by
organelle autophagy, which might provide a platform for lipid
buffering [32]. It is worth noting that LDs have recently been
suggested to be the first line of defense against bacterial invasion
[33]. When dangerous bacteria enter cells, immune proteins on
LDs (such as viperin, IGTP, IIGP1, TGTP1, and CAMP, etc.) are
activated immediately to kill pathogens in a synergistic manner.
LDs also connect with the membrane contact sites of other
organelles. This is of great importance for maintaining lipid
metabolic homeostasis and achieving energy homeostasis. Apart
from interacting with the ER and promoting production of LDs
[34]. LDs also interact with mitochondria in a Plin5-dependent
manner. As such, the physical distance reduced between LDs and
the mitochondria which significantly improves the efficiency of
FAs transferred to mitochondria for β oxidation [35].

Catabolism of LDs: lipolysis
Lipolysis refers to the hydrolysis of TG into free FAs and glycerol in
LDs for providing energy or preventing lipotoxicity. Lipolysis is
usually divided into two parts: neutral lipolysis outside the
lysosome and acidic lipolysis inside the lysosome, depending on
the pH value and the organelle where lipolysis takes place. At the
neutral pH, neutral lipase directly acts on LDs located in the
cytoplasm and decomposes TAG and CE stored in LDs. Three
major neutral lipases include (i) ATGL/PNPLA2, (ii) HSL, and (iii)
MGL. ATGL/PNPLA2 is the rate-limiting enzyme that catalyzes the
first step of TG hydrolysis. In the presence of peroxisome
proliferator-activated receptor (PPAR) agonists (e.g., glucocorti-
coids or starvation), the expression of ATGL/PNPLA2 is upregu-
lated. It has been reported that the rapamycin-sensitive complex
(mTORC1) dependent signaling pathway reduces ATGL mRNA
levels, whereas sirt1-mediated deacetylation elevates ATGL
expression by activating FOXO1 and consequently promotes
lipolysis [36, 37]. HSL mainly regulates the process of DAG
degradation, as well as the degradation of other lipids, such as
MAG, cholesteryl esters, and retinyl esters, etc. MGL catalyzes the
hydrolysis of MAG to glycerol [36]. Besides, there is a specific
triglyceride enzyme named DDHD2 that is actively expressed in
the brain and less frequently in peripheral tissues. Knockdown of
DDHD2 in mice could lead to the accumulation of a large amount
of TG in the brain and the formation of LDs in neurons.
Moreover, lipolysis that occurs in lysosomes is mediated by

lipases such as LIPA/LAL (lipase A and lysosomal acid). The
importance of LAL in lipid metabolism has been demonstrated in
both mice and humans. Deletion and mutation of the LIPA gene
could lead to rare genetic diseases such as Wolman disease. As the
function of LAL is completely lost, Wolman disease manifests with
accumulation of a large amount of CE and TG in cells, which could
lead to subsequent tissue damage [38]. Similarly, the function of
LAL only preserves 5–10% in CE storage diseases. This could lead
to a number of clinical manifestations, including hyperlipidemia,
hepatosplenomegaly, premature atherosclerosis, and coronary
artery diseases [38]. In contrast with lipoprotein-associated TAG
that is degraded via early and late endosomal transport to
lysosomes, neutral esters are usually degraded in lysosomes in a
lipophagic manner.

LIPOPHAGY
Lipophagy is a specific form of autophagy in which CE and TAG in
LDs are turned to generate free FAs by activating autophagy-
associated molecules. Recent findings about the colocalization of
autophagy and LD markers further confirm the presence of
lipophagy in lysosomes [4]. Lipophagy consists of three main
processes: (i) microtubule-associated protein 1 light chain 3 (LC3)
recognizes autophagic receptors on LDs, (ii) LC3 and Atg1/ULK1

complex (including Atg1, Atg13, Atg17, etc.) facilitate the
formation of autophagosomes, and (iii) Lipid autophagic vesicles
eventually fuse with multivesicular bodies with intraluminal
vesicles or lysosomes to form autophagic lysosomes that are
finally hydrolyzed in lysosomes by acid lipase [39]. Conversely, the
occurrence of lipophagy can be blocked by the application of
lysosomal inhibitors [40]. Lipophagy is mainly degraded through
macroautophagy, microautophagy, and chaperonin-mediated
autophagy (CMA). The specific regulatory mechanisms of lipo-
phagy in the CNS are summarized in Fig. 2.

