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Altered muscle niche contributes to myogenic deficit in the
D2-mdx model of severe DMD
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Lack of dystrophin expression is the underlying genetic basis for Duchenne muscular dystrophy (DMD). However, disease severity
varies between patients, based on specific genetic modifiers. D2-mdx is a model for severe DMD that exhibits exacerbated muscle
degeneration and failure to regenerate even in the juvenile stage of the disease. We show that poor regeneration of juvenile D2-
mdx muscles is associated with an enhanced inflammatory response to muscle damage that fails to resolve efficiently and supports
the excessive accumulation of fibroadipogenic progenitors (FAPs), leading to increased fibrosis. Unexpectedly, the extent of
damage and degeneration in juvenile D2-mdx muscle is significantly reduced in adults, and is associated with the restoration of the
inflammatory and FAP responses to muscle injury. These improvements enhance regenerative myogenesis in the adult D2-mdx
muscle, reaching levels comparable to the milder B10-mdx model of DMD. Ex vivo co-culture of healthy satellite cells (SCs) with
juvenile D2-mdx FAPs reduces their fusion efficacy. Wild-type juvenile D2 mice also manifest regenerative myogenic deficit and
glucocorticoid treatment improves their muscle regeneration. Our findings indicate that aberrant stromal cell responses contribute
to poor regenerative myogenesis and greater muscle degeneration in juvenile D2-mdx muscles and reversal of this reduces
pathology in adult D2-mdx muscle, identifying these responses as a potential therapeutic target for the treatment of DMD.
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INTRODUCTION
Duchenne muscular dystrophy (DMD) is a progressive X-linked
myopathy caused by mutations that prevent the expression of
dystrophin—the muscle structural protein that links myofibrillar
actin and the extracellular matrix (ECM) [1–4]. Lack of dystrophin
makes the myofiber sarcolemma susceptible to injury and
compromises sarcolemmal repair, causing asynchronous myofiber
damage and chronic inflammation [5–8]. Muscles from DMD
patients and animal models display chronic inflammation, ECM
remodeling, fibro-fatty replacement, and progressive muscle loss
that diminishes muscle function [9–12]. Additionally, there is
evidence of progressive reduction of satellite cells (SC) and their
myogenic capacity due to constant muscle injury and turnover,
which leads to greater myofiber loss and replacement by fibrotic
tissue in DMD patients [13, 14]. Chronic inflammation and ECM
degradation also alter the muscle niche that supports SC function,
while genetic modifiers that affect ECM remodeling alter disease
severity in DMD patients [15–17].
One of the genetic modifiers of DMD is the polymorphism in

latent transforming growth factor binding protein 4 (LTBP4) that
diminishes the sequestration of transforming growth factor β
(TGF-β) in its latent state [18]. Mice of the DBA/2J (D2) background
carries a LTBP4 allele that fails to keep TGF-β in its latent state,

leading to its heightened activation [19, 20]. D2 mice that also lack
dystrophin (D2-mdx) mimic the severity of disease observed in
DMD patients [19–24]. TGF-β modulates dynamic interactions of
macrophages, SCs, and other muscle interstitial cell types during
healthy muscle regeneration [25–29]. Heightened TGF-β activity
disrupts the muscle extracellular niche by altering the crosstalk
between stromal cells, including inflammatory cells such as
macrophages, and fibroadipogenic progenitors (FAPs), whose
interactions support regenerative myogenesis [30–32]. Disruption
of macrophage and FAP interactions in damaged muscle delays
FAP clearance and promotes fibrosis that further impairs
regenerative myogenesis [29, 30, 33–36]. Chronic inflammation
due to recurrent injury disrupts the synchrony of stromal cell
communication required for successful muscle repair [6, 8, 33]. The
impact of asynchronous muscle reparative response is demon-
strated by failed muscle regeneration and fibroadipogenic muscle
loss provoked by repeated muscle injury in a milder model of
DMD [8, 34]. Muscle damage due to spontaneous activity-driven
muscle contraction (spontaneous injury) in the severe juvenile D2-
mdx model is associated with increased degeneration and failed
regeneration [20, 23, 24].
Here, we demonstrate that the severe muscle damage and

myogenic failure observed in juvenile D2-mdx is unexpectedly
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improved in muscles from adult D2-mdx mice. We performed a
comparative analysis of muscle histopathological changes in the
adult versus the juvenile D2-mdx and examined the underlying
mechanism for this difference in disease severity between adult
and juvenile D2-mdx. This investigation ascribes unresolved
damage in juvenile D2-mdx muscle to excessive inflammatory
and fibroadipogenic responses, restoration of which in adult
muscle improves regenerative myogenesis. Using in vivo injury
and ex vivo SC and FAP co-cultures, we show that these aberrant
stromal interactions drive myogenic deficit in D2-mdxmuscles and
establish the importance of the muscle niche in the regenerative
deficit and disease severity in DMD.

