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Let-7b-5p inhibits breast cancer cell growth and metastasis via
repression of hexokinase 2-mediated aerobic glycolysis
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Hexokinase 2 (HK2), a critical rate-limiting enzyme in the glycolytic pathway catalyzing hexose phosphorylation, is overexpressed in
multiple human cancers and associated with poor clinicopathological features. Drugs targeting aerobic glycolysis regulators,
including HK2, are in development. However, the physiological significance of HK2 inhibitors and mechanisms of HK2 inhibition in
cancer cells remain largely unclear. Herein, we show that microRNA-let-7b-5p (let-7b-5p) represses HK2 expression by targeting its
3’-untranslated region. By suppressing HK2-mediated aerobic glycolysis, let-7b-5p restrains breast tumor growth and metastasis
both in vitro and in vivo. In patients with breast cancer, let-7b-5p expression is significantly downregulated and is negatively
correlated with HK2 expression. Our findings indicate that the let-7b-5p/HK2 axis plays a key role in aerobic glycolysis as well as
breast tumor proliferation and metastasis, and targeting this axis is a potential therapeutic strategy for breast cancer.
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INTRODUCTION

Breast cancer (BC) registers as the most prevalently occurring
malignancy worldwide among women [1]. Despite significant
progress in therapy, effective drugs approved for BC remain
limited [2]. Therefore, it is crucial to discover new therapeutic
targets and biomarkers for BC. Cancer cells exhibit a strong
metabolic requirement for energy to sustain their survival and
growth [3]. Unlike normal cells, even when the oxygen supply is
sufficient, cancer cells predominantly depend on glycolysis for
energy, which is known as aerobic glycolysis (Warburg effect)
[4, 5]. Aerobic glycolysis, facilitating tumor proliferation with
enhanced glucose consumption and lactate concentration, is
widely recognized as a hallmark of cancer cells, and targeting this
process has been, and continues to be, a focus for therapeutic
agent development.

Hexokinase 2 (HK2), which catalyzes the initial rate-limiting and
irreversible step of glycolysis reaction, exerts a key role in altered
metabolism in various cancers [6-8]. HK2 has been shown to be
upregulated in a wide range of human cancers, including
hepatocellular carcinoma, breast cancer, gallbladder cancer,
colorectal cancer, endometrial carcinoma, osteosarcoma, laryngeal
carcinoma, etc, and associated with the clinicopathological
characteristics and prognostic factors of cancer patients [6-13].
HK2 promotes cancer cell growth, migration, invasion, and
metastasis [14-16]. Recently, HK2-targeted therapy has displayed
beneficial effects in suppressing cancer cell growth in vitro and
eradicating tumors in animals [7].

MiRNAs (miRNAs) have been reported to influence various
biological behaviors in tumors, such as cellular proliferation,
differentiation, apoptosis, cell cycle, and so on [17-20]. MiRNA
dysregulation might play a significant role in cancer pathogenesis

and miRNAs are gradually considered to be potential biomarkers
for human cancer diagnosis and treatment [21, 22]. In particular,
miRNAs have been shown to exhibit a regulatory effect on glucose
metabolism in cancer by inhibiting HK2. For instance, miR-202
inhibits pancreatic cancer cell glycolysis and growth by repressing
HK2 expression [23]. MiR-3662 suppresses glucose metabolism,
growth, and invasion of hepatocellular carcinoma cells (HCC) by
targeting HK2 [24]. MiR-615 functions as a tumor suppressor in
osteosarcoma by inhibiting HK2 [12]. However, it is unclear
whether miRNAs regulate both tumor proliferation and metastasis
through suppression of HK2-mediated aerobic glycolysis.

In the current study, we show that let-7b-5p, a miRNA whose
role in modulating cancer glycolysis is unknown, is lowly
expressed in BC tissues, and dampens glycolysis in BC cells,
subsequently depressing cell proliferation and metastasis both
in vitro and in vivo. Mechanistically, HK2 is a new target of let-7b-
5p, and let-7b-5p suppresses BC cell glycolysis, proliferation, and
metastasis by targeting HK2. In addition, let-7b-5p expression is
negatively correlated with HK2 level in patients with BC.