Macrolipophagy
Macrolipophagy is a typical type of macroautophagy that refers to
the formation of autophagosomes with double membrane
vesicles to encapsulate intracellular materials and eventually fuse
with lysosomes. Singh et al. [3] reported that LC3 is recruited into
LDs to form a restricted membrane in an autophagy-associated
protein 7 (Atg7)-dependent manner and, subsequently, generates
autophagosome in a phagocytosed bilayer. Finally, a matured
autophagosome fuses with lysosomes and exposes the engulfed
cytoplasmic material to acidic lysosomal hydrolases for degrada-
tion. Therefore, LDs are considered to be degraded via a
macroautophagy-dependent pathway. Interestingly, the autopha-
gosome can only encapsulate small LDs but not large LDs [41]. It
was reported that inhibiting autophagy leads to the accumulation
of small LDs inside the lysosome, and lipolysis can rapidly shrink
large LDs to a diameter that is more suitable for being engulfed by
lipophagic vesicles [41].
SQSTM1/p62 (isolated vesicle 1) is a selective autophagy

receptor, where the ubiquitin-associated (UBA) structural domain
and the LC3 interaction region (LIR) mediate its function [40]. It
was reported that the association of both SQSTM1 and LC3 with
LDs is significantly reduced when Plin1 is knocked down [42],
suggesting that SQSTM1 and LC3 colocalize with the LDs surface
protein Plin1 under ethanol-induced stimulation condition. How-
ever, classical selective autophagy is ubiquitin-dependent, since
ubiquitin signaling on LDs and co-localization of SQSTM1. As Plin1
has previously been reported to be regulated by polyubiquitina-
tion [43], ubiquitinated Plin1 could possibly be a target for
SQSTM1 recognition and promotes macroautophagy. There was
another study reporting that the addition of rapamycin-induced
myoblast lipophagy in a skeletal muscle cell line (L6 myoblasts)
triggers the binding of SQSTM1 to Plin2 on the surface of LDs.
Results of these studies indicate that SQSTM1 engulfs LDs into
autophagosomes via the Plin2 pathway. Co-accumulation of
SQSTM1 and LDs can be observed when lipophagy is inhibited
with bafilomycin A1 or chloroquine by preventing the fusion of
lysosomes with autophagosomes [43, 44]. This suggests that
SQSTM1 is degraded in lysosomes together with LDs. Huntingtin
protein (Htt) is a scaffolding protein that is involved in selective
autophagy. Htt has been suggested to interact with SQSTM1 and
promote its association with LC3. Mutation in Htt could cause the
accumulation of autophagic vesicles and cytoplasmic LDs [44].
Another common autophagy-selective receptor is optineurin

(OPTN). OPTN was reported to be co-localized with ubiquitin and
LC3 on LDs, and knockdown of OPTN in foam cells leads to a
significant reduction of lipophagy-driven CE efflux [45]. Conver-
sely, OPTN is dramatically increased after the application of
chloroquine treatment on the surface of LDs [45]. Furthermore,
OPTN expression has been reported to be upregulated in patients
with hepatocellular carcinoma and nonalcoholic fatty liver disease
(NAFLD). Adipogenic efficiency was significantly reduced after the
knockdown of OPTN in HepG2 cells by siRNA, suggesting that
OPTN can delay adipogenesis in a fatty liver by lipophagy [46]. It
was reported that knockdown of the autophagy related 9 A
(Atg9A) gene in human cells results in an increase in the number
and size of LDs [47]. After knockdown of the Atg9A gene, the zinc
finger structure in OPTN presents the autophagic function
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interacting with Atg9A, suggesting that OPTN could be regulated
through Atg9A [48]. Atg9A is the only multi-transmembrane
protein among the Atg proteins that is essential for autophagic
vesicle formation. As OPTN has been suggested to play a role in
the control of lysosomal mass, this further ensures autophagic
flux. Studies in cholesterol-rich SH-SY5Y cells and cultured primary
neurons revealed that high intracellular cholesterol levels could
induce defective recruitment of OPTN and impaired lysosome-
mediated clearance [49]. Although the specific regulatory
mechanisms of lipophagy have not been fully elucidated, the
small Rab proteins belonging to the Ras superfamily are thought
to be directly involved in regulating lipophagy. Rab7 is the first
member of the Rab family that was found to be involved in
lipophagy. Rab7 has also been associated with LDs, autophagic
membranes, and lysosomes under starvation conditions [50].
Silenced Rab7 expression or decreased activity results in the
accumulation of LDs in cultured hepatocytes [50]. When
stimulated by β-adrenergic receptor activation-mediated lipolysis,
the recruitment of Rab7 to LDs and autophagosomal membranes
was observed [51]. However, the occurrence of macrolipophagy
was inhibited by Rab7 depletion or inactivation [51]. Rab7 also
plays a role in membrane transportation, which is essential in
regulating the maturation of early endosomes to late endosomes,
the translocation and fusion of late endosomes to lysosomes, as
well as the progression of lysosomogenesis. Rab7-labeled LDs can
be observed in both Toxoplasma gondii and Mycobacterium
tuberculosis-induced infections. These observations suggest that
Rab7-mediated lipophagy is present in different infections [52, 53].
Rab7 was found to interact with mTOR through its N-terminal hot
repeat structural domain, and deletion of Rab7 GTPase in myeloid
cells leads to a remarkable decrease of LAMP1 expression and
concomitant downregulation of the mTOR downstream signaling