RESULTS
Juvenile D2-mdx mice exhibit excessive muscle damage
We have previously described the sudden onset of histological
damage, and rapid disease progression in muscles of juvenile (~5
wk) D2-mdx [20], and reported triceps as among the most severely
affected muscles in this model [20]. Consistent with other reports
in adult D2-mdx [19, 21–23], we observed extensive networks of
endomysial and perimysial fibrosis in the triceps of adult
(>7 months old) D2-mdx (Fig. 1A, B). The interstitial fibrosis nearly
doubled between juvenile and adult D2-mdx muscles, while only a
modest increase was observed between juvenile and adult C57BL/
10ScSn-mdx/J (B10-mdx) muscles (Fig. 1A, B). Despite the large
increase in fibrosis in adult D2-mdx triceps, macroscopic

examination revealed unexpected improvements in pathological
features, prompting a detailed histological examination. H&E
staining showed reduced spontaneous myofiber damage and
fewer infiltrating mononuclear cells in adult D2-mdx than in
juvenile D2-mdx, to levels comparable to the B10-mdx muscles
(Fig. 1C, D, Supplementary Fig. 1). Alizarin red staining identified a
notable decrease in areas of myofiber damage and calcified
replacement from ~15% in juvenile D2-mdx to <5% in adult D2-
mdx (Fig. 1E, F). Overall, our analysis revealed that while there is
progressive increase in endomysial fibrosis from juvenile to adult
D2-mdx, surprisingly the extent of damage in the adult D2-mdx is
reduced, as compared to the juvenile D2-mdx, to levels observed
in either juvenile or adult B10-mdx.

Juvenile D2-mdx muscle exhibits a regenerative deficit that is
reversed in adult muscle
When assessing the adult D2-mdx histopathology relative to the
juvenile D2-mdx, we observed a notable increase in the frequency
of centrally nucleated fibers (CNFs) (Fig. 1C). Quantifying
myofibers with internal nuclei as a percentage of total myofibers
per cross-section revealed nearly 3-times more CNFs in adult D2-
mdx as compared to juvenile D2-mdx (Fig. 2A, B). Consequently,
while juvenile D2-mdx have fivefold fewer CNFs than juvenile B10-
mdx, this difference is only twofold between the adult D2-mdx and
B10-mdx (Fig. 2A, B). As juvenile D2-mdx muscles show minimal
regenerative ability [20, 22, 24], we examined if regenerative
capacity improved in adult D2-mdx muscle, leading to the
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Fig. 1 Histopathological assessment of disease in D2-mdx and B10-mdx models. A, B Masson’s trichrome staining and quantification of
percent fibrotic tissue area performed on triceps harvested from juvenile (5.5 ± 1.5 wk) and adult (8.5 ± 1.5 mo) D2-mdx and B10-mdx mice.
C, D. H&E staining and quantification of percent damaged muscle tissue area performed on triceps harvested from juvenile and adult D2-mdx
and B10-mdx mice; damaged areas were characterized by the presence of interstitial mononuclear cells, damaged myofibers, and appearance
of small-diameter centrally nucleated fibers (CNFs). E, F Alizarin red staining and quantification of percent calcified fiber area performed on
triceps harvested from juvenile and adult D2-mdx and B10-mdx mice. Data represent mean ± SD from n= 6 mice per cohort. *p < 0.05,
**p < 0.01 by Mann–Whitney test. Refer to Supplementary Fig. 1.
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observed reduction in histopathology (Fig. 1). To investigate
whether the earlier myogenic deficit in D2-mdx is rescued in
adulthood, we used notexin (NTX) to acutely injure the tibialis
anterior (TA) muscle of D2 wild-type (D2-WT) to avoid confound-
ing effects of chronic and spontaneously-triggered muscle injury
in D2-mdx. To monitor regenerative myogenesis that follows this
acute in vivo injury, we used our 5′-bromo-2′-deoxyuridine (BrdU)
‘myofiber birthdating’ strategy [20, 37], where BrdU was adminis-
tered from +1 d to +3 d post injury (dpi) to label regenerated
myofibers (Fig. 2C). Quantification of total CNFs (Fig. 2D, E) and
BrdU-labeled CNFs (Fig. 2D, F), showed that compared to acutely-
injured juvenile D2-WT, regeneration was greatly enhanced in

adult D2-WT, mirroring results following spontaneous injury in D2-
mdx (Fig. 2A, B). Nearly 60% of all the myofibers in adult D2-WT
muscles were regenerated (CNFs), which was not different from
the level of CNFs in B10-WT adult muscle but roughly 3-times
greater than in juvenile D2-WT (Fig. 2D, E). The number of CNFs
mirrored the extent of BrdU-labeled myofibers over the 2 dpi
interval, again revealing a similar trend—greater regeneration in
adult D2-WT muscles comparable with adult B10-WT. Meanwhile,
juvenile D2-WT showed only minor (<5%) BrdU-labeling in
randomly dispersed, small-caliber myofibers that constituted large
areas of unresolved inflammation even after 6 dpi (Fig. 2D, F).
Overall, we observed that compared to juvenile D2-WT, there is a
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greatly improved regenerative response in adult D2-WT muscles
(Fig. 2).