RESULTS

Prediction of microRNAs targeting HK2 with clinical
significance

Since HK2 is a key enzyme of aerobic glycolysis and performs a
vital function in breast cancer, we screened potential miRNAs
targeting HK2 using miRDB, TargetScan, and StarBase databases.
Thirty miRNAs potentially targeting HK2 were found, including let-
7b-5p, let-7c-5p, miR-125a-5p, miR-143-3p, miR-181c-5p, miR-185-
5p, miR-493-5p, and so on (Fig. 1A and Table S1). To determine the
function of these miRNAs, we investigated their clinical
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Fig. 1 Prediction of microRNAs targeting HK2 with clinical significance. A Venn diagram of microRNAs predicted to target HK2 by StarBase,
miRDB, and TargetScan Databases. B, C Overall survival curves for let-7b-5p and miR-181c-5p in 541 BC patients was plotted based on the
ENCORI database (https://starbase.sysu.edu.cn/). D Western blot detected HK2 expression after transfection of candidate miRNA mimics or
negative control (NC) in HEK293T cells (n = 3). miR-143-3p acted as a positive control.

significance in BC by ENCORI database (https://starbase.sysu.
edu.cn/), and only found that higher expression of let-7b-5p and
miR-181c-5p correlated with longer overall survival (OS) (Fig. 1B,
C). Western blot showed that let-7b-5p, miR-181¢-5p, and positive
control miR-143-3p inhibited HK2 expression in HEK293T cells,
with let-7b-5p presenting better inhibition than miR-181c-5p (Fig.
1D). Since the let-7b-5p expression is correlated with clinical
prognosis in BC and inhibits HK2 expression, it was chosen for
further study.

HK2 is a target of let-7b-5p in BC cells

Due to miRNA prediction of HK2 and preliminary confirmation in
HEK293T cells by western blot, we carried out western blot for
further confirmation. In MDA-MB-231 and ZR75-1 cells, let-7b-5p
mimic suppressed HK2 expression (Fig. 2A). On the contrary, let-
7b-5p inhibitor led to a dramatic upregulation in HK2 expression
(Fig. 2B). Since let-7b-5p has been reported to inhibit HMGA2
expression in head and neck squamous cell carcinoma cells, HCC
cells and lung cancer cells [25-27], we chose HMGA?2 as a positive
control. In MDA-MB-231 and ZR75-1 cells, let-7b-5p mimic
suppressed HMGA2 expression (Fig. S1A). On the contrary, the
let-7b-5p inhibitor promoted HMGA2 expression (Fig. S1B). These
results suggest that the behavior of the let-7b-5p/HMGA2 axis in
BC cells may be similar to that in the previously reported cancer
cells. To identify how let-7b-5p affects HK2 expression, we
examined HK2 mRNA levels, and found that HK2 mRNA levels
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were downregulated upon let-7b-5p overexpression, while upon
let-7b-5p inhibition, they were upregulated (Fig. 2C).

To further explore whether let-7b-5p regulates HK2 expression,
a dual-luciferase reporter assay was detected by transfection with
HK2 3’-UTR wild-type (WT) or mutated (Mut) luciferase reporter
and let-7b-5p in BC cells. Let-7b-5p overexpression diminished
HK2 3/-UTR WT luciferase activity, but not HK2 3’-UTR Mut
luciferase activity (Fig. 2D). The results indicate that let-7b-5p
targets HK2 3/-UTR to inhibit its expression in BC cells.

