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The mechanisms of gastric mucosal injury: focus on initial chief
cell loss as a key target
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Diffuse gastric mucosal injury is a chronic injury with altered cell differentiation, including spasmolytic polypeptide expression
metaplasia (SPEM) and intestinal metaplasia (IM), which are considered precancerous lesions of gastric cancer (GC). Previously, most
studies have focused on how parietal cell loss causes SPEM through transdifferentiation of chief cells. In theory, alteration or loss of
chief cells seems to be a secondary phenomenon due to initial partial cell loss. However, whether initial chief cell loss causes SPEM
needs to be further investigated. Currently, increasing evidence shows that initial chief cell loss is sufficient to induce gastric
mucosal injury, including SPEM and IM, and ultimately lead to GC. Therefore, we summarized the two main types of models that
explain the development of gastric mucosal injury due to initial chief cell loss. We hope to provide a novel perspective for the
prevention and treatment of diffuse gastric mucosal injury.
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INTRODUCTION
Gastric mucosal injury can be divided into two types: focal and
diffuse. Generally, the common causes of focal injury are toxin
ingestion, bile reflux, and certain infectious agents, which result in
focal erosions or full-thickness ulcerations that are rapidly repaired
by increased proliferation in neighboring units and migration of
surface cells; these processes eventually reestablish normal
differentiation in damaged units. Diffuse gastric mucosal injury
is a chronic injury with altered cell differentiation, including
spasmolytic polypeptide expression metaplasia (SPEM) and
intestinal metaplasia (IM), which are considered precancerous
lesions of gastric cancer (GC) [1–6].
Previously, most studies focused on parietal cell loss as the initial

factor inducing diffuse gastric mucosal injury, with alteration or loss
of chief cells following. These mouse models of metaplasia have
been generated by gene knockout (KO) and treatment with various
drugs (DMP-777, L635, and high-dose tamoxifen (HDT)), as well as
Helicobacter pylori (H. pylori) infection [7–11]. However, some reports
have shown that chief cell ablation that is not secondary to parietal
cell loss can also cause diffuse gastric mucosal injury [12–17],
suggesting that chief cell loss might be a promising strategy for
treating gastric mucosal injury. This review summarizes gene KO and
drug treatment strategies to induce initial chief cell deficiency and
thus gastric mucosal injury and the regulatory mechanisms in gastric
mucosal diseases. We hope to provide new perspectives for
preventing and treating such diseases.

THE EXPRESSION PATTERN AND FUNCTION OF CHIEF CELLS IN
THE STOMACH
Chief cells reside at the base of oxyntic glands in the gastric
corpus. These cells not only secrete pepsinogen and participate in

digestive functions in normal gastric physiology [18] but also act
as reserve stem cells that can function in response to cell loss
during homeostasis or after injury [16, 19, 20].
In most previous studies, after injury to the gastric epithelium,

especially after the loss of parietal cells, chief cells undergo
metaplasia that causes them to transition into mucous cells, a
process called SPEM. Thus, chief cells have been considered the
origin of metaplasia after gastric mucosal injury. These cells
usually undergo metaplasia by transdifferentiation or dediffer-
entiation [21, 22]. However, increasing data suggest that initial loss
of chief cells (independent of parietal cell loss) causes SPEM and
malignant pathological processes, providing promising targets for
understanding the mechanisms of gastric mucosal injury.
In the chief cells of the stomach, multiple markers with various

functions have been identified. Basic helix-loop-helix family
member a15 (BHLHA15, also called Mist1) is a marker of chief cell
health and maturation and is mainly expressed within chief cells.
Its expression is lost in metaplasia, atypical hyperplasia and
various carcinomas, providing evidence that metaplasia origi-
nates from mature chief cells [23]. Leucine-rich repeat-containing
G protein-coupled receptor 5 (Lgr5) is a gastric stemness marker
and is responsible for tissue renewal in the gastric epithelium
[24]. Notably, a subset of Lgr5-labeled chief cells function as
reserve stem cells (RSCs) in the gastric body, contributing to the
renewal and regeneration of gastric epithelial tissue [16], as do
Troy+ chief cells [20]. Acidic mammalian chitinase (CHIA) is a
member of the 18-glycosidase family. It is localized in gastric
chief cells [25] and is significantly downregulated in chronic
atrophic gastritis (CAG) [26]. Furthermore, our laboratory
demonstrated that CHIA is essential for maintaining gastric chief
cell survival and is involved in diffuse gastric mucosal injury
(unpublished data).
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Chief cells responding to mucosal injury are subject to many
regulatory mechanisms, such as maturation and aging [27, 28],
switching between homeostatic chief cells and injury-responsive
chief cells depending on the cell cycle regulatory protein p57 [29],
initiation of the autophagic pathway and lysosomal pathway by
solute carrier family 7 member 11 responsible for reverse cystine/
glutamate transport (SLC7A11; also known as NAS xCT) to
promote reprogramming [30] and chief cell transdifferentiation
through aberrant DNA methylation caused by miRNAs [31]. Thus,
it is clear that the role of chief cells in the gastric epithelium is
important and complex.