Stromal alterations mark the regenerative deficit of juvenile
D2-mdx muscles
Skeletal muscle regeneration is a multicellular response where SCs
interact with the ECM, macrophages, and FAPs to regulate SC
proliferation, differentiation, and fusion. To assess the involvement

of SC, macrophage, or FAP dysregulation in the regenerative
deficit observed in the juvenile D2-mdx muscles, we examined the
expression of genes associated with these different cell types in
triceps (Fig. 3). Analysis of the activated SC marker—myoblast
determination protein 1 (MyoD), showed that the robust
regeneration observed in B10-mdx muscle, was associated with
higher levels of MyoD transcript, while the increased damage and
regeneration in juvenile (as compared to an adult) mdx mouse
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Fig. 3 Expression of genes indicative of myogenesis, ECM, and inflammation in juvenile and adult mouse muscles. A–C Gene expression
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B10-mdx triceps. Data represent mean ± SD from n= 5–6 mice per cohort. *p < 0.05, **p < 0.01 by Mann–Whitney test.
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muscle, was associated with higher myogenin (MyoG) transcript in
these muscles (Fig. 3A, B). To assess whether improvements in
regeneration in adult D2-mdx were a consequence of increased
SCs, we monitored total levels of Paired Box 7 (Pax7) transcript;
however, we observed no consistent strain- or age-specific
difference for Pax7 transcript (Fig. 3C).
Next, we examined FAP/ECM-related markers and their

dynamics with age and disease progression. TGF-β serves as
a master modulator of ECM remodeling and composition
during muscle repair and we previously demonstrated its
heightened activity in juvenile D2-mdx at disease onset [20].
We observed higher TGF-β protein activity in the D2-mdx as

compared to B10-mdx, however, the TGF-β activity levels did
not change between juvenile and adult D2-mdx (Fig. 3D). Due
to the extensive effects TGF-β exerts on the regulatory and
structural components of the ECM, we next assessed the
expression of TGF-β responsive matrix components implicated
in dystrophic muscle pathogenesis. Periostin (Postn) is a
fibroblast-secreted ECM regulatory and structural component
whose activity is linked with fibrosis and myogenic function in
dystrophic muscle [38]. Like MyoG, greater muscle damage
seen in juvenile mice was associated with greater levels of
periostin (Postn), and this was the same in both D2-mdx and
B10-mdx (Fig. 3E). Osteopontin (Spp1), a known genetic
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modifier in DMD patients, functions to influence ECM archi-
tecture and fibrosis, while Spp1 ablation improves muscle
function and influences ECM and macrophage polarization
[39–43]. In contrast to Postn, Spp1 was upregulated in juvenile
D2-mdx compared to adult D2-mdx, but this was not the case
between B10-mdx cohorts (Fig. 3F). This suggests that low
expression of Spp1 in adult D2-mdx may improve regenerative
capacity by regulating macrophage polarization [40, 41].
Examination of markers of macrophage activity and polarization

in B10-mdx and D2-mdx muscles identified a consistent upregula-
tion of both pro-inflammatory and pro-regenerative macrophage
markers in juvenile D2-mdx muscles. In terms of pro-inflammatory
macrophage markers, while Tumor necrosis factor alpha (Tnf-α)
was significantly altered between juvenile and adult D2-mdx,
Interleukin 1b (Il-1b) and Interleukin 6 (Il-6) exhibited a trend for
elevated expression in juvenile D2-mdx (Fig. 3G–I). However, the
increase tended to be lower in the adult D2-mdx muscles and was
comparable to the adult B10-mdx muscles (Fig. 3G–I). Similarly,
markers of pro-regenerative macrophages, specifically Arginase 1
(Arg1), and Interleukin-10 (Il-10), but not Cluster of differentiation

163 (Cd163), were significantly increased in juvenile D2-mdx
compared to adult D2-mdx (Fig. 3J–L).
Thus, while we observed no consistent change in SC and

ECM markers between the juvenile and adult D2-mdx or
between the juvenile and adult B10-mdx, we observe con-
sistent dysregulation of Spp1, and inflammatory markers
corresponding to both pro-inflammatory and pro-
regenerative macrophages in juvenile D2-mdx muscle as
compared to B10-mdx and adult D2-mdx (Fig. 3F–I). This
implicates changes in the muscle inflammatory niche in the
poor myogenic response specific to juvenile D2-mdx muscles.
Analysis of the local muscle niche requires spatial exploration
of the inflammatory response to monitoring the histologically
defined damaged regions of the muscle [44].

