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Pathogens or danger signals trigger the immune response. Moderate immune response activation removes pathogens and avoids
excessive inflammation and tissue damage. Histone demethylases (KDMs) regulate gene expression and play essential roles in
numerous physiological processes by removing methyl groups from lysine residues on target proteins. Abnormal expression of
KDMs is closely associated with the pathogenesis of various inflammatory diseases such as liver fibrosis, lung injury, and
autoimmune diseases. Despite becoming exciting targets for diagnosing and treating these diseases, the role of these enzymes in
the regulation of immune and inflammatory response is still unclear. Here, we review the underlying mechanisms through which
KDMs regulate immune-related pathways and inflammatory responses. In addition, we also discuss the future applications of KDMs
inhibitors in immune and inflammatory diseases.
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FACTS

● Abnormal expression of KDMs play a crucial role in the
pathogenesis of inflammatory diseases.

● KDMs regulate the development and function of immune cells
and immune-related signaling pathways, and influence the
expression of inflammatory cytokines.

● Targeting specific KDM inhibitors is potential therapeutic
approach in immune and inflammation-related diseases.

OPEN QUESTIONS

● What are the consequences of substrates that specific
inhibition of KDMs on immune cells and inflammatory
diseases?

● Which KDMs in immune cells promote TLRs response?
● What are the specific protein substrates of KDMs in different

immune pathways? What non-histone substrates can be
targeted by KDMs?

● Which KDMs are good drug targets for the treatment of
inflammatory diseases?

INTRODUCTION
The immune response is critical in regulating the body’s
immune homeostasis by protecting it from infections and

injury [1–3]. Epigenetics included the dynamic regulation of
different gene expression processes, such as DNA modification,
chromatin remodeling, non-coding RNA regulation and histone
modification. These processes were relevant to fine tuning the
immune response by establishing specific gene expression
patterns, through gene expression regulation at the transcrip-
tional and post-transcriptional levels [4–6]. Histones were the
first proteins identified as lysine methylation substrates,
while enzymes mediating methylation and demethylation
were called histone methyltransferases (KMTs) and histone
demethylases (KDMs) [7, 8]. Histone methylation refered to
the process of transferring methyl from methionine to histone
amino acids lysine (K) or arginine (R). Demethylation of
different sites could lead to different effects, including the
inhibition or activation of target genes [9]. Interestingly,
abnormal histone demethylation levels are closely associated
with various inflammatory diseases, including kidney injury,
liver injury, and autoimmune diseases [10, 11]. Increasing
evidence had revealed that this modification controls cell
development and regulates immune pathways [12].
In this review, we summarized the role of KDMs in immune

cells’ development and the regulation of immune-related
pathways, including Toll-like receptor (TLR), cGAS-STING, and
IFN signal pathways. This review focuses on the role of the KDM
families of proteins in immune cells and their effect on
inflammation to provide a theoretical basis for developing
small-molecule KDM inhibitors in treating inflammatory
diseases.
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OVERVIEW OF KDMS
KDMs mediates the removal of methyl groups from histone lysine
and arginine residues, a labile process that could regulate
reversible chromatin marks [13, 14]. Histone lysine methylation
had been determined as a reversible modification with the
discovery of KDMs. More than 30 KDMs had been identified in
humans and mice, with various motifs and essential functional
domains for enzyme catalytic activity. KDMs were divided into two
categories according to their catalytic mechanism (Fig. 1) :Lysine-
specific demethylases (LSDs) and JmjC (Jumonji domain-
containing protein) KDMs [7, 15–17]. LSDs were KDMs lacking
the JmjC domain. The LSDs family were currently constituted by
two members only, LSD1/KDM1A and LSD2/KDM1B [18, 19]. KDM1
had a C-terminal amine oxidase-like domain that contained the
substrate and flavin adenine dinucleotide binding sites, which
process the removal of monomethylated and dimethylated
markers [20, 21]. KDM1 cannot remove trimethyl groups [22]. On
the other hand, the KDM2-8 proteins contain a JmjC catalytic
domain of ~170 amino acids with substrate specificity and
demethylase activity that could remove mono-, di-, and trimethyl
groups on specific sites of lysine residues [23]. This domain can
remove methylation from histone H3 on lysine residues K4, K9,
K27, and K36 and histone H4-K20 (Fig. 2). The JmjC domain had a
similar structure to that of the Cupin protein family and contains
oxygenase-catalyzed domains dependent on Fe(II) and α-KG [24].
This domain also contained a zinc finger (ZF), which brought the
JmjC domain close to the C-terminus domain and was indis-
pensable for the stability and function of KDMs. Besides the JmjC
catalytic domain, all KDM proteins contain domains that
interacted with the N-terminus of JmjN, providing structural
integrity without catalytic function [25]. KDMs included Swi3p,
Rsc8p, Moira domains, AT-rich interaction domains (ARID), plant
homology domains (PHD), ZF, and Tudor domains. In addition, the
F-box, Leucine Rich Repeat, and tetrapeptides domains play
critical roles in their protein–protein interactions [24].
The first discovered histone demethylase containing a JmjC

