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Ferroptosis is triggered by intracellular iron leading to accumulation of lipid peroxidation consequent promotion of cell death.
Cancer cell exhibits ability to evade ferroptosis by activation of antioxidant signaling pathways such as SLC7A11/GPX4 axis. In
addition to transcriptional regulation on ferroptosis by NRF2, SREBP1, YAP, and p53, ferroptosis is modulated by ubiquitination or
autophagic degradation. Moreover, zinc or Ca2+ could modulate ferroptosis by inducing lipid peroxidation and ferroptosis.
Induction of ferroptosis enhances immune cell activity such as T cells or macrophages, which is associated with the release of
DAMPs (damage-associated molecular patterns) and IFNγ. Therefore, combined immune checkpoint inhibitors with ferroptosis
inducers effectively enhance antitumor immunotherapy, whereas induction of ferroptosis could impair T cell activity or survival,
suggesting that rational combined therapy for cancer is essential. In this review, we discussed the regulatory role of ferroptosis on
tumor progression and immunotherapy.
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FACTS

1. Ferroptosis is one kind of cell death except apoptosis,
necrosis, and autophagy.

2. In addition to transcriptional regulation, ferroptosis is
modulated by ubiquitination or autophagic degradation.

3. Ferroptosis is associated with antitumor immunotherapy.

OPEN QUESTIONS

1. Do other GPX4 family members including GPX1-3 regulate
ferroptosis?

2. Is there any other autophagy receptor for ferritin degrada-
tion except NCOA4?

3. Does GPX4 undergo ubiquitination and degradation?
4. Does SLC7A11 undergo autophagic degradation?
5. What is the mechanism of zinc and Ca2+ on ferroptosis?

INTRODUCTION
Ferroptosis is one kind of cell death except apoptosis, necrosis,
and autophagy, which is iron-dependent manner and was named
by Dixon in 2012 [1]. Erastin is the first reagent to induce cell
ferroptosis [2], which is also the inhibitor of system Xc (-). As
acystine/glutamate antiporter, Xc(-) plays an important role in
preventing ferroptosis by cystine uptake and glutamate export,
and activation of GPX4 (glutathione peroxidase 4) mediates
antioxidant process leading to ferroptosis resistance [3–5]. As one
of the important components in system Xc (-), SLC7A11 (solute

carrier family 7 member 11) expression is regulated by multiple
signaling pathways including NRF2 (nuclear factor erythroid
2-related factor 2) [6], SOX2 (sry-box transcription factor-2) [7],
yes-associated protein (YAP)/tafazzin (TAZ) [8], and ABCC5 (ATP
binding cassette subfamily C member 5) [9]. SLC7A11/GPX4 axis
exhibits antioxidant role by reducing lipid peroxidation accumula-
tion resulting in the inhibition of ferroptosis [10], whereas
blockade of SLC7A11 or GPX4 promotes cell ferroptosis [5]. In
addition to SLC7A11, SLC2A1 (solute carrier family 2 member 1),
also known as Glut1 (glucose transporter 1), promotes glucose
uptake and fatty acid synthesis, consequently facilitating lipid
peroxidation-dependent ferroptosis [11]. Polyunsaturated fatty
acid biosynthesis modulates gastric cancer cell ferroptosis [12],
which is blocked by α6β4/SRC/STAT3-mediated inhibition of
ACSL4 (acyl-coA synthetase long-chain family member 4) [13].
HIF-2α increases polyunsaturated lipids [14], and iron regulatory
gene expressions, which in turn facilitates ferroptosis [15], but VHL
(von hippel-lindau syndrome) mediates HIF-2α degradation
leading to ferroptosis resistance [16]. As iron-dependent cell
death, iron uptake is regulated by TFR1 (transferrin receptor 1)
that acts as a critical role in triggering ferroptosis [17]. Ferroptosis
not only inhibits tumor growth but also enhances cancer cell
immunotherapy by multiple signaling pathways [18–20]
(Figs. 1–5). In this review, we discussed the regulatory role of
ferroptosis on cancer progression and immunotherapy.