Regenerative deficit of juvenile D2-mdx is linked to a
heightened pro-inflammatory response
The dynamic interplay between pro-inflammatory and pro-
regenerative macrophages is critical for the timely resolution
and repair of muscle tissue. To examine the inflammatory
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response to spontaneous injury of mdx muscle we used the pan
macrophage marker, F4/80, in conjunction with pro-inflammatory
(iNOS) and pro-regenerative (CD206) macrophage markers, and
quantified the proportions of pro-inflammatory and pro-
regenerative macrophages at and away from the sites of muscle
damage (Fig. 4). F4/80 immunostaining shows widespread
macrophage infiltration in juvenile D2-mdx muscle, which is

decreased by more than half in muscles from adult D2-mdx (Fig.
4A, B). Focusing exclusively on the damaged areas characterized
by the presence of interstitial mononuclear cells, damaged
myofibers, and appearance of small-diameter CNFs, we observed
a greater abundance of macrophages resulting in a greater
density of F4/80 lbeling per unit damaged area in juvenile D2-mdx
(Fig. 4C).
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As F4/80 does not distinguish between pro-inflammatory and
pro-regenerative macrophages, we next evaluated the contribution
of these macrophage subtypes to the total macrophage response
observed in juvenile D2-mdx by co-labeling tissue sections for
iNOS+, F4/80+ pro-inflammatory, and CD206+, F4/80+ pro-
regenerative macrophages (Fig. 4A). The sum total of each of
these macrophage types in damaged areas corresponded to our

finding with (F4/80+) macrophage labeling in juvenile D2-mdx
muscle. Here we observed the highest macrophage density per
unit damaged area, which was reduced in adult D2-mdx muscles
(Fig. 4D). Monitoring individual macrophage populations revealed
that the damaged areas of the juvenile D2-mdx muscles were
enriched in iNOS+ and CD206+ macrophages. In the adult D2-mdx
muscle, these pro-inflammatory macrophages in areas of damaged
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muscle had returned to levels comparable to B10-mdx, while the
level of pro-regenerative CD206+ macrophages remained elevated
(Fig. 4E, F). Examination of the relative proportion of pro-
inflammatory to pro-regenerative macrophages (iNOS+/CD206+

macrophages), showed that, inflammation in the juvenile D2-mdx
muscles, relative to adult D2-mdx muscle, is skewed towards the
pro-inflammatory status (Fig. 4G). Together, these analyses indicate
that juvenile D2-mdx muscles are abnormally inundated with pro-
inflammatory macrophages, which correlates with the poor
myogenic capacity of these muscles.
To assess whether the heightened pro-inflammatory response in

juvenile D2-mdx is on account of increased intravasation or greater
retention of inflammatory macrophages, we examined the kinetics
of the inflammatory response. As mdx muscle suffers from
spontaneously-triggered injuries it precludes their use for timed
injury experiments. However, as regenerative myogenic deficit is
also noted in juvenile D2-WT muscle (Fig. 2E, F), to achieve timed
injury we performed acute focal NTX injury to TA muscles of D2-WT
and age-matched B10-WT and then compared the resulting
inflammatory and myogenic response (Figs. 5, 6). Injury-triggered
muscle inflammation progresses from predominantly pro-
inflammatory to predominantly pro-regenerative over the week
following injury. Thus, we monitored total (F4/80+) macrophages,
as well as levels of pro-inflammatory (iNOS+) and pro-regenerative
(CD206+) macrophages at both an earlier (5 dpi) and later (8 dpi)
time point. F4/80 staining at 5 dpi showed ~2-fold higher levels for
juvenile and adult D2-WT than B10-WT counterparts (Fig. 5A–C).
This indicated that the muscles of D2-WT mice are predisposed to a
stronger inflammatory response irrespective of age, mimicking our
observations above in the D2-mdx model (Figs. 1–4). Subsequent
assessment of the status of the F4/80 response at 8 dpi showed
that the inflammation was largely resolved in the juvenile B10-WT
and fully resolved in adult B10-WT and D2-WT muscles (Fig. 5A, B,
D). In contrast, the extent of inflammation in juvenile D2-WT was
much higher than B10-WT, remaining comparable to the levels
seen at 5 dpi (Fig. 5A–C). Concomitant with the resolution of
inflammation in juvenile B10-WT and adult D2-WT muscles at 8 dpi,
we observed regenerating myofibers in the site of injury, which
were lacking in the juvenile D2-WT muscle, mirroring our earlier
observations (Fig. 2D). Next, we examined the nature of the
macrophages in the areas of inflammation in the acutely injured
muscles. Our assessments were limited to 5 dpi, as inflammation
had resolved by 8 dpi in all cohorts except juvenile D2-WT. We
found that both juvenile and adult D2-WT mice mounted a strong
inflammatory response that was comparably represented by pro-
inflammatory and pro-regenerative macrophages (Fig. 5E, F).
As an independent measure for the formation of nascent

myofibers, we stained acutely injured D2-WT and B10-WT TA
muscles for embryonic myosin heavy chain (eMHC) and monitored
expression 5 dpi in the damaged sites (Fig. 6). This showed
widespread eMHC expression in small-caliber CNFs throughout
the site of injury in all cohorts except juvenile D2-WT (Fig. 6A, B).
The number of eMHC+ fibers in the adult cohort was no different
from each other, and the density of eMHC+ fibers in adult D2-WT
was comparable to juvenile and adult B10-WT muscles 5 dpi, but
eMHC+ fibers were lacking in juvenile D2-WT muscles (Fig. 6A, B).
Further, such fibers were notably smaller (< 200 µm2) and did not
fuse together, even when present within the same basement
membrane (Fig. 6A, C). Together, these results indicate that D2-WT
mice mount a more robust inflammatory response as compared to
B10-WT, which fails to resolve in a timely manner in the juvenile
D2-WT, leading to the chronic inflammatory response with direct
repercussions on regenerative myogenesis.