domain is the F-box and leucine-rich repeat protein 11 (also
known as KDM2A). KDM2A had specific JmjC-dependent
demethylation activity for H3K26me3 [26, 27]. Other domains of
KDM2A include a ZF domain, a PHD domain, and three leucine-
rich repeats. It was reported that KDM2A was recruited to CpG
islands via the ZF domain, resulting in a unique chromatin state by
removing the H3K36me2 modification [28]. The catalytically active
ZF, ARID, and PHD domains in KDM5 separate their catalytic cores
into N-terminus and C-terminus to improve substrate specificity
[29, 30]. The N-terminal PHD domain binds to H3K4me, while the
C-terminal PHD domain bound to H3K4me3/me2 [29]. In KDM5B,
ARID was the primary DNA-binding interface through the L1 ring,
which recognized the GCACA/C sequence, whereas PHD1 was
involved in histone recognition and may be inhibited demethylase
activity [29]. In contrast, the PHD of KDM7 had been reported to
be non-essential for the catalytic activity, but was essential for
substrates specificity [31]. For instance, the JmjC and PHD
domains of KDM7B bind to H3K4me3, enhancing the demethyla-
tion rate on its homologous substrate, H3K4me2 [31, 32]. In
addition, KDMs contain the Tudor domain, consisting of tubular
structures with antiparallel beta chains present in many
chromatin-associated with proteins [33]. KDM4A-C contained a
conserved dual Tudor domain that determined the different
binding preferences of these enzymes [34]. On the contrary,
KDM4D and KDM4E do not contained a Tudor domain and used
specific structures within the JmjC domain to recognize lysine [35].

REGULATION OF IMMUNE CELL DEVELOPMENT BY KDMS
Immune cells are critical components of the immune system,
producing various kinds of cytokines, protecting against patho-
gens and clearing “nonself” substances to maintain the

homeostasis of the immune system [36–41]. The development
of hemopoietic stem cells (HSCs) into different immune cells, such
as T lymphocytes, NK cells, B lymphocytes, and macrophages,
involve selective gene expression patterns regulated by intricate
mechanisms [42]. The development of many diseases is related to
disequilibrium in the quantities or functions of immune cells,
where epigenetic regulation plays an important role. KDMs
modulate cellular differentiation by regulating the activity of
cell-specific gene enhancers [43]. In addition, KDMs played a role
in the lineage commitment of immune cells after stimulation by
pathogens or other signals by regulating genes expression via
histone demethylation [44]. Studies have shown that KDMs were
essential players in innate and adaptive immunity and participate
in antivirus and antitumor immunity [45–48]. KDMs control
the maturation, differentiation, and function of immune cells,
thus participating in the immune response and maintaining
homeostasis (Fig. 3).

Functions of KDMs in T lymphocytes development
T lymphocytes play a crucial role in regulating the immune system
[49–51]. The activation of T cells must be maintained at an
appropriate level to respond against pathogens and avoid
overactivation and autoimmune diseases [52]. T cells were derived
from lymphoid progenitors in the bone marrow, generating TCR in
the thymus and developing into CD4+ or CD8+ single-positive
T cells [53]. Upon stimulation by pathogens or cytokines, mature
T cells in the peripheral circulation differentiate into various helper
T cells (Th cells) or cytotoxic T lymphocytes (CTLs), a process
widely believed to be regulated by KDMs [54]. Indeed, KDMs were
shown to be associated with T cell maturation in the thymus.
Histone demethylation promoted T cell maturation by suppressing
marker genes of T cell precursors and inducing T cell-specific gene
expression [48]. Knockdown of KDM1A inhibited the down-
regulation of Ctla4 and Prdm1, explicitly expressed in double
negative T cells (CD4−CD8−), blocking the formation of double
positive (CD4+CD8+) or CD4+ T cells [55]. It was also reported that
KDM6A and KDM6B could induce the expression of S1pr1, a
critical protein for T cell maturation, and the transcription factor
Klf2 via H3K27me3 demethylation, inducing intrathymic T cell
precursors to differentiate into terminal T cells [56].
Furthermore, KDMs are involved in the differentiation of CD4+

T cells into various subsets of Th cells that produce different
cytokines [57, 58]. Wei et al. [59]. discovered that KDM1/5/6
targeted H3K4me3 and H3K27me3 and were associated with early
T cell and Th cell differentiation by inducing the expression of
signature genes in Th cells, such as Ifng, Il4, Il17, and Tbx21. Suzuki
et al. [60]. reported that KDM1A increased the expression of
transcription factors, including Tbx21, Eomes, and Runx2, which
promote the development of Th1 cells and the production of
IFN-γ. Similarly, Liu et al. [61]. indicated that the knockdown of
KDM1A could inhibit the proliferation of CD4+ T cells, and
decrease the secretion of IFN-γ and IL-17. Meanwhile, KDM5C was
found to be downregulated in CD4+ T cells from multiple sclerosis
(MS) patients, facilitating Th17-mediated IFN-γ secretion [62]. In
addition, by interacting with lncRNA A112010, Yang et al. [63].
found that KDM5A enhanced the production of pro-inflammatory
Th1 and Th17 cells by decreasing H3K4me3 and suppressing the
transcription of IL-10. Furthermore, Ptaschinski et al. [64]. have
shown that upon infection with the respiratory syncytial virus,
ablation of KDM5B might enhance the production of IFN-β, IL-6
and TNF-α by increasing H3K4me3 in their promoters. Besides, the
expression of Th2 cytokines was downregulated, resulting in
chronic infection. Similarly, in the widely used autoimmune
encephalomyelitis, MS mouse model, knockout of KDM6A limited
the development of the autoimmune disease by suppressing
CD44 expression on CD4+ T cells via H3K27me3 targeting Th2
cytokines expression and Th1 response blockade [65]. Using a
colitis model, Qing et al. [57]. revealed that KDM6B could facilitate
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Fig. 1 Schematic diagram of two families of human KDMs. The key domains of each KDMs are represented in colored regions, and the
number of amino acids is written in each functional domain. SWIRM Swi3p, Rsc8p, and Moira domain; JmjC Jumonji C domain, JmjN Jumonji N
domain, ARID AT-rich interacting domain, PHD plant homeodomain domain, F-box F-box domain, LRR Leu-rich repeat domain, TPR
tetratricopeptide domain, Tudor Tudor domain, CW CW-type zinc-finger domain, C6 C6 zinc-finger domain, CXXC CXXC zinc-finger domain,
C5HC2 C5HC2 zinc-finger domain.
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H3K27me3 demethylation on Th1 transcription factors, including
Foxp3, Ifng and Cd44, while its deletion inhibited the transition of
intestinal CD4+ T cells into Th1 cells. Furthermore, Liu et al. [66].
discovered that KDM6B was rapidly induced upon stimulation of
TCR signaling. Overexpression of KDM6B decreased H3K27me3 in
the Rorγt promoter, a crucial Th17 transcription factor, promoted
Th17 differentiation, and induced the expression of cytokines such
as Il17, Il17f, and Il22. However, depletion of KDM6B or treatment
with GSK-J4, a KDM6A/6B specific inhibitor, reduced Rorγt
expression, suppressing the generation of Th17 cells [66, 67].
Finally, KDM6B inhibited TGF-β-induced FOXP3 expression and the
development of Treg cells and facilitated differentiation into pro-
inflammatory phenotypes, including Th17 or Th1, thus aggravat-
ing inflammatory responses [68].
Besides CD4+ T cells, KDMs regulated the development of