pathway in MDSC-like HD1B cells [54]. This possibly indicates that
Rab7 not only controls lysosomal genesis but also mediates
lipophagy by regulating the mTOR signaling pathway [54].
Besides, it has been reported that Rab7 deletion significantly
impairs the recruitment of Rab10 to the autophagic membrane
around LDs, while Rab10 deletion does not affect the localization
of Rab7 [55]. This suggests that Rab10 localizes to LDs and
autophagosomal membranes in a Rab7-dependent manner,
facilitating the extension of autophagic vesicle membranes
around LDs for phagocytosis by stimulating the binding to the
bridging protein EHBP1 (EH structural domain binding protein 1)
and the membrane deforming adenosine triphosphatase EHD2
(EH structural domain containing 2). Similar to Rab7, deletion of
Rab10 leads to the accumulation of LDs in starved hepatocytes
[55]. Furthermore, Rab18 was also suggested to be associated with
lysosomes and involved in lysosomal transport and autophagy.
Knockdown of Rab18 by shRNA leads to a decrease in autophagic
activity, while the overexpression of Rab18 enhances autophagy
and in turn affects lipid degradation. Rab18 was suggested to
colocalize and co-separate with Rab7 on lysosomes. The expres-
sion of Rab7 was elevated in Rab18 knockdown neurons,
suggesting a possible compensatory effect. Therefore, Rab7 and
Rab18 might play a synergistic role in lysosomal functioning and
autophagy [56]. During LDs accumulation, Rab18 translocates
from the ER to the LDs and, in turn, degrades Plin2, thereby
inducing lipophagy [57]. However, lipolysis is diminished after the
application of autophagy inhibitors [57].
MTORC1 on the surface of the lysosome has a vital impact on

cellular lipid homeostasis. MTORC1 consists of mTOR, raptor,
mLST8, and PRAS40 subunits, and the raptor subunit is one of the
most unique components. The raptor subunit is a scaffolding
protein for the entire complex and plays a crucial role in

Fig. 2 The specific regulatory mechanisms of lipophagy. A Macrolipophagy involves the sequestration of LDs by autophagosomes and
subsequently delivers them to lysosomes/vacuoles for turnover. On the one hand, Plin1 and Plin2 bind with macroautophagy cargo receptor
SQSTM1/p62, which triggers Ub-dependent macrolipophagy. On the other hand, Atg9A regulates OPTN (an autophagy-selective receptor)
and leads to Ub-dependent macroautophagic degradation of LDs. Furthermore, Rab7 interacts with mTOR through its N-terminal hot repeat
structural domain, and mediates lipophagy by regulating the mTOR signaling pathway. mTORC1 regulates lipophagy through a Plin3
phosphorylation dependent mechanism, and possibly inhibits lipophagy through the ULK1 pathway. B Microlipophagy has been better
characterized in yeast. Microlipophagy relies on the formation of sterol-enriched vacuolar microdomain. This microdomain takes up LDs in a
manner dependent on proteins such as Atg6, Atg14, Atg21, and Atg32. In addition, microlipophagy is regulated by ESCRT, no matter whether
it depends on Atg or not. ESCRT drives the invagination in the vacuolar membrane, and interacts with clathrin proteins through one of its
components (Vps27) to mediate phagocytosis. C In chaperone-mediated autophagy, Hsc70 recognizes proteins possessing a KFERQ motif,
including Plin2, Plin3, and Plin5. This cargo-chaperone complex subsequently binds with LAMP2A and causes LD degradation.
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recruitment as well as other activities involving the complex
components. Raptor subunit can be acetylated as a target of
EP300, involved in the regulation of autophagy. It has been
indicated that mTORC1 promotes lysosome synthesis through
TFEB (transcription factor E3) and regulates autophagy through
activation of ULK [58]. With the application of rapamycin (i.e., an
inhibitor of mTORC1), hepatocytes reduce the accumulation of
LDs in an autophagy-dependent manner [59]. Knockdown of the
raptor subunit on mTORC1 promotes the degradation of LDs in
terminally differentiated cells; this could be rescued by inhibiting
lysosomal function or knocking down Atg7 [60]. Furthermore, the
raptor subunit was found to interact with Rag proteins and
translocate mTORC1 to the lysosomal surface in a Rag protein-
dependent manner. LDs are accumulated when the activities of
RagA and RagB in the lysosome are blocked. Hence, LDs could be
degraded during lipophagy, and mTORC1 is also involved in this
process. It was reported that mTORC1 regulates lipophagy
through a Plin3 phosphorylation dependent mechanism, and
the application of rapamycin or silencing mTOR could enhance
the accumulation of Plin3 on the LDs and inhibit lipophagy [61].
As knockdown of Raptor increases ULK1 phosphorylation in
adipocytes, mTORC1 possibly inhibits lipophagy through the ULK1
pathway [60]. Although mTORC1 relies on Plin3 to regulate
lipophagy, Plin3 does not contain a recognized LC3-interacting
region (LIR) to mediate its direct binding to LC3, suggesting Plin3
might mediate the onset of lipophagy through other pathways.
In Plin3-silenced NIH-3T3 cells, the autophagic flux of LDs-