Let-7b-5p depresses proliferation, migration, and invasion of
BC cells by targeting HK2

TCGA dataset showed that let-7b-5p was downregulated in BC
[28], suggesting that let-7b-5p may act as a tumor suppressor in
BC. However, the biological role of let-7b-5p in BC is still unknown.
Since let-7b-5p targets HK2 and HK2 promotes BC cell prolifera-
tion, migration, and invasion, we tested if let-7b-5p exerts a role
on BC and its function relies on HK2. We found that let-7b-5p
overexpression in MDA-MB-231 and ZR75-1 cells reduced cell
proliferation, migration, and invasion, while the effects could be
reversed by HK2 reexpression (Fig. 3A-D and Fig. S2A-D).
Moreover, let-7b-5p inhibitor accelerated the proliferation, migra-
tion, and invasion of BC cells, and HK2 knockdown abrogated this
effect (Fig. 3E-H and Fig. S2E-H). The results reveal that let-7b-5p
represses proliferation, migration and invasion of BC cells by HK2
inhibition.
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Fig.2 Let-7b-5p targets HK2. A, B Western blot for HK2 protein expression in indicates BC cells after transfection with let-7b-5p mimic or NC
(A) or let-7b-5p inhibitor or scramble (B) (n =3, mean £ SD). Histograms under western blot show let-7b-5p expression by RT-qPCR (n =3,
mean + SD). C RT-gPCR assay of HK2 mRNA expression level in indicated BC cells after transfection with let-7b-5p mimic/inhibitor (n =3,
mean + SD). D Dual-luciferase reporter assay of the indicated BC cells after transfection with wild-type or mutated HK2 reporter plus let-7b-5p
mimic (n = 3, mean = SD). The top panel shows the putative binding sites between HK2 and let-7b-5p. **p < 0.01 versus corresponding control.
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Fig.3 Let-7b-5p dampens BC cell growth, migration, and invasion via repression of HK2 expression. A Growth curve was analyzed by CCK-8
Kit after MDA-MB-231 cells were transfected with NC, let-7b-5p mimic, or let-7b-5p mimic plus HK2 plasmid (n = 3, mean + SD). Western blot and RT-
qPCR showed HK2 and let-7b-5p expression, respectively. B Colony formation analysis of MDA-MB-231 cells after the transfection as in (A). Histograms
display the colony number (n =3, mean +SD). C, D Scratch test (C) and transwell assay (D) of MDA-MB-231 cells after the transfection as in (A).
Histograms display relative cell migration or invasion (n = 3, mean + SD). E, F Control or HK2 shRNA MDA-MB-231 cells with the transfection of let-7b-
5p inhibitor or scramble were analyzed as in (A) and (B) (n =3, mean £ SD). G, H Scratch test (G) and transwell assay (H) of control or HK2 shRNA
MDA-MB-231 cells with the transfection as in (E, F) (n =3, mean £ SD). Scale bar, 100 pm. *p < 0.05, **p <0.01 versus corresponding control.
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Let-7b-5p impairs glycolysis by inhibiting HK2 in BC cells
Considering that aerobic glycolysis is important for influencing BC
cell progression by HK2, and let-7b-5p inhibits HK2 expression, we
then explored whether let-7b-5p regulates glycolysis via HK2. We
examined the role of let-7b-5p on hexokinase (HK) enzyme
activity, glucose uptake, lactate production, and ATP concentra-
tion in MDA-MB-231 and ZR75-1 cells (Fig. 4A and Fig. S3A). Let-
7b-5p mimic decreased the HK activity, glucose uptake, lactate
level, and ATP concentration, and HK2 reexpression rescued these
influences. Furthermore, let-7b-5p mimics decreased extracellular
acidification (ECAR) and increased oxygen consumption (OCR),
and HK2 reexpression rescued these effects (Fig. 4B, C and Fig.
S3B, C). In addition, the let-7b-5p inhibitor greatly increased
glycolytic phenotype, and the knockdown of HK2 undermined
these effects (Fig. 4D-F and Fig. S3D-F). Accordingly, these
findings indicate that let-7b-5p inhibits glycolysis by repressing
HK2 in BC cells.

Let-7b-5p regulates the proliferation, migration, and invasion
of BC cells by aerobic glycolysis

Considering let-7b-5p modulates glycolysis as well as proliferation,
migration, and invasion of BC cells via HK2, we used glycolysis
inhibitor 2-Deoxy-D-glucose (2-DG) to investigate whether let-7b-
5p/HK2 axis influences these phenotypes by glycolysis. In MDA-
MB-231 and ZR75-1 cells, the proliferation, migration, and invasion
enhancement mediated via let-7b-5p inhibitor was reverted by
2-DG (Fig. 5A-D).