CD8+ and other subsets of T cells. After viral infection, KDM6B was
rapidly upregulated in CD8+ T cells, decreasing H3K27me3
markers and enhancing CTL-mediated immune response and
the formation of memory T cells [69, 70]. Similarly, depletion of
KDM6A in mice treated with Listeria monocytogenes expressing
OVA enhanced immune response after secondary infection by
reducing CTLs formation through H3K27me3 regulation on Prdm1,
which encoded Blimp1 and played essential roles in the
development of CD8+ memory T cells [71]. In addition, KDM6B
was shown to enhance the production of mucosal-associated
invariant T cells (MAIT), a special type of T cells that produced Th1-
like effectors. Indeed, the KDM6B co-factor α-KG was shown to
enhance the effects of MAIT [72]. Intestinal intraepithelial
lymphocytes (IELs) were another type of T -cells located in the
intestinal epithelium. Knockout of KDM6B reduced the number of
TCRαβ+ CD8αα+ IELs in mice, and impaired the lytic function of
IELs through H3K27 demethylation on Bcl2 and FasL [44].

The role of KDMs in the development and function of B
lymphocytes
B lymphocytes were essential effectors in humoral immunity, and
epigenetic regulation is required for the proliferation and
differentiation of B cells [73–76]. Upon activation by thymus-
dependent antigen, naïve B cells (nB) transform into plasmablasts
(PB) to form germinal centers (GC), from which antibody-secreting
plasma cells and memory B cells were developed. Haines et al.
[77]. found that the knockdown of KDM1A in mice treated with
LPS led to a shift in H3K4me1 levels in cell cycle genes and
transcription factors, including PU.1, IRF3 and Blimp-1, thus
suppressing the differentiation of nB into PB.
The proliferation and differentiation of B cells in GC require the

assistance of Th cells, mainly T follicular helper (Tfh) cells that play
indispensable roles. Hung et al. [78]. indicated that Tfh-derived
signaling upregulated KDM4A and KDM4C expression, blocking

normal cell cycle and inhibiting the proliferation of B cells by
interacting with WDR5. Besides, depletion of KDM6A in T cells was
shown to inhibit the expression of interleukin-6 receptor-α, Icos,
and other genes related to the development of Tfh cells [79].
Consequently, the decreased in Tfh cell population impaired
ability of B cells to produce specific IgG antibodies in response to
lymphocytic choriomeningitis virus (LCMV) infection. Kei et al. [80].
highlighted the role of KDM6A in GC B cell maturation, showing
that IL-4 stimulation activates the STAT6 pathway, which induces
KDM6A recruitment into Bcl6 enhancer, resulting in H3K27me3
demethylation and Bcl6 induction, thereby facilitating the
formation of mature B cells in GC. Interestingly, the knockout of
KDM1A restrained the Bcl6-derived proliferation of GC B cells.
Interestingly, BCL6 could then form a suppressive complex with
KDM1A and control the regulation of Bcl6-targeted genes.
Similarly, KDM6B was also associated with B cell development
[81], whereby KDM6B transcription was reported to be upregu-
lated in GC B cells compared to undifferentiated B cells [82].

The role of KDMs in the polarization and function of
macrophages
Macrophages are key components of innate immunity that
regulate tissue homeostasis and participate in tissue repair by
phagocytosis and clearing the debris of dead cells [83–86].
Macrophages could be polarized into functionally distinct
phenotypes. Classically activated (M1) macrophages have pro-
inflammatory effects, while alternatively activated (M2) macro-
phages manifest anti-inflammatory functions and promote tissue
repair [87–90]. KDMs were involved in macrophage polarization.
Indeed, KDM3C was shown to mediate M1 polarization and
suppress glioma by stimulating the miR-302a/METTL3/SOCS2 axis
[91]. KDM3C increased the expression of miR-302a by H3K9me1
demethylation in its promoter region, miR-302a targeted METTL3,
which in turn inhibits SOCS2 via an m6A modification. While
KDM6B did not influence M1 polarization, it was essential for M2
macrophage differentiation. Investigations on anti-helminth
immunity revealed that KDM6B was a positive regulator of M2
activation by upregulating the transcription factor interferon
regulatory factor 4 (IRF4) via H3K27me3 demethylation [92, 93].
Besides, the supplement of alpha-ketoglutaric acid (α-KG), in
inflammatory diseases stimulated by the granulocyte-macrophage
colony-stimulating factor, facilitated IL-4 induced M2 polarization
via the KDM6B/IRF4 axis, while IFN-β reversed macrophage
activation [94, 95]. In addition, stimulation of macrophages with
LPS or cytokines activated of the NF-κB signaling pathway and
enhanced the expression of KDM6B. The latter combined with
PcG-target genes to modify downstream gene expression via
H3K27me3 demethylation, fortifying macrophages’ response
against inflammatory stimulation [96]. Interestingly, Huang et al.