associated LC3-II and LAMP1 is disrupted and the accumulation of
autophagic proteins on LDs is strongly inhibited, whereas the
application of oleic acid (OA) and lysosomal inhibitors increases
the co-localization of LC3 and LAMP1 with LDs. These results
further demonstrate that Plin3 is required for lipophagy [61].
Phospholipase D1 (PLD1), a phosphatidic acid producing enzyme,
is recruited in lysosomes and consequently involved in LD
accumulation during nutrient starvation. RalA acts downstream
of autophagy by recruiting PLD1. RalA is subsequently involved in
the recruitment of Plin3 and induces aggregation of LDs, and the
inhibition of RalA prevents the formation of LDs. These results
indicate the important role of Plin3 in lipophagy [62].

Chaperone-mediated autophagy
The Plins located on LDs physically prevent lipophagy and lipolysis
of TG and CE. Both Plin2 and Plin3 carry KFERQ-like peptide motifs
recognized by heat shock homologs (HSPA8/Hsc70), and then
bound and translocate to lysosomes. This process is known as
chaperone-mediated autophagy, abbreviated as CMA [63] During
starvation, CMA is enhanced and exhibits enrichment with an
increase in both cytoplasmic ATGL levels and macroautophagy-
associated proteins [64], possibly indicating that CMA-mediated
degradation of LDs requires the coordination of lipolysis and
macroautophagy.
Recent studies reported that Sirt3 promotes the CMA process

and decreases the stability of LDs [65]. The expression of Sirt3
increases LAMP-2A-tagged lysosomal contents while decreasing
Plin2 levels. When Hsc70 is downregulated, the levels of both
LAMP-2A and Plin2 proteins are significantly increased. These
results suggest that Sirt3 overexpression possibly promotes the
CMA process and facilitates the degradation of Plin2 in LDs. Sirt3
was also found to strengthen macroautophagy via the AMPK-
ULK1 pathway, and AMPK knockdown similarly reverses the
decline of Plin2. Therefore, Sirt3 possibly promotes macroauto-
phagy by activating AMPK in synergy with CMA and eventually
contributes to the degradation of LDs [65].
Plin5 has been reported to be another substrate for CMA

degradation in the mouse liver. Once lysosomal activity and CMA-
mediated Plin5 degradation are inhibited in mouse liver or HepG2
cells, the function of LDs could be impaired [66]. Taken together,
these studies suggest that CMA-mediated Plin protein

degradation can be considered to be a result of the involvement
of lipolysis and macrolipophagy, emphasizing the importance of
the interactions between lipophagy, lipolysis, and lysosomes.