Let-7b-5p/HK2 axis regulates in vivo glycolysis, tumorigenesis,
and metastasis in BC

To verify the in vivo effect of the let-7b-5p/HK2 axis, we
established nude mouse xenograft tumor models of BC. As
expected, the let-7b-5p inhibitor significantly enhanced the breast
tumor growth of MDA-MB-231 cells, while HK2 knockdown
dramatically resisted the growth (Fig. 6A, B). Importantly, let-7b-
5p inhibitor-mediated enhancement of tumor growth was
abrogated when HK2 was knocked down, revealing that let-7b-
5p modulates breast tumor growth by HK2. Further tumor lactate
analysis verified that let-7b-5p regulated lactate production via
HK2 (Fig. 6C, D). Moreover, let-7b-5p inhibitor promoted lung
metastasis of breast tumors, whereas HK2 knockdown blocked this
effect (Fig. 6E). Furthermore, let-7b-5p inhibitor-mediated lung
metastasis was abrogated when HK2 was knocked down. The
metastasis foci were confirmed via histologic analysis on the lungs
(Fig. 6F). These data display that let-7b-5p depresses breast
tumorigenesis and metastasis in vivo via HK2.

Let-7b-5p is negatively correlated with HK2 in patients with

BC

To assess the clinical association between let-7b-5p and HK2, let-
7b-5p expression was detected in breast cancer and normal
tissues. Intriguingly, let-7b-5p was downregulated in BC samples
compared with normal samples (Fig. 7A, B). The specificity of the
let-7b-5p probe was verified by miRNA fluorescence in situ
hybridization (FISH) (Fig. S4A). Moreover, HK2 expression was
detected by immunocytochemistry (IHC) and let-7b-5p expression
was by miRNA FISH in BC tissues. In agreement with the
phenomenon that let-7b-5p represses HK2 in cultured cells, let-
7b-5p level negatively correlated with HK2 level (Fig. 7C, D). We
identified the specificity of the HK2 antibody using IHC of BC
tissues (Fig. S4B). Accordingly, these data strongly support that the
let-7b-5p/HK2 axis plays critical pathological roles in breast cancer.

DISCUSSION

Metabolic reprogramming, especially for aerobic glycolysis (War-
burg effect), is an emerging hallmark of cancer [4, 5]. Targeting
metabolic pathway is increasingly recognized as an efficient way
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to control tumor growth and enhance anti-cancer therapy.
Metabolic enzymes in the pathway have been paid much
attention as targets for anti-cancer treatments. As a result,
researchers are trying hard to find new drugs that target
metabolic enzymes by blocking glucose metabolism.

HK2, one of the key metabolic enzymes, catalyzes the
irreversible rate-limiting step of glycolysis and accelerates aerobic
glycolysis and cancer progression. High expression of HK2 has
been shown associated with poor clinical prognosis in patients
with cancer [29]. Therefore, developing HK2 inhibitors is
significant. Currently, some miRNAs have been reported as
inhibitors of HK2. MiR-216b potentiates breast cancer cell
autophagy and apoptosis in vitro by targeting HK2 through the
mTOR signaling pathway [30]. Resibufogenin regulates the miR-
143-3p/HK2 axis to inhibit tumor growth and glycolysis in breast
cancer [31]. MiR-3662 and miR-125a act as suppressors for glucose
metabolism by HK2 inhibition, and suppress cell proliferation,
invasion, or apoptosis in hepatocellular carcinoma cells in vitro
[24, 32]. However, the significance of the physiology and
pathology of these natural miRNAs molecules is unclear. Our
research found that let-7b-5p is a novel inhibitor of HK2, inhibits
HK enzyme activity, glucose uptake, lactate level, and ATP
concentration, and leads to conversion from aerobic glycolysis
to mitochondrial respiration via repressing HK2 in BC cells. HK2
has two isoforms (NM_000189.5 and NM_001371525.1), which
share the same 3'-UTR sequence. As let-7b-5p inhibits HK2
expression by targeting its 3"-UTR, it is conceivable that let-7b-
5p represses both HK2 isoforms. Let-7b-5p depresses BC
proliferation and lung metastasis by suppression of HK2-
mediated aerobic glycolysis. Furthermore, let-7b-5p negatively
correlates with HK2 in BC tissues. Therefore, these data illustrate
the let-7b-5p significance for physiology and pathology in
modulating HK2-mediated aerobic glycolysis as well as tumor-
igenesis and lung metastasis. Upregulation of let-7b-5p could be a
promising approach for BC therapy with HK2 overexpression.