Fig. 2 Five major demethylation sites of KDMs in histones H3 and H4 (red). The number above the site refers to the rank number of each
lysine residue in the histone.
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[97]. demonstrated that LPS induced the upregulation of KDM6B
in bone marrow-derived macrophages, leading to decreased
H3K27me3 on Nrf2 promoter, improving NLRP3 inflammasome
activation in macrophages. Indeed, KDM6B-specific inhibitor GKS-
J4 restrained this process and inhibited the development of colitis
in sodium dextran sulfate-treated mice. Similarly, Zhuo et al. [98].
showed that the expression of KDM1A was induced, and the
NLRP3 inflammasome was activated in RAW264.7 macrophages
treated with pro-inflammatory Ox-LDL. Conversely, inhibition of
KDM1A increased SESN2 and activated the PI3K/Akt/mTOR
pathway, ultimately decreasing inflammation. In Leishmania

donovani-infected macrophages, activated HIF-1α was shown to
regulate macrophages polarization by inducing the expression of
KDM5B and KDM6B, modifying H3K4 and K3K27 trimethylation
and consequently suppressing M1 cytokines (TNF-α and IL-12) and
promoting M2 factors such as Arg-1 [99].

The role of KDMs in the development and function of NK cells
Natural killer (NK) cells are cytotoxic lymphocytes that rapidly fight
against pathogens to maintain homeostasis [100–103]. NK cells
play important roles during early viral infection by releasing
granules containing perforin and granzymes and secreting critical

Fig. 3 Regulatory mechanisms of KDMs in lymphocytes, NK cells, and macrophages differentiation. The KDM6 subfamily is important for
the development of T lymphocytes. KDM6A and KDM6B promote the expression of S1pr1 and Klf2, crucial for the maturation of T cells, by
targeting promoter H3K27me3. Subsequently, KDM6B modifies the expression of Th17-related genes including Il22, Il17f, Il17, Rorγt, and Th1-
related genes including T-bet and Smad3, promoting the differentiation into Th17 and Th1 cells, respectively. During the differentiation of B
cells, KDM1A takes part in repressing PU.1, IRF4 and Blimp-1 through decreasing H3K4me3, which is crucial for the formation of plasmablasts.
KDM5A recruited by p50 is responsible for the downregulation of Socs1 through erasing H3K4me3 in NK cells, inducing IFN production. In
macrophages, KDM3C modulates H3K9me of the miR-302a promoter and inhibits M1 macrophage differentiation via the miR-302a/METTL3
axis. Finally, the KDM6B/IFR4 axis promotes the differentiation of M2 macrophages.
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antiviral cytokines such as interferon-γ (IFN-γ) [104–106]. Bailey
et al. [107]. showed that KDM1A regulated the production of
reactive oxygen species and glutathione in NK cells, while SP-
2577, an inhibitor of KDM1A, weakened the cytotoxic function of
NK cells by impairing oxidative phosphorylation and glycolysis. In
addition, Zhao et al. [108]. observed an upregulation of KDM5A in
NK cells infected with monocytogenes (Lm) via p50 recruitment,
leading to Socs1 transcription suppression by H3K4me3 demethy-
lation on its promoter regions. Meanwhile KDM5A activated the
JAK2-STAT4 signaling pathway to induce the secretion of IFN-γ.
Studies by Adam et al. [109]. indicated that KDM6B from
peripheral blood or tissues of rheumatoid arthritis (RA) patients
was upregulated compared to healthy controls. Furthermore, GSK-
J4, an inhibitor of the H3K27me3 demethylase KDM6B, inhibited
the cytokine-stimulated production of IFN-γ, TNF-α, GM-CSF, and
IL-10, thus suppressing the inflammatory response in NK cells.
The invariant natural killer T (iNKT) cells are the most well-

studied type of NKT cells. They had the unique ability to recognize
lipid antigens presented by CD1d on the surface of antigen-
presenting cells [110, 111]. Interestingly, KDM6A was enriched in
the promoter of PLZF in double-positive (CD4+CD8+) T cells, while
knockout of KDM6A enhanced the repressive H3K27me3 and
inhibited the transcription of PLZF, which controls the production
of specific TCR of lipid antigens on NKT cells [112]. Similarly, Beyaz
et al. [113]. showed that KDM6A inhibited the differentiation of
glycosphingolipid α-galactosylceramide (α-GalCer)-induced mouse
iNKT cells by decreasing H3K27me3 in the promoters of iNKT
signature genes such as Tbx21, Il2rb and Klrd1. KDM6A has been
also shown to interact with JunB to establish lineage commitment
of iNKT cells. Finally, studies by Northrup et al. [114]. demonstrated
that Kdm6a/Kdm6b depletion downregulated cell cycle-related
genes in NKT cells, alleviating hepatic injury in ConA-induced mice
liver injury model.

KDMS IN THE IMMUNE RESPONSE AND RELATED SIGNALING
PATHWAYS
Immune responses depend on how immune cells react to stimuli.
Pathogens or inflammatory signals recognized by pattern
recognition receptors (PRRs) or cytokine receptors are transduced
along various signaling pathways, activating nuclear transcription
factors and inducing the production of effector molecules to
stimulate the immune response. KDMs are involved in the
regulation of gene transcription and thereby participate in the
control of immunity (Fig. 4).