Microlipophagy
The direct phagocytosis of LDs by endonucleosomal processes in
yeast is known as microlipophagy. During nutrient deprivation, a
sterol-enriched vacuolar microdomain is formed on the vesicle
membrane of yeast. This microdomain in turn directly takes up
LDs in a manner dependent on proteins such as Atg14p, Atg6p,
Atg21, and Atg32 [67]. This procedure does not rely on the typical
macroautophagic approach, because there is no core component
such as Atg7 involved in this process [68, 69]. Similarly,
microlipophagy is confirmed by the observation that liphagy
cannot be induced by treatment with rapamycin in yeast [70].
Nevertheless, it has been reported that the occurrence of Atg
proteins involved in lipophagy changes with environment. For
instance, the vesicular membrane protein Atg22 (responsible for
the efflux of amino acids from vesicles) is essential for stationary
phase lipophagy but is not necessary for lipophagy induced by
acute carbon starvation [68, 70, 71].
Atg proteins are not necessary for lipophagy induced by

phospholipid imbalance [68]. Microlipophagy functions indepen-
dently of Atg proteins. The endosomal sorting complex required for
transport (ESCRT) consists of membrane-associated proteins
involved in membrane break events that participate in the repairing
processes when lysosomal stress is impaired. ESCRT has been
considered to be associated with microlipophagy [72]. The
microlipophagic pathway, no matter whether Atg proteins are
dependent or not, is regulated by ESCRT [73]. ESCRT is localized to
vesicles, driving the invagination of the vacuolar membrane. ESCRT
also interacts with clathrin proteins through one of its components,
Vps27, to mediate phagocytosis. The microlipophagic process would
be damaged in the absence of Vps27 [74]. Furthermore, several
studies have shown that lysosomal cholesterol transporter protein
Niemann-Pick C 1/2 (Npc1 and Npc2) is required for macrolipophagy
[75]. Especially, Npc2 is thought to play an important role in raft-like
microdomain formation during progressive nutrient depletion or
nitrogen starvation. Npc2 is likely to promote microlipophagy by
increasing sterols in the vesicle limiting membrane.
Besides yeast, the fungus S. aeruginosa can also modulate the

degradation of attached intracellular LDs by microautophagy,
which rapidly forms intracellular expansion pressure to penetrate
the insect host body wall [76]. After the relevant autophagy genes
of the entomopathogenic fungus S. aeruginosa mutate, LDs in the
mutant strain can still enter the vesicles without being wrapped
by autophagosomes, indicating accumulation rather than degra-
dation [76]. Emerging studies have shown a new method of
autophagic LDs degradation in hepatocytes, named “direct
lysosome-based autophagy” [69]. In this process, stable contacts
between LDs and lysosomes in hepatocytes can be transferred
directly from LDs to lysosomes under nutrient-limited conditions
in the absence of autophagic intermediates. This phenomenon is
preserved even when the core macroautophagy (Atg5) or CMA
(LAMP2A) components are knocked down by siRNA [69]. Taken
together, these findings suggest that microautophagy pathway-
mediated LDs degradation is widely present in a variety of cells
under different conditions.

THE ROLE OF LIPOPHAGY IN CNS DISEASES
Lipophagy has been suggested to be involved in the development
of CNS diseases such as ischemic encephalopathy as well as
cerebrovascular and neurodegenerative diseases. The related
mechanisms remain unclear. The relevant aspects of these
diseases in vitro and in vivo are summarized in Table 1. Challenges
and advances of lipophagy in CNS diseases are discussed in the
following section.
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Tuberous sclerosis
Tuberous sclerosis (TSC) affects multiple organ systems and
promotes tumor formation in many different organs. TSC
particularly influences the CNS and possibly causes seizures,
autism spectrum disorders, and cognitive dysfunction [77]. TSC is
considered to be caused by a functional mutational deletion of
the TSC1/2 gene. In a healthy state, TSC1 and TSC2 form the TSC
protein complex and induce phosphorylation of ULK1 at the S757
site and inhibit the mTORC1 signaling pathway. Thereby, TSC plays
a critical role in regulating autophagy and lipid homeostasis [78].
Defective TSC in neurons increases autolysosome accumulation
and autophagic flux. Moreover, the knockdown of TSC in neurons
counteract mTORC1 inhibition through AMPK-dependent ULK1
activation, promoting autolysosome accumulation and elevating
autophagic activity. This could be a self-protective procedure of
the organism to provide the body with energy for the purpose of
resisting prolonged cellular stress through the activation of
autophagy. Nevertheless, with the knockdown of TSC in neural
stem cells, autophagy could both maintain intracellular energy
requirements and the hyperactivation of mTORC1. mTORC1
hyperactivation in turn exacerbates the abnormal differentiation
of neural stem cells. Fip200 is required for neoplastic phenotypes
driven by mTORC1 hyperactivation. Blockage of Fip200 activity
would cause inhibition of lipophagy. consequently, the function of
TSC-deficient neural stem cells is restored and tumorigenesis is
suppressed [79]. This indicates that modulation of lipophagy or
inhibition of other autophagic pathways could be potential
therapeutic strategies for treating TSC neuronal pathology.