Although we show that let-7b-5p regulates BC cell migration
and invasion by targeting HK2, we cannot exclude the possibility
that it may target other RNAs. It has been reported that let-7b-5p
inhibits migration, invasion, and EMT by targeting HMGA2 in head
and neck squamous cell carcinoma and HCC cells [25, 26]. We also
showed that let-7b-5p could suppress HMGA2 expression in BC
cells. Since HMGA2 has been reported to influence cell growth,
migration, and invasion in BC cells [33], HMGA2 may be another
potential target of let-7b-5p that is involved in these biological
processes.

Recently, let-7b-5p has been identified to have different roles in
regulating tumorigenesis and cancer progression. As a tumor
suppressor, let-7b-5p inhibits growth and apoptosis by targeting
IGF1R in multiple myeloma [34]; let-7b-5p suppresses proliferation
and motility by negatively modulating KIAA1377 in squamous cell
carcinoma cells [35]. The anti-cancer roles were also confirmed in
other cancers, such as human glioma and gastric cancer [36, 37].
As a tumor-promoting factor, let-7b-5p is overexpressed in ovarian
cancer, and its silence dampens ovarian cancer cell proliferation
[38]. Suppression of let-7b-5p is conducive to an anti-tumorigenic
macrophage phenotype in prostate cancer by SOCS1/STAT
pathway [39]. The findings show that let-7b-5p plays a tissue-
specific role in different types of cancer. Previous research have
presented that let-7b-5p was downregulated in BC [28] and
overexpression of let-7b-5p was associated with better OS and
disease-free survival (DFS) in all breast cancer cases [40] by TCGA
dataset analysis. However, the influence of let-7b-5p on the
Warburg effect and its mechanism in regulating breast cancer is
still unclear. We showed that let-7b-5p suppresses not only
aerobic glycolysis but also the growth and metastasis of breast
tumors by inhibiting HK2-mediated glycolysis. Therefore, our
research presents a molecular explanation which links the anti-
cancer effect of let-7b-5p in inhibiting breast tumor progression
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Fig. 5 Let-7b-5p relies on glycolysis to regulate BC cell proliferation and migration. A Growth curve of the indicated BC cells were assayed
by CCK-8-kit after the transfection of let-7b-5p inhibitor or scramble and treatment of 2.5 mM 2-DG (n = 3, mean + SD). RT-gPCR analyzed let-
7b-5p expression (n = 3, mean + SD). B Colony formation assay of the indicated cells after transfection as in (A). Histograms display the colony
number (n =3, mean £ SD). C, D Scratch test (C) and transwell assay (D) of the indicated cells after the transfection as in (A). Histograms
display relative cell migration or invasion (n = 3, mean + SD). **p < 0.01 versus corresponding control.
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Fig. 6 Let-7b-5p/HK2 axis modulates glycolysis, tumor proliferation, and metastasis in mice. A, B Control or HK2 shRNA MDA-MB-231 cells
were treated with anti-let-7b-5p (antagomiR-let-7b-5p) or scramble (antagomiR-NC) and injected into nude mice. Tumor size was detected at
indicated times, and a proliferation curve was drew (n =7, mean + SD). C Lactic acid concentration of representative tumors from (A) was
assayed (n =3, mean + SD). D Western blot of HK2 expression in representative tumors from (A). E Representative bioluminescence images
were collected from lung metastasis models by injecting indicated MDA-MB-231 cells into the tail vein of nude mice (n=35). The
bioluminescence signal is presented by an overlaid false-color image with the signal intensity indicated by the scale. F Representative
photographs of lungs from E and H&E staining of lung tissue sections. The scatter diagram showed the number of metastatic nodules.

with its ability to dampen glycolysis. In addition, let-7b-5p
associates glycolysis with breast tumor proliferation and lung
metastasis in vivo.