ESTABLISHMENT OF CHIEF CELL LOSS-INDUCED MUCOSAL
INJURY MODELS AND THE RELATIONSHIP OF CHIEF CELL
LOSS-INDUCED MUCOSAL INJURY WITH THE DEVELOPMENT
OF GASTRIC MUCOSAL DISEASES
The loss of chief cells results in various types of gastric diffuse
mucosal injury, epithelial structural disorders and types of gastric
metaplasia, classic precancerous lesions [12–17], including SPEM
(with predominant expression of Tff2 and Muc6) and IM (with the
expression of CDX2, Muc2, and Tff3) [32], which ultimately
develop into GC. A recent report showed that chief cells are
prone to carcinogenesis and can serve as the origin of GC [16].
Furthermore, one study confirmed by Monocle pseudotime
trajectory analysis that metaplastic cells developed due to
transdifferentiation of chief cells and likewise suggested that
chief cells might be the origin of gastric tumor cells [33].
These data suggest that the initial loss of chief cells is sufficient

to cause gastric mucosal injury, providing promising research
directions for understanding the mechanisms of mucosal injury.
Currently, two types of mouse models with initial chief cell loss
have been established. The first involves KO of genes that are
highly expressed in chief cells [12–14]. The second involves a
combination of drug treatments and gene editing in mice [15–17];
this method leads to the ablation of chief cells expressing a
specific gene, facilitating the study of the particular role of a small
group of chief cells. The details are summarized in Table 1.

Gene deletion-induced chief cell loss results in gastric mucosal
injury
RUNX3 is considered a tumor suppressor in GC [34] and is strongly
expressed in chief cells, as well as in surface mucous cells [35]. Ito
K et al. established a Runx3 KO mouse model in which significant
loss of gastric epithelial chief cells, but not total chief cells, was
observed. This loss was accompanied by the appearance of SPEM
cells expressing Tff2 and IM cells expressing CDX2 and Muc2.
Knockdown of Runx3 caused an acute precancerous lesion, a
process involving Wnt signaling, as transactivation of β-catenin/
TCF upregulated CDX2 [12]. Ogasawara N et al. were the first to
report a significant correlation between Runx3 and pepsinogen I,
suggesting that RUNX3 plays a role in GC by maintaining chief cell

differentiation [36]. The Runx3 KO mouse model also developed
adenocarcinoma under the induction of immunosuppressive
agents [12].
CHIA is also predominantly expressed in chief cells of the

stomach [25]. According to The Cancer Genome Atlas (TCGA) data,
compared with healthy controls, gastric adenocarcinoma tissues
had significantly downregulated expression of CHIA, suggesting a
potential oncogene role in GC. However, whether initial chief cell
loss causes SPEM and malignant pathological processes needs to
be further investigated. Histopathological and immunohistochem-
istry (IHC) analyses, as well as in situ hybridization (ISH) with
specific markers, were performed in CHIA wild-type mice and KO
mice at different ages in our laboratory. With advanced age, CHIA-
deficient mice exhibited a severe gastric preneoplasia phenotype,
including chief cell loss followed by chronic inflammation, SPEM,
and high-grade intraepithelial neoplasia (HGIN). However, mild
parietal cell loss was found only in the HGIN stage. Furthermore,
deletion of CHIA in chief cells resulted in upregulation of specific
markers of SPEM, including Tff2 and Muc6. ISH and IHC analyses
showed that loss of CHIA not only significantly altered multiple
markers of gastric epithelial cell differentiation but also progres-
sively and significantly reduced gastric stem cell (GSC) markers,
including Lrg5 and Mist1, from 8 days to 15 months after birth.
However, CHIA deletion in mice resulted in a mild decrease in
Lrig1, a marker of parietal cell differentiation of GSCs, as well as
parietal cell markers, including H+/K+-ATPase, Slc26a9 and Sonic
hedgehog. These changes were observed only at the HGIN stage,
not in the SPEM phase (Zhao et al. unpublished data) [13, 14].
In conclusion, the loss of chief cells should be noted in diffuse

gastric mucosal injury. An independent origin of malignant events
in the gastric epithelium unrelated to the absence of parietal cells
and infection with H. pylori should be considered.