Cerebral ischemia
Stroke induced by cerebral ischemia is the most common
cerebrovascular disease, which is a common cause of permanent
disability [80]. In cerebral ischemia, LDs have been demonstrated to
be accumulated in the brain, which then plays a proinflammatory
and pro-death role in an ischemic brain [81]. Autophagy widely
exists in the human brain, which helps the body to adapt to
environmental stress and to remove abnormal substances. In
mouse models, ischemia was found to promote autophagy and
increase the expression of associated Atg protein in PC12 cells [82].
Furthermore, LC3-II was observed to co-localize with LDs in cellular
models of ischemia and hypoxia, suggesting that the involvement
of lipophagy in the adaptive processes of the organism attenuates
brain damage [83]. In rat brain endothelial cells, lipophagy
promotes CE hydrolysis and frees CE secretion. This could contribute
to the alteration and/or adaptation of the blood brain barrier in
response to the cumulative effects of several transient ischemia [83].
Nevertheless, the abnormal lipophagy could also exacerbate
disease progression. Emerging studies have reported that ferrop-
tosis induces and aggravates brain damage following cerebral
ischemia [84]. As lipid peroxidation is closely related to ferroptosis,
these findings suggest that lipophagy provides a substrate for lipid
peroxidation during ferroptosis, which worsens the disease by
inducing lipid release and subsequent lipid peroxidation [85].
Furthermore, emerging evidence has suggested that PLIN2,RAB7A
and ATG5 mediating lipophagy regulation are the key points in
modulating cellular sensitivity to ferroptosis [86]. Although emer-
ging evidence reinforces the idea that lipophagy affects the ability
of inducing ferroptosis in other systems, the role of lipophagy in the
nervous system has not been revealed yet, which could be a
promising field for the treatment of neurological diseases.

Aging
Aging is a biological process characterized by time-dependent
cellular and functional decline. Aging in the brain is accom-
panied by a decline in the function of the ubiquitin-proteasome
system and the autophagy-lysosome pathway. Beclin 1, LC3-II,
and LC3-II/LC3-I ratios and Hsc70 concentration in cerebrospinal
fluid often decline with age [87]. Consistent with this finding,Ta
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macroautophagy in the CNS was also found to exhibit an age-
related decline [88]. Furthermore, abnormal lipid deposition can
be observed in an aging brain [89]. For instance, the accumula-
tion of LDs and colocalization with Beclin-1 or LC3 has been
reported in aging brain cells including the microglia, astrocytes,
neurons, and ventricular tract cells [89]. The lipid droplet-rich
microglia, known as the LDs aggregating microglia (LDAM), has
also been found in aging brains. LDAM exhibit an enhanced
inflammatory response and reduced phagocytosis, which could
increase expression of the LDs surface protein Plin2 [10]. These
results suggest that both macrolipophagy and CMA-mediated
lipophagy might be impaired with aging. Meanwhile, both
autophagy and LIPL-4-dependent lipolysis were found to be
highly expressed in germline-less C. elegans [90, 91]. They work
interdependently to prolong the life span. As LIPL-4 is thought
to be a homolog of mammalian LIPA, aging might have a similar
influence on acidic lipolysis in the lysosome.