Estrogen receptor (ER) and breast-cancer susceptibility gene
(BRCA) are widely recognized as important markers for BC. ER is
not only a powerful predictive and prognostic marker but also a
valuable target for the treatment of hormone-dependent breast
cancer. BRCA, which includes BRCA1 and BRCA?2, is a critical tumor
suppressor gene for BC. Mutations in BRCA can cause chromoso-
mal instability, promote cell proliferation, and hinder normal cell
differentiation, leading to the development of BC. Recent
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discoveries have indicated that there are some correlations
between such BC markers, let-7b and HK2. Let-7b has been
shown to inhibit the expression of ER-a, which is inversely
correlated with let-7b in BC tissues [41, 42]. Estradiol (E2)
treatment has been found to promote HK2 expression in
paclitaxel-resistant BC cells [43]. Dysregulation of let-7b has also
been observed in BRCA2 germ-line mutation carriers between
invasive breast cancer and asymptomatic normal breast tissue
[44]. Furthermore, BRCA1 has been found to repress
HK2 expression, reducing glycolysis and attenuating BC cell
migration [45].
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Mann-Whitney U test. C Representative immunofluorescence imaging o of 144 BC patients. HK2 expression were detected by IHC, and let-7b-
5p expression were detected by miRNA FISH. Scale bar, 100 pm. D Correlation analysis of let-7b-5p and HK2 expression in 144 BC patients.

Overall, our study demonstrates that let-7b-5p dampens BC cell
growth and metastasis in vitro and in vivo by suppressing
glycolysis via inhibiting the expression of HK2. Let-7b-5p
negatively correlates with HK2 in patients with breast cancer.
These results verify the significance of the let-7b-5p/HK2 axis in
aerobic glycolysis as well as breast tumorigenesis and progression.
Therefore, let-7b-5p could be valuable for treating HK2-
overexpressing breast cancer patients.

MATERIALS AND METHODS

Cell culture

MDA-MB-231, ZR75-1, and HEK293T cell lines were obtained from
American Type Culture Collection (ATCC). MDA-MB-231 cell line labeled
with firefly luciferase was a gift from Professor Yongfeng Shang. All cells
were cultured in DMEM (Gibco) appended to 10% FBS (Everygreen) and
100 pg/ml penicillin and streptomycin (Biomed) at 37°C with 5% CO,.

RNA oligonucleotides, plasmids, lentivirus, regents

Let-7b-5p mimic/inhibitor was purchased from GenePharma. Wild-type and
mutated sequences of the HK2 3’-UTR were inserted into a pcDNA3-luciferase
expression vector, generating HK2 3-UTR WT and HK2 3-UTR MUT,
respectively. HK2 expression vector was constructed by inserting PCR-
amplified fragments into pcDNA3 (Invitrogen). HK2 shRNA stable cell line was
established by lentiviral transduction using pSIH-H1-Puro (System Biosciences)
carrying HK2 shRNA. The target sequence of HK2 shRNA was ATAAGCTA-
CAAATCAAAGA. Stable cells that were infected with lentiviruses were
screened using puromycin. Reagents for miRNAs and plasmids transfection
were, respectively, Lipofectamine RNAIMAX and Lipofectamine 3000
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(Invitrogen). Anti-HK2 antibody was obtained from Cell Signaling Technology
and an anti-B-actin antibody was obtained from Santa Cruz Biotechnology.

Quantitative real-time PCR (RT-qPCR)

Total RNA, including mRNA and miRNA, was extracted with TRIzol reagent
(Invitrogen). miRcute Plus miRNA First-Strand cDNA Kit (Tiangen) was used
to transcribe miRNA into cDNA. RT-gPCR analysis was determined with 2 x
Taq Pro Universal SYBR gPCR Master Mix (Vazyme) using the BioRad CFX96.
The relative fold expression of the targets was normalized to U6 or B-actin
(endogenous control) and calculated by the 2% method. Primer
sequences used are listed in Table S2.