REGULATING PATHWAYS OF FERROPTOSIS
SLC7A11 is essential for inhibition of ferroptosis via cystine uptake
leading to activation of downstream GPX4, subsequently, blocks
lipid peroxidation accumulation and inhibits ferroptosis. Cancer
cells exhibit the ability to prevent ferroptosis by expressing high
levels of SLC7A11, which is regulated by NRF2 [6], SOX2 in lung
cancer stem-like cells [7], and YAP/TAZ pathway in hepatocellular
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carcinoma (HCC) [8] leading to ferroptosis resistance (Fig. 1). As an
inhibitor of ferroptosis, DAZ associated protein 1 (DAZAP1)
directly binds to SLC7A11 mRNA leading to increased SLC7A11
transcription activity, which in turn inhibits ferroptosis in response
to sorafenib in HCC [21]. Similarly, RNA binding motif single-
stranded interacting protein 1 (RBMS1)/ElF3d (eukaryotic initiation
factor 3d) pathway increases SLC7A11 gene transcription [22].
However, BRCA1-associated protein 1 (BAP1) blocks ubiquitination
of histone 2A leading to inhibition of SLC7A11 gene transcription,
subsequently, increases lipid peroxidation and promotes cancer
cell ferroptosis [23]. In recurrent breast tumors, epithelial-
mesenchymal transition-induced discoidin domain receptor 2
expression facilitates breast cancer cell growth, while it increases
the sensitivity of ferroptosis by activation of YAP/TAZ pathway in
response to erastin [24]. However, YAP/TAZ pathway-mediated
SLC7A11 expression inhibits ferroptosis in HCC [8]. This contra-
dictory observation may be derived from different experimental
contexts.

SLC7A11 facilitates cystine uptake consequent activation of
downstream GPX4 pathway, subsequently, prevents lipid perox-
idation accumulation and inhibits ferroptosis [10, 25]. GPX4 is
upregulated by lipocalin-2 in colorectal cancer [26], SREBP-1a in
gastric cancer cells [27], KAT5 in breast cancer cells [4], FZD7-
β-catenin-Tp63 pathway in ovarian cancer cells [28] and PVRL4/
α6β4/Src pathway [29] (Fig. 1). Conversely, inhibition of GPX4 by
apatinib [27], ketamine [4], and HDL-like nanoparticles [30]
facilitates ferroptosis. kruppellike factor 2 directly inhibits GPX4
gene transcription, consequently reduces GPX4 levels and
promotes ferroptosis in clear cell renal cell carcinoma [31]. In
addition, isocitrate dehydrogenase 1 mutation reduces GPX4
protein levels and induces ferroptosis in response to erastin in HT-
1080 cells [32]. In addition to regulation of GPX4 gene expression,
GPX4 protein undergoes degradation [33]. Activating transcription
factor 4 mediates heat shock protein family A (Hsp70) member 5
expression, which in turn binds to GPX4 resulting in increased
GPX4 protein stability with unclear mechanism in pancreatic
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Fig. 1 Regulating pathways of ferroptosis. TFR1 triggers iron uptake, which is regulated by MYCN and YAP pathways. Accumulation of iron
facilitates lipid peroxidation and ferroptosis. In contrast, SLC7A11/GPX4 axis prevents ferroptosis by antioxidant role. SLC7A11 or GPX4
expressions are regulated by multiple regulators including NRF2, SOX2, TAZ, EST1, and SREBP-1a etc. Moreover, SLC7A11 mediates cystine
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mediators such as p53, KLF2 etc. In addition to GPX4, FSP1 is a ferroptosis inhibitor by inhibiting lipid ROS accumulation, which is reversed by
KEAP1/NRF2 signaling pathway.
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ductal adenocarcinoma cells [33]. The link of SLC7A11 to GPX4 is
further determined [34], SLC7A11 mediates cystine uptake,
subsequently, activates Rag-mTORC1–4EBP pathway-induced
GPX4 protein synthesis. Conversely, inhibition of mTORC1
decreases GPX4 expression and facilitates ferroptosis sensitivity
in cancer cells. These findings suggest that SLC7A11 not only
promotes GPX4-mediated detoxification but also increases GPX4
expression by cystine/mTOR/4EBP1 pathway (Fig. 1).
As a transcription factor, NRF2 blocks ferroptosis by upregula-