Neurodegenerative diseases
Parkinson’s disease. Parkinson’s disease (PD) is a common,
complex, and progressive neurodegenerative disease. The main
neuropathological features of PD are considered to be the
degeneration of dopaminergic neurons in the substantia nigra
(SN) and the abnormal aggregation of misfolded α-synuclein (α-
syn) within Lewy body [92]. Lipid metabolism has been suggested
to be disturbed in PD patients taking untargeted metabolomics
and proteomics [93]. Therefore, LDs are increasingly recognized as
critical organelles with important effects on neuronal activity in
PD. The aggregation of LDs within dopaminergic neurons is also
observed in PD animal models [94]. α-synuclein (α-syn) is a lipid-
binding protein that interacts with phospholipids and FAs. α-syn
has been suggested to play a critical role in the neurodegenera-
tive process of PD by impairing multiple subcellular functions
[95, 96]. The expression of α-syn leads to an increase in the levels
of unsaturated FAs (UFAs), especially oleic acid (OA). The increased
UFAs could in turn worsen the toxicity of α-syn. Inhibition of OA-
producing enzyme stearoyl-CoA desaturase (SCD) has been
suggested to promote the formation of αS polymer and inhibit
its toxicity, and SCD knockout models in roundworms was
observed to prevent dopaminergic neuron degeneration [97]. In
addition, α-syn was found to bind to LDs, and the overexpression
of α-syn can lead to the accumulation of LDs [98]. The above
findings indicate a close relationship between α-syn and lipid
metabolism imbalance, which is supported by Fanning et al.
(2020) who stated that α-synuclein toxicity and cell trafficking
defects have been associated with aberrations in LDs content and
distribution. This idea has also been supported by previous studies
revealing that α-syn nucleoprotein toxicity and cellular transport
defects are associated with the abnormal content and distribution
of LDs. Meanwhile, α-syn can be degraded through CMA as well as
macroautophagic pathways. As a result, inhibiting CMA or
macroautophagy could lead to α-syn aggregation in neurons
[99, 100]. The expression of CMA core proteins (i.e., lysosomal-
associated membrane protein 2 [LAMP2A] and HSPA8) was also
reported to be significantly decreased in PD patients [101].
GPNMB is a phagocytic protein that is required for recruiting

LC3 to phagocytic vesicles. GPNMB usually colocalizes with
phagocytic vesicles and promotes lysosomes to fuse with them.
GPNMB expression significantly increases the rate of acidification
of phagocytic vesicles caused by lysosomal fusion [102]. A
substantial genome-wide association study (GWAS) reported that
the GPNMB gene is greatly associated with idiopathic PD.
Inhibiting GBA1 in mice alters the glycolipid levels and causes
an elevation of GPNMB. The accumulation of glycolipid severely
alters membrane fluidity and lipid raft structure and then leads to
alpha-synucleinopathy [103]. Furthermore, phospholipid content
in lipid has been suggested to directly influence the aggregation
capacity of α-syn [103, 104]. Taken together, lipid metabolism

disorders and lysosomal dysfunction are critical to induce GPNMB
alterations.

Huntington’s disease. Huntington’s disease (HD) is a neurode-
generative disease characterized by motor and cognitive deficits
resulting from mutations in Htt. This mutation leads to the
aggregation of Htt, and, subsequently, neuronal death [105]. A
distinct increase in LDs can be observed in mice neurons that
express Htt [106]. This phenomenon is possibly caused by the
impairment of macroautophagy, because the increase in LDs was
reported to slow down after the blockage of lysosomal degrada-
tion [106]. It was reported that Htt interacts with the autophagic
cargo receptor p62 and facilitates the association between LC3
and lys-63-linked ubiquitin-modified substrates in mammalian
cells [107]. Htt is therefore considered to regulate lipophagy by
negatively regulating mTOR and releasing ULK1. Furthermore, the
activity of FOXO (i.e., a transcription factor that regulates
macrolipophagy) is also altered in HD [107]. Therefore, lipophagy
plays a critical role throughout the occurrence and
development of HD.

Alzheimer’s disease. Alzheimer’s disease (AD) is the most
common cause of dementia. The main features of AD include
the accumulation of extracellular amyloid β (Aβ) and intracellular
hyperphosphorylation of microtubule isolated protein tau (MAPT)
[108]. LDs have been reported to accumulate in ventricular
membrane cells of transgenic AD mice and postmortem AD
patients. The accumulation of LDs exacerbates the development
of pathology and lysosomal dysfunction, thus affecting autophagy
[109, 110]. Under oxidative stress, neurons can export lipid
precursors to astrocytes via APOE and then degrade those lipid
precursors. Increasing evidence has shown that functions differ
among different ApoE subtypes. In particular, APOE-4 is a major
genetic risk factor for AD. The inability of APOE-4 to transport
lipids could lead to LD formation in neurons, and the accumula-
tion of LDs subsequently promotes the development of AD [26].
Furthermore, other risk genes of AD are consistent with lipid
transportation mechanisms; they include the lipid transporters
ABCA1 and ABCA7 in neurons, the APOE receptor LRP1 in glial
cells, and some endocytosis genes in glial cells, such as PICALM,
CD2AP, and AP2A [111]. Those genes are possibly responsible for
the deposition of LDs in AD patients. Notably, PICALM can
regulate autophagy and affect the clearance of tau protein, and
the altered PICALM expression could exacerbate tau-mediated
toxicity in both zebrafish and transgenic mice models [112, 113].
Meanwhile, PICALM is involved in the nucleation and transport of
lipids, as mediated by lipoprotein particles containing APOE and
clusterin [114]. LDs have been suggested to precede the formation
of amyloid plaques and neurofibrillary tangles [109]. Impaired
autophagy in mice neurons was observed to advance the
development of Aβ plaques, which could result from insufficient
lysosomal acidification. Taken together, these results indicate that
attenuated lipophagy possibly induces the formation of LDs and
exacerbates AD in an early stage.