KDMs regulate the recognition and transduction of
stimulatory signals
PRRs are important receptors on innate immune cells, which
include TLRs, RNA helicases retinoic acid-inducible gene I that
recognizes cellular RNA, and the cGAS-STING pathway recog-
nizing DNA [115, 116]. Among these, TLR9 was shown to bind
to the CpG motif of viral double-stranded DNA and plays
critical roles in anti-viral immunity. Hasan et al. [117]. found
that KDM5B was recruited by the E7 protein of HPV16 via NF-κB
signaling pathway in infected human epithelial cells. KDM5B
interacted with HDAC1 to downregulate TLR9 expression by
modulating its promoter activity, thus suppressing viral
infection. As for the regulation of the cGAS-STING pathway,
Wu et al. [118]. reported that KDM5B/5C suppressed the
expression of STING after viral infection by removing H3K4me3
modifications. An inhibitor of KDM5 activated the cGAS-STING-
TBK1-IRF3 axis to boost IFN production and anti-viral immune
response. Wang et al. [119]. indicated that KDM5A activated
the TLR7/8 and PI3K-AKT-S6K1 pathways to promote PD-L1
expression. CCl4-induced liver fibrosis studies by Dong et al.
[120]. showed that upregulation of KDM4D catalyzed H3K9
demethylation of TLR4 promoters, which in turn activated NF-

κB signaling pathway to induce fibrosis. Taken together, these
studies support that KDMs regulated stimuli recognition
by PRRs.
The transduction of PRR signals relies on different cellular

pathways, and KDMs play two roles in this process [121]. First,
KDMs influence the activation of these pathways. For instance, in
NK cells stimulated with Lm infection or IL12/18, KDM5A was
recruited to the promoters of SOCS1 and inhibited its expression
via H3K4me3 demethylation, which activated STAT4 signaling and
led to IFN-γ production [108]. Similarly, TFN-α-induced endothelial
inflammation was shown to be dependent on the activation of
Jagged-1 and the Notch activator ADAM17 and by KDM6A/6B-
induced H3K27me3 demethylation [122]. In addition, KDM7B
inhibited IFN-γ-target genes by removing H4K20me1 and blocking
the transduction of IFN-γ signals [123]. Second, KDMs regulated
several transcription factors, and NF-κB was one of the most
critical effectors mediating TLR or cytokine-target genes. Kim et al.
[124]. indicated that in sepsis combined with lung injury, activated
PKCα was transported into the nucleus and induced the
interaction of KDM1A with p65, which led to p65 demethylation,
suppressing inflammatory response via PKCα-KDM1A-NF-κB axis
and ultimately reducing the death rate in mice. LPS could also
induce the expression of FBX11 (KDM2A) via NF-κB pathway.
However, KDM2A targeted the lysine K218 or K221 of p65 and
inhibited p65 expression through demethylation on those sites,
constituting negative feedback [125]. Through association with
deubiquitinase USP38, KDM5B antagonized NF-κB signaling and
inhibited LPS-stimulated activation of Il6 and Il23a promoters
[126]. Connor et al. [127]. demonstrated that KDM6B was
upregulated in epithelial cells infected with S. pneumoniae.
Moreover, KDM6B removed H3K27me2 and recruited p65 to the
Il11 promtoer, regulating the production of IL-11 and other
cytokines including IL-1β and TNF-α. Studies of Higashijima et al.
[128]. showed that KDM6A and KDM7A synergistically occupied
the NF-κB binding site in TNF-α-induced endothelial cells,
enhancing the expression of p65 target genes through the
regulation of H3K9me2 and H3K27me3. Similarly, KDM7C was
recruited by p65 to the promoters of Tnf, Ccl4 and Il11 upon LPS
stimulation, which activated their expression by removing
H4K30me3 [129]. Finally, KDM4A was also recruited by p65 after
viral infection, inducing the production of INF-β through H3K9me3
demethylation [130].

KDMs mediate the expression and function of effector
molecules
KDMs positively regulate inflammatory factors [131]. During the
process of innate immunity, KDM6A/6B removed the repressive
H3K27me3 and promoted IL-6 mediated inflammation [132–134].
Indeed, the KDM6 inhibitor GSK-J4 was shown to suppress TNF-α
production upon LPS stimulation possibly via the regulation of
TNFA transcription by KDM6A/6B [135]. During the development
of dendritic cells (DCs), GSK-J4 significantly decreased the
expression of the co-stimulatory molecules CD80/CD86, upregu-
lated anti-inflammatory TGF-β1 and down-regulated pro-inflam-
matory IL-6, thus suppressing the activation of DCs [134, 136].
GSK-J4 also promoted IFN-γ secretion, since KDM6B get recruited
by Cbx2 to IFN promoter to enhance its transcription through
H3K27me3 demethylation [109, 137]. KDM6A was also shown to
interact with the methyltransferase MLL4 and regulated the
enhancers of Ifnb, thus promoting IFN-β expression [133]. In
addition, KDM2B could interact with Brg1, which was the core
component of the SWI/SNF complex, increasing chromatin
accessibility of the Il6 promoter and inducing its expression in
macrophages and DCs [131].
Conversely, KDM1 and KDM5 proteins that targeted the

promoting H3K4 methylation often disrupt chromatin accessibility
and inhibited gene expression [138, 139]. KDM1A could directly
inhibit IL-1β, IL-6, IL-8 and the classic complement components,
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working synchronously with HDAC1 to restrain inflammation
[140]. The endotoxic shock was shown to cause KDM1A
suppression, which protected against inflammatory response
over-activation, leading to excessive proliferation of myeloid
progenitors, producing IL-1β and TNF-α and forming cytokine
storms [138]. Furthermore, KDM5C could interact with Polycomb
group factor 6 to regulate the H3K4me3 of Il11b and Ciita,
suppressing the activation of DC and T cells [139]. By stimulating
mouse embryonic fibroblasts with poly(I:C), Yu et al. [141]. showed
that KDM5A was recruited to the IFN-β promoter, inhibiting its
transcription via H3K4me3 demethylation.