Luciferase reporter assay

Cells seeded in a 24-well plate were co-transfected with negative control
(NC) or let-7b-5p mimic, in combination with luciferase reporters HK2 3'-
UTR WT/ Mut and pRL-TK (internal control) using Lipofectamine 3000.
Luciferase activities analysis were performed 48h later following the
manufacturer’s instruction (Promega).

Cell proliferation, migration, and invasion assays

Cell proliferation was performed using a CCK-8 kit and colony formation
assay. Cell migration was examined by scratch test. Cell invasion was
assessed by transwell assay with Matrigel Invasion Chambers. These assays
were conducted according to the methods described previously [46].

Glycolytic phenotype assay
Hexokinase Colorimetric Assay Kit, Glucose Uptake Colorimetric Assay kit,
ATP Colorimetric Assay kit and Lactate Assay Kit Il were purchased from
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Biovision and used to detect HK activity, glucose uptake, ATP, and lactate
production, respectively. These assays were detected following the
manufacturer’s protocols as described previously [47].

ECAR and OCR assays

ECAR were examined by Seahorse XF Glycolysis Stress Test Kit and OCR
were examined by Seahorse XF Cell Mito Stress Test Kit (Agilent
Technologies). Samples were detected via Seahorse XF 96 Extracellular
Flux Analyzer (Seahorse Bioscience). The assays were performed referring
to manufacturer-provided protocols as described previously [48].

Tumorigenesis and metastasis in nude mice

Animal experiments were approved by the Institutional Animal Care
Committee of the Beijing Institute of Biotechnology. For tumorigenesis
analysis, ten million MDA-MB-231 cells stably carrying control or
HK2 shRNA treated with 1 pmol antagomiR-let-7b-5p (anti-let-7b-5p) or
antagomiR-NC (scramble) for 3 days were subcutaneously inoculated into
female BALB/c nude mice (6 to 8 weeks old) which were randomly selected
seven into each group without blinding. Tumor size was detected by
vernier caliper every 5 days and tumor volume was calculated as the
formula: (length x width?)/2. After 45 days, the mice were sacrificed and
dissected tumors were imaged, and then frozen in liquid nitrogen for
further study.

For the metastasis experiment, one million of these treated MDA-MB-
231 cells were injected into female BALB/c nude mouse (n = 5/group) by
lateral tail vein [47]. Thirty days later, these mice images were captured by
the IVIS200 imaging system (Xenogen Corporation) and metastatic foci of
lung tissues was analyzed by H&E staining.

Clinical samples, miRNA FISH, and IHC

Samples of 144 human breast cancer and 114 normal tissues were
obtained from the PLA General Hospital, with the informed consent of
patients and approval of the Institutional Review Committees of the
Chinese PLA General Hospital. The expression level of let-7b-5p was
determined following miRNA FISH instructions (Exonbio). Let-7b-5p probe
(FITC labeled) sequence was AACCACACAACCTACTACCTCA. The scramble
probe (negative control) sequence was GTGTAACACGTCTATACGCCCA. The
level of HK2 expression was determined by IHC and cyanine 3 system
(K1051, APExBIO). Anti-HK2 antibody (Cell Signaling Technology) was used
as the primary antibody. IHC of specimens was analyzed as previously
described [49]. The fluorescence intensity was examined using a
microscope (BX53F; Olympus, Tokyo, Japan). The let-7b-5p or HK2 score
was calculated by multiplying staining intensity (1, low; 2, medium; 3,
strong) by stained cells percentage (0-100%).

Statistical analysis

Statistical analyses were processed with GraphPad Prism 7 software.
Comparisons among multiple groups were analyzed by One-way ANOVA.
Means between the two groups were compared by Student's t-test.
Correlation analysis between HK2 and let-7b-5p expression was repre-
sented using Spearman rank correlation. P<0.05 was considered
statistically significant. All experiments in vitro were performed in
triplicates.

DATA AVAILABILITY
All data generated or analyzed presented in this study are included in the article and
its supplementary files.
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