Amyotrophic Lateral Sclerosis. Amyotrophic lateral sclerosis (ALS)
is a neurodegenerative disorder characterized by progressive
degeneration of motor neurons. LDs have been suggested to play
a critical role in the development of ALS pathophysiology. Genes
that are responsible for ALS usually play important roles in the
biology of LDs, and the disruption of lipid metabolism and energy
homeostasis are prevalent in ALS [115, 116].
The hexanucleotide repeat expansion in C9orf72 is the most

common cause of ALS [117]. C9orf72 is required for lysosomal
targeting and degradation of coactivator-associated arginine
methyltransferase (CARM1), which is an important epigenetic
regulator of macroautophagy and lipid metabolism. Therefore,
C9orf72 is considered to be a critical regulator in the autophagy-
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lysosome pathway for negative feedback control during nutrient
stress response [118]. Deficiency in C9orf72 could lead to an
increase in LDs and lipophagy that is consistent with increased
autophagic flux [118]. Recent studies suggested that SPG11 could
contribute to an early onset form of ALS [119]. SPG11 knockout
mice have a large accumulation of lipids and p62 in their
lysosomes and present similar motor and cognitive symptoms as
those observed in ALS patients [119]. Spatacsin (a protein
encoded by SPG11) is possibly responsible for this phenomenon
[120]. Spatacsin has been suggested to be involved in autolyso-
some reformation and autophagic clearance [121]. Analysis of
SPG11 knockout mice suggested that the loss of spatacsin
function could lead to progressive accumulation of lipids in
lysosomes, in both neuronal and non-neuronal cells [119]. Loss of
spatacsin inhibits the formation of tubules within lysosomes and
prevents the clearance of cholesterol and, subsequently, promotes
the nuclear translocation of the master regulator of lysosomal
TFEB [122]. The activation of TFEB can be considered to be a
compensatory mechanism that maintains lipid balance by
enhancing lipophagy. Therefore, lipophagy plays a complex and
critical role in ALS.

Brain tumors
Due to the enhanced glycolysis and lipogenesis under normoxic
conditions, LDs have been reported to accumulate in the brain
tumor cells. Previous studies suggested that LDs participate in the
formation and development of tumors, and play an important role
in signal transduction between tumor cells [123]. Therefore, LDs
have been emerging as a promising target for the treatment of
brain tumors.

Glioblastoma. Glioblastoma (GBM) is the most common and
malignant brain tumor in adults. Despite there are many biological
and pharmacological approaches for GBM treatment, the therapy
resistance feature of GBM inevitably leads to refractory tumor
recurrence and treatment failure [124]. Recent studies have
reported that LDs can sequester lipophilic drugs and prevent
them from reaching the targets, eventually reducing the efficacy
of drugs. As a result, inhibition of LDs accumulation could improve
the effectiveness of treatments in GBM [125]. Recently, one study
about GBM cells with mTORC1 hyper-activation provides insights
into the significance of lipophagy in GBM cells metabolism and
tumour progression [126]. The above study suggested that GBM
cells maintain energy supply through lipophagy and induce
hyper-activation of MTORC1, finally leading to a poor prognosis for
brain tumors [126]. Therefore, targeting on lipophagy inhibition
might be an efficacious treatment for malignant GBM. Interest-
ingly, when using pharmacological approaches to induce the
activation of autophagy and the malfunction of lysosome, massive
lipids accumulate in the lysosome and finally cause GBM cells
death [126].

OUTLOOK
LDs are an important organelle in the nervous system. Under-
standing the regulatory mechanisms of LD has profound implica-
tions for the development and progression of CNS diseases.
Lipophagy selectively degrades LD within the cell and maintains
intracellular lipid metabolic homeostasis. Insufficient or excessive
intracellular lipophagy not only leads to lipid metabolism disorders
in the human body but also possibly causes development and
progression of CNS diseases via a variety of mechanisms. The
molecular mechanisms are diverse, but all of them are achieved
through lipophagy to degrade TAG and CE in LD. Therefore,
investigating the role of lipophagy in CNS diseases and exploring
the specific regulatory mechanisms provides new potential targets
for prevention and treatment of neurological diseases.
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