KDMS AND INFLAMMATORY DISEASES
There was growing evidence that abnormal expression of KDMs
was associated with a variety of inflammatory diseases, including
mastitis, liver fibrosis, inflammatory kidney injury, inflammatory
pulmonary injury, colitis, autoimmune diseases, and inflammation-
related cancers [96, 142–144]. The expression of KDMs was up-
regulated or down-regulated in these diseases, and the

transcription and secretion of inflammatory mediators were
regulated through specific demethylation or activation of
inflammation-related pathways, thus promoting the occurrence
and development of inflammatory diseases [133, 145–148]
(Table 1). Since there are so many inflammatory diseases that
may involve the dysfunction of KDMs, this review we discuss six of
the following inflammatory diseases.

Mastitis
Mastitis was a disease characterized by the inflammation of the
breast parenchyma [149, 150]. In a mouse model of mastitis, LPS
was shown to activate the NF-κB signaling pathway through TLRs
recognition on mammary epithelial cells, promoting the produc-
tion and release of inflammatory factors [151]. In a similar mouse
model of mastitis induced by LPS and respective in vitro cell
experiments, Wang et al. [152]. found that the expression of
KDM6B in mammary epithelial cells was increased, and H3K27me3
demethylation in the promoter region induced the expression of
TLR4 and activated downstream transduction of pro-inflammatory
NF-κB signaling. Similarly, GSK-J1 suppressed KDM6B and

Fig. 4 Regulation of innate immune pathways by KDMs. KDMs regulate TLR, cGAS-STING, and IFN signaling pathways to modulate
inflammation and antiviral responses. (1) TLRs signaling pathway. KDM4D promotes TLR4 transcription by demethylating H3K9, thereby
activating the TLR4/TIRAP/MyD88/NF-κB signaling pathway, which in turn promotes the expression of hepatic fibrosis factors COL1A1, ACTA2,
VIM, and inflammatory cytokines TNF-α and IL-1β. Increasing the expression of KDM5A can inhibit Pten, activate PI3K/AKT/S6K1/PD-L1 and
TLR7/8 signaling pathways, and promote the expression of cytokines and chemokines. (2) After viral infection of cells, KDM5B/5 C can inhibit
STING expression by demethylation of H3K4me3, while KDM5 inhibitors increase IFN levels and improve antiviral immune response by
enhancing the cGAS-STING-TBK1-IRF3 pathway. (3) Inhibition of KDM1A in cells induces the level of SESN2, which activates the autophagy-
related PI3K/Akt/mTOR pathway, ultimately inhibiting the activation of the NLRP3 inflammasome. At the same time, it increases KDM6B and
promotes ASC/NLRP3/Caspase, hence promoting the inflammatory response.
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therefore decreased the expression of inflammatory cytokines
TNF-α, IL-1β and IL6. KDM1A was also a key pro-inflammatory
regulator of mastitis, as demonstrated by Wang et al. [153] These
authors had found that a KDM1A inhibitor (GSK-KDM1A) could up-
regulate histone H3K4me2 and H3K9me2, which inhibited the NF-
κB signaling pathway to reduce the expression of inflammatory
factors including TNF-α, IL-6, and IL-8, thus reducing the
inflammatory reaction in mammary epithelial cells.

Hepatic fibrosis
The central step of hepatic fibrosis development was the
transformation of hepatic stellate cells (HSCs) into activated
myofibroblasts, which played an important role in the regulation
of hepatic fibrosis [154–159]. Studies have shown that KDMs
control the activation of HSCs [160, 161]. Yan et al. [162]. proposed
that KDM6B was a pivotal negative regulator of CCl4 and BDL-
induced mouse liver fibrosis. On the one hand, KDM6B inhibited
TGF-β/SMAD signaling by increasing BAMBI expression, thus
reducing the transformation of HSCs. On the other hand, KDM6B
promoted cell senescence by upregulating p21 and Gadd45, and
suppressed the expression of extracellular matrix (ECM) proteins
and α -smooth muscle actin. Ming et al. [163]. found that KDM4
was down-regulated in HSCs with liver fibrosis, and the over-
expression of KDM4 could synergize with SREBP2 to activate miR-
29 transcription and inhibit HSCs activation. Furthermore, Li et al.
[164]. observed that Brg1 recruited KDM4 and interacted with
β-catenin to enhance Wnt signaling in hepatocytes, thus
promoting liver regeneration after injury. In contrast, Fang et al.
[120]. found that the expression of KDM4D was up-regulated
during HSC activation, which further activated the TLR4/NF-κB
signaling pathway and promoted liver fibrosis. In addition, Yan
et al. [165]. showed that in a CCl4-induced mouse liver fibrosis
model, the expression of KDM3A in HSCs was down-regulated,
whereas KDM3A overexpression induced the demethylation of
H3K9me2 in the PPARγ promoter, leading to inhibition of HSC
activation. A recent study supported that KDM5 proteins were key
factors for sex differences in alcohol-related liver disease (ALD).
Indeed, KDM5B and KDM5C promoted liver fibrosis through
increasing transcription of fibrosis and inflammation related
genes, such as Col3a1, Itgav, and Gabarapl1 and down-
regulating the expression of AhR only in female mice and female
ALD patients [166].