FAPs isolated from juvenile D2-mdx mice alter satellite cell
fusion capacity in vitro
We previously identified FAP dysregulation is associated with a
prolonged state of degeneration of D2-mdx muscle [20]. Here we

examined the role of aberrant stromal response caused by chronic
and excessive accumulation of FAPs and inflammatory cells on SC
myogenic deficit. We first assessed FAP expansion and numbers
during the resolution of spontaneous injury in juvenile D2-mdx
muscle, by labeling with FAP marker, platelet-derived growth
factor receptor-α (PDGFRα) [45]. This revealed nearly 2-fold more
FAPs in juvenile D2-mdx muscle, as compared to the adult D2-mdx
or the juvenile/adult B10-mdxmuscles (Fig. 7A, B). The observation
that FAP abundance in adult D2-mdx declines to levels seen in
B10-mdx muscle suggests that the dysregulated FAP response in
the juvenile D2-mdx muscles may contribute to the myogenic
deficit in these muscles.
To investigate whether juvenile D2-mdx FAPs impair SC

function, we performed co-culture assays and compared the
effect of FAPs from juvenile D2-mdx, adult D2-mdx, and from
acutely injured C57BL/6-WT (B6-WT) mice on the proliferation,
differentiation, and fusion of B6-WT SCs (Fig. 7C). These SCs were
plated in the presence of FAPs isolated from either juvenile D2-
mdx muscles or adult D2-mdx muscles exhibiting spontaneous
muscle injury, or from juvenile B6-WT muscles that were acutely
injured by cardiotoxin (CTX) (Fig. 7C–G). Assessment of prolifera-
tion rate of WT SCs by 5’-ethynyl-2’-deoxyuridine (EdU) incorpora-
tion showed co-culturing with FAPs enhanced SC proliferation, but
no difference in proliferation was observed in co-cultures with the
different FAPs – CTX-injured B6-WT, juvenile D2-mdx, adult D2-
mdx (Fig. 7D). Next, to examine SC differentiation we quantified
the number of myogenin-expressing SCs and found no difference
in SC differentiation potential after 48 h when cultured without
FAPs or co-cultured with B6-WT, juvenile D2-mdx, or adult D2-mdx
FAPs (Fig. 7E). Finally, we examined fusion capacity of the SCs
cultured in the absence of FAPs or in the presence of B6-WT versus
D2-mdx FAPs harvested from juvenile or adult muscles. This
showed a reduction in the fusion index of SCs when co-cultured
for 48 h with juvenile D2-mdx FAPs, as compared to the no FAP
control, CTX-injured B6-WT FAPs, or adult D2-mdx FAPs (Fig. 7F, G).
This final observation recapitulates the above in vivo observation
that 5-dpi juvenile D2-WT muscles have the smallest (<200 µm2)
nascent myofibers that fail to fuse with the adjacent myofibers.
Together, these results identify that poor regenerative myogenesis
in the juvenile D2 muscles is attributable to a muscle stromal cell
niche that inhibits regeneration by inhibiting myotube fusion.

Glucocorticoid treatment improves regenerative myogenesis
in injured juvenile D2-WT muscle
To address whether the altered inflammatory and FAP response
activated by acute injury is directly responsible for impaired
regeneration seen in juvenile D2-mdx muscle, we employed the
anti-inflammatory glucocorticoid (GC), deflazacort, which is widely
prescribed to the DMD patients. As D2-mdx mice suffer
spontaneous contraction-induced injuries, this precludes the use
of the D2-mdx model to carry out controlled acute injury studies.
However, our results in Fig. 5 show, acute NTX injury of D2-WT
muscle recapitulates the aberrant inflammation and myogenic
deficit observed in the juvenile D2-mdx muscle. Thus, the use of
NTX-injured D2-WT muscle is a suitable surrogate to assess the
utility of GC treatment to improve regenerative myogenesis in
juvenile D2-mdx mice. We performed acute focal NTX injury to the
TA muscles of D2-WT mice and initiated daily morning dosing with
Deflazacort (1 mg/kg) within 24 h of injury and continued for the
next 7 d, in conjunction with a 3 d (+1 d to +4 d post NTX) BrdU-
labeling protocol (Fig. 8A). Assessment of pro-inflammatory
macrophage markers (Nos2, Il-1b, and Il-6) showed that deflazacort
treatment reduced expression of these markers (Fig. 8B–D), while
pro-regenerative macrophage marker (Cd163) was significantly
increased relative to controls (Fig. 8E). This reflected a change in
the macrophage polarization and was associated with a reduction
in the markers of fibrotic FAPs (Fn1, Col1a1) in the deflazacort-
treated injured muscles (Fig. 8F, G).
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With improvements in macrophage polarization and fibrotic
response of the FAPs, we next assessed if these stromal changes
caused by glucocorticoid treatment improved the regenerative
capacity of the juvenile D2-WT muscles. Analysis of BrdU-labeled
CNFs showed that deflazacort treatment enhanced the myogenic
capacity of juvenile D2-WT muscles, leading to a ~1.6-fold increase
in the numbers of regenerated myofibers compared to the control
(Fig. 8H, I). To evaluate if this improvement in regenerative
capacity was the result of reduced macrophage and FAPs within
the sites of damage and repair, we also quantified the PDGFRα+