tion of multiple gene expressions including SLC7A11 [6], heme
oxygenase-1 (HO-1) [35], metallothionein-1G (MT-1G) [36] and
glutamate-cysteine ligase catalytic subunit (GCLC) [37], conse-
quently, inhibits lipid peroxidation and ferroptosis (Fig. 1). In
response to sorafenib, NRF2 induces MT-1G expression in HCC
leading to inhibition of ferroptosis, while silence of MT-1G reverses
this event [36]. Although cystine starvation increases ferroptosis
sensitivity, it could induce NRF2-mediated GCLC expression
leading to gamma-glutamyl-peptides accumulation, which in turn
inhibits glutamate accumulation and ferroptosis in NCSC [37],
suggesting that induction of ferroptosis in some contexts could
cause negative feedback regulation in cancer cells. NRF2 can
induce MRP1 (multidrug resistance protein 1) expression, which is
resistant to cytotoxic drugs [38], while MRP1 mediates intracellular
glutathione exflux leading to increased ferroptosis sensitivity in
HAP1 cells in response to erastin 2, suggesting that high NRF2
level does not limit ferroptosis in response to inducers [39].
Although NRF2 induces SLC7A11 gene expression and inhibits
ferroptosis, ADP-ribosylation factor (ARF) blocks this event
independent of p53 [6]. As a tumor suppressor, p53 directly
inhibits SLC7A11 gene transcription and promotes ferroptosis
[40–42]. As a direct target of p53, activation of spermidine/
spermine N1-acetyltransferase 1 accumulates lipid peroxidation
and sensitizes to ferroptosis, which is associated with p53/SAT1-
mediated arachidonate 15-lipoxygenase expression [43]. In
response to radiotherapy, activation of p53 inhibits SLC7A11
expression resulting in ferroptosis in response to inducers [42],
suggesting that combined ferroptosis inducers could effectively
enhance cancer therapy. However, p53-mediated ferroptosis is
abolished by N-acylsphingosine amidohydrolase 2 (ASAH2)-
induced p53 degradation leading to inhibition of ferroptosis in
myeloid-derived suppressor cells (MDSCs) [44], whereas the
mechanism of p53 degradation is unclear. In addition to wild
type, p53 mutation p53(3KR) has no effect on cancer cell cycle
arrest, apoptosis, and senescence, while it still induces ferroptosis
by inhibiting SLC7A11 expression in response to oxidative stimuli
[41]. However, S47 variant of p53 is resistant to ferroptosis by
increasing GPX4 levels [45]. In contrast to increased ferroptosis
sensitivity, p53 limits ferroptosis by inhibiting the activity of DPP4
(dipeptidyl-peptidase-4) in colorectal cancer, which is involved in
blockade of DPP4-dependent lipid peroxidation [46]. In response
to cystine deprivation, p53-mediated p21 expression reduces both
of cellular glutathione and ROS levels leading to the inhibition of
ferroptosis [47]. These findings suggest that p53 exhibits dual role
in regulation of ferroptosis (Fig. 1).
In addition to GPX4, ferroptosis suppressor protein 1 (FSP1) is

another ferroptosis inhibitor by inducing ubiquinol (CoQ10H2)
generation from ubiquinone (CoQ10), and then FSP1-CoQ10-
NAP(p)H pathway reduces lipid peroxidation accumulation result-
ing in inhibition of cancer cell ferroptosis [48, 49]. However,
KEAP1/NRF2 signaling pathway increases lung cancer cell
ferroptosis by inhibiting FSP1 expression [50] (Fig. 1).
Ferroptosis is a type of non-programmed death, which is iron-

dependent cell death, therefore intracellular iron levels are critical
for ferroptosis. In this process, TFR1 plays an important role in
promoting iron uptake. MYCN induces TFR1 expression in
neuroblastoma cancer cells resulting in increased iron levels and
lipid ROS production, consequently facilitates ferroptosis in
response to inducers such as SAS and auranofin [17]. In addition,

YAP increases TFR1 expression resulting in accumulation of
intracellular iron levels, and O-GlcNAcylation of YAP enhances
this event in HCC [51]. Conversely, intracellular iron levels could be
reduced in sterol regulatory element binding protein-2 (SREBP2)
expressed circulating melanoma cells from patients. Mechanisti-
cally, SREBP2 induces the expression of transferrin resulting in
blockade of accumulation of intracellular iron, consequently
causes ferroptosis resistance in response to inducers [52]. These
findings suggest that TFR1 exhibits an important role in regulating
intracellular iron levels and ferroptosis (Fig. 2).