Inflammatory kidney injury
Kidney fibrosis was generally believed to be central to the
progression from chronic kidney injury to end-stage renal disease
[167], and it had been reported that the renal fibrosis signaling
pathway was regulated by epigenetic mechanisms [168, 169].
Indeed, Yu et al. [170] showed that the expression of KDM6B was
increased in a mouse model of renal fibrosis, inhibiting DNA
methyltransferase 1 to promote Smad7 expression, and ultimately
decreasing the TGF-β1/Smad3 pathway. On the other hand,
KDM6B can upregulate FBXW7, a negative regulator of Notch,
inhibiting the Notch signaling pathway and ultimately exerting
anti-fibrotic effects. Likewise, He et al. [171] showed that KDM6B
and miR-93-5p were up-regulated in mice with acute kidney injury
(AKI) and that the expression of inflammatory factor TNF-α was
reduced through demethylation of H3K27me3, thus alleviating
kidney injury. Feng et al. [172] found that low expression of
KDM6B could promote neointimal hyperplasia and inflammatory
cell infiltration, which might cause vascular stenosis and access
failure in renal dialysis patients. Chen et al. [173] found that
KDM6A was a key pro-inflammatory factor of diabetic nephro-
pathy (DKD) in db/db mice. KDM6A upregulation in the kidneys of
diabetic mice promoted the expression of various inflammatory
factors such as IL-1β, IL-8 and IL-6, leading to the deterioration of
DKD. Liu et al. [174] demonstrated that dexmedetomidine (DEX)
could alleviate LPS-induced AKI in mice by inhibiting the NF-κB

signaling pathway and the expression of KDM5A. In addition, in
HBV-infected HK-2 cells, enrichment of KDM1A reduced the level
of H3K9me1/2 in the TLR4 promoter region, leading to the
production of inflammatory cytokines through the TLR4-NF-κB/
JNK axis and renal inflammatory response exacerbation [175].

Inflammatory pulmonary injury
Asthma was a chronic inflammatory disease of the airways, where
exposure to allergen activate immune cells and triggered
inflammation and immune responses [176–178]. Bajbouj et al.
[179] showed that treating lung fibroblasts with IL-13 induced the
expression of KDM4B and H3K36me3 demethylation, thus promot-
ing nuclear translocation. Meanwhile, early inhibition of KDM4B
activity could postpone or even prevent airway fibrosis in asthmatic
patients. In a mouse asthma model established by Yu et al. [180], a
KDM6B inhibitor (GSK-J4) was shown to reduce airway inflamma-
tion, hyperreactivity and remodeling by blocking Akt/JNK and TGF-
β/Smad3 signaling. In addition, it was showed that DEX could
promote the expression of keratinocyte growth factor (KGF-2) by
down-regulating KDM6B and ameliorating endothelial barrier
dysfunction in ischemia/reperfusion related lung injury [181]. He
et al. [182] found that Cu, Zn-SOD could activate STAT6, which
stimulated the expression of KDM6B and interacted with KDM6B to
induce profibrotic M2 gene promoters, hence stimulating macro-
phage polarization to the M2 phenotype and exacerbating
pulmonary fibrosis. In addition, Fraszczak et al. [183] found that
mice with impaired binding of GFI1 to KDM1A, displayed increased
expression levels of serum IL-6, TNF-α, and IL-1β, while their alveolar
macrophages secreted a large amount of cytokines that ultimately
led to increased mortality.

Colitis
A large amount of evidence suggests that histone demethylation
played an important role in intestinal inflammatory responses and
the transformation to colorectal cancer (CRC) [184]. Ma et al. [185]
showed in necrotizing colitis mice that KDM6B was activated by
STAT3 and participated in JAK2/STAT3 pathway to enhance the
transcription of inflammatory genes. Besides, KDM6B might
interact with NF-κB to activate the transcription of TNF-a/Il1b/Il6
and ultimately aggravated intestinal inflammatory damage. More-
over, Zhuo et al. [186] found that TNF-α induced high expression
of KDM4D in colitis, which activated Hedgehog signaling to
promote colon regeneration and CRC cell proliferation. Moreover,
Sun et al. [187] reported that AMPK could recruit KDM1A to the
Cdx2 promoters, upregulating Cdx2 expression and enhancing
intestinal barrier function and epithelial differentiation. Finally,
Parmar et al. [188] demonstrated that KDM1A was required to
restore the intestinal barrier against pathogens invasion by
promoting the maturation of intestinal epithelial goblet cells in
mice with colitis induced by bacterial or parasitic infection.

Autoimmune diseases
The role of KDMs in gene expression regulation played an
important role in the occurrence and development of auto-
immune diseases [189]. Rheumatoid arthritis (RA) was an
aggressive joint disease resulting from immune imbalance and
excessive inflammatory responses. Wan et al. [190] showed that
the up-regulated expression of KDM6B in RA promoted arthritis
development by inducing the transcription of PCNA, which
mediated the migration and proliferation of fibroblast-like
synoviocytes (FLS). Subsequent studies showed that GSK-J4, a
KDM6A/6B inhibitor, suppressed the expression of RANKL and the
production of TNF-α and GM-CSF in NK cells, reducing osteoclast
generation and inflammatory response [109]. Wu et al. [191] found
that in synovioblasts of RA patients, cystathionine-gamma-lyase
inhibited the progression of joint inflammation by reducing the
expression of KDM6B, suppressing the transcription of TLR2 and
some inflammatory factors including TNF-α and IL-6. Meanwhile,
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Zhao et al. [192] showed that in collagen-induced arthritis (CIA)
mice, GSK-J4 inhibited IL-6 transcription in macrophages, thus
alleviating RA symptoms. Likewise, Zhang et al. [193] found that
KDM4B promoted the secretion of various pro-inflammatory
factors and aggravated RA by activating STAT3 signaling pathway
in FLS. Heng et al. [194] clarified that in systemic lupus
erythematosus, the expression of KDM6B was increased, and its
H3K27me3 demethylation activity enhanced the expression of
CD11a, thus promoting T cell auto-reactivity and production of
autoantibodies. MS is an autoimmune disease of the central
nervous system, mediated by T cells. High expression of KDM6A
on the X chromosome was found in an MS mouse model, which
could explain the high prevalence of this disease in women.
KDM6A could also downregulate Th1 and Th2 activation pathways
in mouse CD4+ T cells, promoting neuroinflammatory signaling
via TLRs and IL-17 [65].