area within the damaged site occupied by macrophages (F4/80+)
and FAPs (PDGFRα+) and observed these were no different
between deflazacort-treated and control cohorts (Fig. 8J, K). These
results indicate the therapeutic potential of glucocorticoid
treatment to improve regenerative capacity in juvenile D2-WT
muscles by modulating the macrophage polarization and resulting
FAP responses such that the niche created by these stromal cell
populations in the injured muscle is more conducive to
regenerative myogenesis.

DISCUSSION
Poor regenerative capacity contributes to DMD severity by
limiting the ability of the muscles to effectively replace damaged

myofibers lost due to dystrophin deficiency. Like DMD patients,
mdx mice are characterized by excessive muscle damage which
shows a significant peak during the transition from juvenile to
adult stage [46]. Here, we aimed to determine the contribution of
poor regenerative ability to progressive muscle loss. In the milder
B10-mdx mouse model, this acute bout of muscle damage is
counteracted by robust regenerative myogenesis, which is
lacking in the severe D2-mdx model [20]. We show that
surprisingly, this myogenic deficit in juvenile D2-mdx muscles
recovers in adult D2-mdx, resulting in a greater proportion of
newly regenerated myofibers marked by central nucleation and
greater extent of BrdU incorporation during spontaneous bouts
of myofiber injury in adult D2-mdx muscles than in juvenile D2-
mdx muscles (Fig. 2). Similar to previous studies [23], we find that
the adult D2-mdx muscles remain less myogenic than the adult
B10-mdx. However, the improved myogenic ability of the adult
D2-mdx helps to explain the previous report of amelioration of
disease pathology with age in the D2-mdx model [21]. It also
explains our observation that the extent of muscle damage in
adult D2-mdx mice is comparable to the less severe B10-mdx
model (Fig. 1).
Disturbances of asymmetric cell division and SC depletion in

older individuals have been described as intrinsic impairments in
SC that compromise the regeneration of the dystrophic muscles
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[47]. However, we find that the improved regenerative myogen-
esis of the adult D2-mdx muscle occurs despite no depletion of
SCs in juvenile muscles (indicated by SC-specific markers, Pax7
and MyoD), as compared to adult D2-mdx muscle. Concomitantly,
expression of myogenin (an indicator of myogenic differentiation)
is comparable between the mild (B10-mdx) and the severe (D2-
mdx) models (Fig. 3). These findings agree with prior work
showing comparable SC pools and myogenic activity between
dystrophic and WT muscles [48, 49]. Based on in vivo SC transplant
and in vitro analysis of stromal interaction with SCs, it is clear that
the muscle niche also plays an important role in SC-mediated
regenerative myogenesis [16, 35, 50, 51]. In support of the role
played by SC extrinsic factors (muscle niche) in the regulation of
regenerative myogenesis, we observed that higher expression of
ECM and inflammatory regulators including Spp1, Arg1, Tnf-α, Il-10
is robustly aligned with the regenerative failure observed in the
juvenile D2-mdx muscle (Fig. 3). A recent single cell and spatial
transcriptomic study identified expansion of a unique pro-
inflammatory macrophage subcluster within mdx dystrophic
lesions that modulates FAP activity and fibrosis through Spp1
[44]. Interestingly this pathogenic immune-stromal cell interaction
is conserved amongst other chronic inflammatory myopathies,
including DMD [44].
Analyses of muscle ECM and inflammatory regulators have