REGULATION OF FERROPTOSIS BY UBIQUITINATION
Ubiquitin-proteasome system acts as an important role in
regulation of protein stability [53–56]. In ferroptosis process,
several regulators undergo ubiquitination and degradation
including SLC7A11 [57, 58], NRF2 [59, 60], and p14(ARF) [61]
(Fig. 2). As a deubiquitinating enzyme, OTUB1 increases SLC7A11
protein stability by blocking its ubiquitination [57, 58]. The binding
of OTUB1 to SLC7A11 leads to inhibition of SLC7A11 degradation.
Moreover, CD44, a cancer stem cell marker, enhances this event by
increasing the interaction of SLC7A11 with OTUB1 [57]. OTUB1
persulfidation modification by intracellular hydrogen sulfide (H2S)
enhances SLC7A11 stability, consequently inhibits colon cancer
cell ferroptosis [58]. These findings suggest that SLC7A11 under-
goes ubiquitination and degradation, which is blocked by OTUB1.
However, it is still unclear the degrading mechanism of SLC7A11
by proteasome. Furthermore, although NRF2 inhibits ferroptosis
by upregulation of multiple gene expressions including SLC7A11
[6], HO-1 [35], MT-1G [36], and GCLC [37], NRF2 undergoes
ubiquitination and degradation by KEAP1/Cul3-RBX1 E3 ubiquitin
ligase complex [59, 60]. Under base condition, the binding of
KEAP1 to NRF2 recruits Cul3-RBX1 E3 ubiquitin ligase to NRF2 for
ubiquitination and degradation. Conversely, in response to
oxidative stress, KEAP1 is dissociated from NRF2 resulting in
increased NRF2 protein stability [59, 60], suggesting that KEAP1
regulates NRF2 protein stability. NRF2-mediates HO-1 expression
and ferroptosis resistance in KRAS mutant colorectal cancer cells,
whereas combined cetuximab with RSL3 increases KEAP1 expres-
sion leading to inhibition of NRF2/HO-1 pathway [35]. In addition,
MIB1 ubiquitin ligase facilitates NRF2 degradation resulting in
ferroptosis in response to inducers [62], but USP11 deubiquitinat-
ing enzyme reverses this process leading to increased NRF2
protein stability in non-small cell lung cancer (NSCLC) [63]. These
findings suggest that NRF2-mediated ferroptosis resistances by
regulating multiple gene expressions, while its protein will be
degraded by ubiquitination leading to increased ferroptosis
sensitivity. p14(ARF) induces ferroptosis by inhibition of NRF2-
mediated SLC7A11 expression, while CRL2-KLHDC3 E3 ubiquitin
ligase complex induces p14(ARF) proteasomal-dependent degra-
dation leading to ferroptosis resistance [61]. As an important
regulator of iron uptake, TFR1 undergoes ubiquitination and
degradation by β-TRCP E3 ligase in a tribbles pseudokinase 2
(TRIB2)-dependent manner, consequently blocks ferroptosis in live
cancer cells [64], but how does TRIB2 affect βTRCP-mediated TFR1
degradation? which needs to be further identified.

REGULATION OF FERROPTOSIS BY AUTOPHAGY
Autophagy regulates cancer progression and immune response by
degrading cellular components including proteins, mitochondria etc.
[18, 19, 65]. As an iron storage protein, intracellular ferritin
undergoes autophagic degradation in lysosome leading to release
of iron, subsequently, increased intracellular iron levels facilitate
ferroptosis sensitivity. Conversely, autophagy deficiency in Atg5 or
Atg7 silenced cancer cells abolishes this event [66]. In this process,
nuclear receptor coactivator 4 (NCOA4) acts as a selective autophagy
receptor to mediate ferritin lysosomal-dependent degradation,
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which in turn promotes release of iron, also known as ferritinophagy
[67]. In contrast, COPZ1 (coatomer protein complex subunit zeta 1)
inhibits NCOA4 expression, while silenced COPZ1 increases NCOA4
protein levels and promotes ferritinophagy in glioblastoma multi-
forme [68]. In addition to NCOA4, autophagy receptor SQSTM1/p62
mediates iron exporter FPN1 (ferroportin1) degradation in lysosome,
subsequently accumulates cellular iron levels, and facilitates
ferroptosis [69]. In response to RSL3 or Fin56, p62-mediated aryl
hydrocarbon receptor nuclear translocator-like (ARNTL) autophagic
degradation, consequently inhibits HIF1A-mediated ferroptosis
resistance [70, 71]. RSL3 can block mTOR activation leading to
autophagy induction and GPX4 autophagic degradation in human
pancreatic cancer cells [72]. In addition, Fin56 can also induce GPX4
autophagic degradation and combined Fin56 with mTOR inhibitor
enhances bladder cancer cell ferroptosis [73], suggesting that the
combination of autophagy and ferroptosis inducers could effectively

enhance cancer therapy. GOT1 inhibition increases intracellular iron
levels, which is associated with increased ferritinophagy in
pancreatic cancer cells, while the mechanism is unclear [74]. In
addition, ferritinophagy is induced in response to (+)-JQ1 [75],
supraphysiologic testosterone in prostate cancer [76], and dihy-
droartemisinin [77], or some ferroptosis inducers RSL3, Fin 56, and
zalcitabine [70, 71, 78, 79], suggesting that autophagy modulates
intracellular iron level by lysosomal degradation of ferritin (Fig. 3).
However, how do these ferroptosis inducers trigger ferritin
autophagic degradation? This issue needs to be further determined.