Drug-induced chief cell loss results in gastric mucosal injury
Drug-induced initial chief cell loss also causes gastric mucosal
injury. Researchers administered diphtheria toxin and small doses
of tamoxifen to ablate Lgr5+ chief cells and Mist1+ chief cells, and
both agents induced short-term SPEM without affecting parietal
cells, accompanied by rapid, short-term expansion of GSII+ GIF+

cells [15]. Moreover, Leushacke M et al. similarly used diphtheria
toxin to ablate chief cells labeled by Lgr5. The glandular structure
showed significant disruption and extensive apoptosis, including a
reduction in basal chief cells and surface mucous cells, suggesting
that long-term ablation of Lgr5-expressing chief cells impairs
epithelial homeostasis [16].
Activation of Kras has been suggested to be a key signal in the

development of GC [37–39], and systemically induced activation
of Kras has also been shown to lead to metaplasia in the stomach
[40]. Leushacke M’s group used tamoxifen to induce Kras
activation in Lgr5+ chief cells, and mouse glands also showed
metaplasia. These metaplastic glands showed strong expression of
Tff2 and Muc5ac and the absence of parietal cells, as well as

Table 1. Pathological lesions in mice model of chief cell loss.

Mice model of chief cell deletion Parietal cell deletion SPEM IM Gastric cancer

Gene knockout (KO)

Runx3 KO mice model [12] NO YES YES YES

Chia KO mice model [13, 14] NO YES YES YES

Gene editing with drug treatment

Lgr5-DTR-GFP mice treat with Diphtheria toxin [15] NO YES NO NO

Mist1-CreERT; R26-DTA mice treat with Tamoxifen [15] NO YES NO NO

Lgr5-DTR-EGFP mice treat with Diphtheria toxin [16] NO YES NO NO

Lgr5-2A-CreER-T2tg/tg/LSL-Kras(G12D)tg/+ mice treat with Tamoxifen [16] NO YES NO YES

Gpr30-rtTA;TetO-KrasG12D-IRES-TdTomato mice treat with Doxycycline [17] NO YES NO NO
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macrophage infiltration, consistent with SPEM features [16].
Moreover, Hata M’s group established a mouse model targeting
Gpr30+ chief cells with Kras mutations, since they found that
Gpr30 is widely and specifically expressed in chief cells and can be
used as a chief cell-specific marker. After prolonged Kras induction
by doxycycline, the chief cells were lost as expected, while the
parietal cells remained viable. These effects were accompanied by
the appearance of a GIF+GSII+ SPEM lineage, which resulted from
regenerative expansion of Kitl+ isthmus progenitors in response to
the loss of chief cells rather than transdifferentiation or
dedifferentiation of Gpr30+ chief cells. Chief cells are subject to
Gpr30 regulation by rapid ablation from epithelial cells through
PDK-dependent cell competition. These effects may occur via
induction of the Warburg effect caused by enhanced PDH
phosphorylation in Gpr30+ chief cells [17]. It is also possible that
the direct binding of estrogen receptors to tamoxifen triggers
PDK-dependent metabolic changes and promotes cellular com-
petition [41].
These findings suggest that both gene deletion- and drug-

induced initial chief cell loss are also origins of gastric mucosal
injury and not just effects of parietal cell loss.

OPINIONS AND OUTLOOK
The gastric mucosal barrier provides protection for the stomach,
and an imbalance between invasive and protective factors can
lead to the development of gastric mucosal disease. Most of the
previous studies on gastric mucosal diseases have focused on
parietal cells. However, in-depth research on mucosal diseases has
revealed that chief cells should also be emphasized in the
prevention and treatment of gastric mucosal injury. The initial loss
of chief cells is an independent key event in gastric mucosal injury
and in the development of gastric precancerous lesions and
gastric tumors. This review provides a new perspective on gastric
mucosal diseases, furthering the understanding of the role of chief
cells in these diseases and providing new targets for prevention
and treatment.

DATA AVAILABILITY
All the data used to support the findings of this study are available in the paper.
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