established the importance of these factors in regulating SC
quiescence, activation, and myogenic differentiation [32, 52]. ECM
components and stromal cell response to injury have been
observed to be altered in the D2-mdx model [19, 20]. In
agreement with these changes, we observed a distinct inflam-
matory response to a muscle injury in the D2 (WT and mdx)
models, such that juvenile D2-mdx muscles exhibit a stronger
inflammatory response to injury (Fig. 4). In adult D2-mdx muscle,
the inflammatory response is restored to levels comparable to
B10-mdx, implicating the excessive inflammatory response in
myogenic deficit seen in the juvenile D2-mdx mice. Analysis of
timed muscle injury in D2-WT mice showed that the excessive
inflammatory response to a muscle injury in the juvenile D2-WT
mice is caused by delayed clearance of inflammatory macro-
phages that intravasate into the injured tissue (Fig. 5), adopting a
state that hinders regeneration of these inflamed lesions (Fig. 6).
Such aberrant clearance of inflammatory cells is a hallmark of
asynchronous regeneration and was previously implicated in
excessive fibrosis and failed regeneration in mdx and DMD
patient muscles [8, 34]. Concomitant with the co-occurrence of
altered ECM and inflammatory responses, we previously demon-
strated increased FAP accumulation in the damaged areas of D2-
mdx muscles, where aberrant FAP responses are inhibitory to
regenerative myogenesis [20, 53, 54]. We found that the aberrant
stromal (ECM and inflammatory) response alters FAP activity in
the juvenile D2-mdx such that even in an ex vivo co-culture assay,
these FAPs significantly suppressed SC-mediated regenerative
myogenesis. Our analysis determined that it is not the prolifera-
tion or differentiation of SCs, but the stage of SC fusion that is
diminished selectively by the FAPs derived from the juvenile D2-
mdx but not from the injured WT muscles or adult D2-mdx
muscles (Fig. 7). In support of this, we observed that treatment of
injured muscles in juvenile D2-WT mice with deflazacort inhibits
the aberrant inflammatory and fibrotic response and improves
the stromal cell niche that is more supportive of regenerative
myogenesis (Fig. 8).
These studies identify the aberrant muscle niche as the driver

for the myogenic deficit in the juvenile D2-mdx model, which is
attenuated by maturation and restoration of the stromal niche in
adult D2-mdx muscles, resulting in improved regenerative
myogenesis in adult mice. This finding suggests targeting the
extracellular response to injury as an attractive target to reduce
myogenic deficit and severity of disease in DMD.

MATERIALS AND METHODS
Animals
All animal protocols were reviewed and approved by the Institutional
Animal Care and Use Committee (IACUC) of the Children’s National
Research Institute and Institut NeuroMyoGène. Male and female mice were
used and grouped into specific cohorts based on their age—juvenile
5.5 ± 1.5 wk old, and adult 8.0 ± 2.5 mo old. Mice were maintained under
normal, ambient conditions with continuous access to food/water until
they were euthanized by CO2 and cervical dislocation. Tissues were
harvested, frozen, and stored at −80 °C. For in vivo studies, we used
dystrophic mouse models harboring a point mutation in Dmd exon 23,
C57BL/10ScSn-mdx/J (B10-mdx) and DBA/2J-mdx (D2-mdx) mice, as well as
their corresponding genotype controls – C57BL/10ScSnJ (B10-WT) and
DBA/2 J (D2-WT). For in vitro culture studies, primary FAPs were harvested
from CTX-injured C57BL/6-WT (B6-WT), or from juvenile or adult D2-mdx
mice. As SC from D2 mice exhibit an intrinsic deficit in their myogenic
ability [24], healthy SCs were obtained and harvested from B6-WT mice
based on our prior finding that C57BL/6 and C57BL/B10 muscles exhibit
similar myogenesis [20]. For each experiment, mice were randomized
based on sex and body weight, and outcomes were analyzed in an
unblinded manner through independent assessment by more than one
investigator. All mice were originally obtained from The Jackson
Laboratory and bred in-house for all experiments.

BrdU labeling
5′-bromo-2′-deoxy-uridine (BrdU) (Sigma-Aldrich, B9285) was administered
ad libitum in drinking water (0.8 mg/mL) and kept protected from light
during administration [20, 37]. Mice received BrdU ad libitum in drinking
water for the designated period of time indicated in each experiment
following spontaneous or NTX-induced injury. Mice were subsequently
euthanized, and tissues were harvested for processing 3 d after cessation
of BrdU administration [20].

Toxin-induced injury
Animals were anesthetized with isoflurane and the anterior hind limb was
shaved before intramuscular injection of notexin (NTX) or cardiotoxin (CTX)
as previously described [20, 34, 55].

Deflazacort treatment
Deflazacort (1 mg/kg, daily, I.P., Sigma-Aldrich, 1166116) was administered
to D2-WT mice (4 wk) within 24 h following NTX injury and continued daily
at 11 am (±1 h; light-cycle dosing schedule) for a period of 7 d. Control D2-
WT mice were administered saline. Mice received BrdU ad libitum in
drinking water from 24 to 72 h after NTX (refer to Fig. 8A).

Histology and immunofluorescence
Frozen muscles were sectioned at 8 μm thickness using a Leica CM1950
cryostat chilled to −20 °C, where tissues were mounted on slides and
stained using Hematoxylin and Eosin (H&E), Alizarin Red, and Masson’s
Trichrome according to TREAT-NMD Standard Operating Procedures for
quantification of damage, calcification, and fibrosis, respectively, as
previously described [20], or for immunostaining procedures as previously
described [20, 37]. For measures of pathology (fibrosis, damage, and
calcification) and regeneration (% CNF and % Brdu+ CNF), quantification
was performed across the entire muscle cross-section for each tissue
sample. Muscle sections were stained with primary and secondary
antibodies as described in Supplementary Table 1.