KDMS INHIBITORS IN THE TREATMENT OF IMMUNE-RELATED
DISEASES
Many small-molecule inhibitors of KDMs have been developed in
recent years with the understanding of the structures and
mechanisms of KDMs [195]. According to existing research, some
molecules have broad prospects for clinical use, such as the
KDM1A inhibitor TCP, the KDM6-specific inhibitor GSK-J1/4 and
the inhibitor of JmjC family JIB-04 (Table 1).
TCP was first approved for clinical use as a monoamine

oxidase inhibitor to treat depression and was later shown to
inhibit KDM1A as well [196]. Motivated by these discoveries,
further studies developed dozens of inhibitors with increased
specificity for KDM1A, some of which have entered clinical trials
including ORY-1001 (Iadademstat), ORY-2001 (Vafidemstat),
IMG-7289 (Bomedemstat), and CC-9001 [197, 198]. Studies on
these drugs mainly focused on solid tumors such as small cell
lung cancer and hematological diseases such as non-Hodnkin
lymphoma and acute myeloid leukemia [199–203]. Despite the
lack of clinical studies, KDM1A inhibitors have shown significant
benefits in pre-clinical models of inflammatory diseases. KDM1A
was shown to be upregulated and was associated with excessive
inflammation in patients with hepatitis B virus (HBV)-associated
glomerulonephritis. While in HBV transgenic mice, TCP treat-
ment blocked the TLR4-NF-κB-JNK pathway and reduced
inflammatory response [175]. ORY-2001 was shown to alleviate
neuroinflammation by preventing the development of demye-
lination and inhibiting T cell infiltration in the spinal cord, hence
could be beneficial in treating MS [204]. Importantly, ORY-2001
showed excellent safety and was proven to be able to penetrate
the central nervous system [198].
GSK-J1/4, developed by Kruidenier et al. [135] in 2012,

selectively inhibits KDM6 family members and is the most widely
used inhibitor for JmjC demethylases. GSK-J1/4 showed anti-
inflammatory effects in most in vivo and in vitro experiments,
which was mainly achieved by inducing immune tolerance of NK
cells and DCs. GSK-J4 was shown to suppress IFN-γ production by
NK cells, thus reducing inflammatory injury of RA patients and
impairing NK cell induced formation of osteoclasts and joint
erosion [109]. GSK-J4 also reduced the inflammation of synovial
fibroblasts and attenuated joint damage in CIA mice [191]. DCs
produce cytokines and regulate the function of macrophages and
Th cells to indirectly induce inflammatory response as well.
However, GSK-J1/4 treatment transformed pro-inflammatory DCs
into tolerogenic DCs that restrained inflammation and reduced
the expression of the costimulatory molecules CD80/CD86 and
pro-inflammatory IL-6, IFN-γ and TNF [134]. Additionally, tolero-
genic DCs suppressed the formation of M1 macrophages and pro-
inflammatory Th cells (Th1 and Th17), supporting the develop-
ment of Treg cells [205]. In MS, injection of GSK-J4-treated DC cells
into EAE mice reduced CD4+ T cell infiltration in the central

nervous system and improved inflammatory responses [134].
Likewise, GSK-J4 promoted Treg differentiation and IL-10 secre-
tion, which attenuated inflammatory responses and reduced IL-6
and IL-17 production in murine colitis [206]. Similarly, GSK-J1
treatment decreased the proportion of Th17 cells in mouse colon
tissue and pro-inflammatory cytokines IL-17A, IL-22, IL-21, and
transcription factors RORγt and STAT3 secreted by Th17 cells were
suppressed, while Treg cell-related IL-10, TGF-β, and FOFP3
expression were increased [205]. Additionally, GSK-J4 could
reduce the inflammatory response in diseases including osteoar-
thritis, asthma, and mastitis in animal models [152, 180, 207]. The
clinical value of other JmjC family inhibitors such as the KDM4/5
family inhibitor JIB-04 and the KDM4C inhibitor SD70 warrants
further exploration [208, 209].

CONCLUSIONS AND PERSPECTIVES
In complex and elaborate immune responses, epigenetic modula-
tion of KDMs is an critical for maintaining inflammatory response
progression. Different KDM family proteins fine-tune the switch of
gene expression by manipulating activatory or inhibitory histone
methylation markers, thus participating in various links of immune
cells and inflammatory activity. During the initial phase of
the immune response, KDMs regulate the activation of innate
immune cells, such as macrophages, DCs and NK cells, and
activate inflammation by regulating PRR and downstream path-
ways, or directly regulating the transcription of inflammatory
factors at gene promoters. Furthermore, KDMs can induce the
differentiation and function of adaptive immune cells, such as T
and B cells by altering intracellular gene expression patterns.
Finally, during the resolution phase, KDMs can regulate immune
tolerance by macrophages, DCs, and Treg cells to prevent immune
overreaction.
Dysfunction of KDMs can lead to insufficient or excessive

immune response, which is associated with the development of
various inflammatory diseases, autoimmune diseases, and tumors.
Remarkably, the regulation of KDM6A/6B is the most extensively
studied. Therefore, small molecule inhibitors targeting these KDMs
may provide new strategies for the treatment of inflammatory
diseases. However, there are still some obstacles to their clinical
application. First, the mechanism of action of KDMs in different
diseases remains to be further clarified. Second, there are no
clinical trials on related diseases, and the safety and efficacy of
GSK-J1/4 widely used in animal experiments remain to be
discussed. Finally, the interaction between histone demethylation
and other epigenetic regulatory systems is not clear, and only a
clearer understanding of these mechanisms can help to avoid
adverse drug reactions. In conclusion, we believe that the role of
KDMs in inflammation and immune response and their clinical
prospect warrant further investigations, and we expect that KDMs
will improve the understanding and treatment of related diseases
in the future.
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