Microscopy
We used Olympus VS120-S5 Virtual Slide Scanning System with UPlanSApo
40×/0.95 objective, Olympus XM10 monochrome camera, and Olympus
VS-ASW FL 2.7 imaging software. Analysis was performed using Olympus
CellSens 1.13 and ImageJ software.

Gene expression
Triceps muscles were used to perform gene expression analysis. Total RNA
was extracted from muscle samples by standard TRIzol (Life Technologies)
isolation. Purified RNA (400 ng) was reverse-transcribed using Random
Hexamers and High-Capacity cDNA Reverse Transcription Kit (Thermo
Fisher, 4368814). The mRNAs were quantified using individual TaqMan
assays described in Supplementary Table 2 on an ABI QuantStudio 7 Real-
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Time PCR machine (Applied Biosystems) using TaqMan Fast Advanced
Master Mix (Thermo Fisher, 4444556).

TGF-β1 ELISA
Levels of active TGF-β1 in triceps were quantified using Quantikine ELISA
mouse TGF-β1 immunoassay (R&D Systems, MB100B) according to the
manufacturer’s recommendations and as previously described [20]. Final
values were normalized to total protein concentration.

Isolation of satellite cells and FAPs
SCs were isolated from the hindlimb muscles of C57BL/6 mice (n= 4–6) using
negative selection MACS Satellite Cell Isolation Kit (Miltenyi, 130-104-268)
according to the manufacturer’s protocols. Muscles were minced and
incubated with Muscle Dissociation Buffer (Ham’s F-10 (Sigma, N6908), 5%
horse serum (Gibco, 16050-130), 1% penicillin/streptomycin (P/S) (Gibco,
15140-122), collagenase II (Gibco, 17101-105)) at 37 °C for 60min with agitation
(60–70 RPM). Suspensions were re-incubated with collagenase II and dispase
(Gibco, 17105-041) in Ham’s F-10 supplemented with 5% Horse Serum and 1%
P/S at 37 °C with agitation for 30min. Suspensions were filtered and the MACS
LS column was sorted (Miltenyi, 130-042-401). Cells were re-suspended in
DMEM F-12 (Gibco, 31331-028) supplemented with 20% FBS (Gibco, 10270-
106), 2% Ultroser G (Pall Gelman Sciences, 15950-017), and 1% P/S. As CTX
injury of mouse muscle leads to SCs that are comparable in numbers and
properties to those isolated following NTX injury [55], we interchangeably used
CTX injury to isolate FAP and SCs for culture studies. FAPs were isolated from
gastrocnemius muscles of n= 4-6 juvenile (7 wk) B6-WT 4 d post-CTX injury,
juvenile (7wk) D2-mdx, or adult (5.5 mo) D2-mdx by pre-plating the cell
suspension for 4 h after the digestion procedure described above. Cells were
washed with PBS and left to amplify in non-coated flasks for 4–5 days in a
growth medium (DMEM F-12, 10% FBS, 1% P/S).

Co-culture of satellite cells and FAPs
SCs isolated from B6-WT mice and FAPs isolated from CTX-injured B6-WT,
or uninjured juvenile or adult D2-mdx muscles, were co-cultured without
FAPs (No FAP) or FAPs isolated from indicated WT or mdxmice cultured on
0.4 µm porous transwell culture inserts (Nunc, 056408). SCs were plated in
the bottom of the transwell coated with HGF Matrigel (BD Biosciences,
354234), while FAPs were plated in the upper insert. SCs and FAPs were
plated in a 1:3 ratio in a low serum growth medium (DMEM, 2.5% FBS, 1%
P/S) and assays were performed after 48 h. For proliferation assay, SCs were
plated at 2000 cells/cm2, and EdU incorporation was performed after 48 h
and detected using Click-iT™ EdU Cell Proliferation Kit (Thermo Fisher,
C10337). For differentiation assay, SCs were plated at 10,000 cells/cm2, and
myogenin (Santa Cruz, SC-12732) staining was used to evaluate
differentiation. For the fusion assay, SC was plated at 50,000 cells/cm2,
and desmin (Abcam, ab32362) staining was performed to quantify the
fusion index. RAW data acquired from different experiments were
normalized to no FAP controls.

Statistics
Sample size estimations were based on a similar study we previously
performed [20]. GraphPad Prism 9.2.0 was used for all statistical analyses of
data. Statistical analysis was performed using the non-parametric
Mann–Whitney test. Data normality was assessed for all statistical
comparisons. All p-values less than 0.05 were considered statistically
significant; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. Data plots
were reported as scatter plots with mean ± SD.

DATA AVAILABILITY
All data will be made promptly available to the scientific community upon request.
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