REGULATION OF FERROPTOSIS BY METALLIC IONS
In addition to iron, zinc can induce ferroptosis [80]. Zinc increases
breast and renal cancer cell sensitivity to ferroptosis. Mechan-
istically, zinc transporter-7 (ZIP7) mediates zinc release from
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endoplasmic reticulum to cytosol, which in turn enhances
ferroptosis. Cold stress increases lipid peroxidation accumulation
and induces ferroptosis in kidney- and liver-derived cell lines,
which is associated with (mitochondrial calcium uptake
1-dependent mitochondrial Ca2+ uptake [81]. However, calcium
(Ca2+)-mediated ferroptosis could be suppressed by membrane-
spanning 4-domains A15, the endoplasmic reticulum protein,
which depletes luminal Ca2+ stores leading to inhibition of lipid
peroxidation accumulation and ferroptosis [82]. Ferroptosis is iron-
dependent cell death, while zinc and Ca2+ [80–82], can induce
lipid peroxidation and ferroptosis (Fig. 4), which expand the
conception of iron-dependent death, but the mechanism needs to
be further identified.

REGULATION OF FERROPTOSIS ON TUMOR IMMUNOTHERAPY
AND RADIOTHERAPY
Cancer cell exhibits ability to evade immunotherapy by regulating
immune checkpoint signaling pathways, subsequently, escape

immune cell surveillance including T cells, macrophages, and
dendric cells [18–20]. Induction of ferroptosis increases CD8(+) T
cell activity [44] and enhances tumor immunotherapy [83]. NC06
treatment triggers ferroptosis in MDSC by inhibiting ASAH2 and
enhances CD8(+) T cell activity in tumors [44]. In contrast, TYRO3-
mediated ferroptosis resistance leads to reduced anti-PD-1/PD-L1
antitumor immunotherapy [83]. MCH-1 undergoes autophagic
degradation in pancreatic ductal adenocarcinoma cells leading to
escape of immune surveillance [84]. BEBT-908, a dual PI3K/HDAC
inhibitor, induces ferroptosis resulting in increased MCH-1 expres-
sion and activation of STAT1/IFNγ signaling in cancer cells, which in
turn promotes antitumor immunotherapy [85]. In tumor micro-
environment, the released IFNγ from CD8(+) T cells suppresses
SLC3A2 and SLC7A11 expression on cancer cells, consequently
facilitates cancer cell accumulation of lipid peroxidation and
ferroptosis [86]. In response to radiotherapy, the released IFNγ
from CD8(+) T cells synergistically inhibits SLC7A11 expression
leading to activation of ferroptosis, which in turn enhances anti-
PD-L1 antitumor immunotherapy [87]. These findings suggest that
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the additional role of T cell killing to cancer cells by induction of
ferroptosis. Since cyst(e)inase treatment can induce intracellular
cystine degradation consequent promotion of cancer cell ferrop-
tosis [88], the combined cyst(e)inase with PD-L1 antibody
effectively enhances tumor immunotherapy [86], suggesting that
combined ferroptosis inducers with immune checkpoint inhibitors
could effectively enhance cancer immunotherapy. In contrast to T
cell killing to cancer cells by ferroptosis induction, in tumor
microenvironment, cholesterol-mediated CD8(+) T cell ferroptosis
leads to cancer cell immune escape [89]. In this process, cholesterol
induces CD36 expression on tumor-infiltrating CD8(+) T cells,
consequently, CD36 triggers uptake of fatty acids in CD8(+) T cells
resulting in ferroptosis. In contrast, block of CD36 enhancesant-PD-
1 antitumor immunotherapy [89], suggesting that ferroptosis
inducers could impair T cell survival. In contrast to CD8(+) T cell
killing to cancer cells, T regulatory (Treg) cells exhibit immune
tolerance and inhibit antitumor immunotherapy, and high levels of
GPX4 in Treg cells prevent lipid peroxidation and ferroptosis. In
contrast, blockade of GPX4 enhances antitumor immunotherapy
[90]. As a deubiquitinating enzyme, OTUD1 facilitates ferroptosis by

IREB2-mediated TRF1 expression in colon cancer cells, which in
turn promotes the release of damage-associated molecular
patterns (DAMPS) from dying cancer cells, subsequently, DAMPS
enhances immune cell activity for killing to cancer cells [91]. As an
eat-me signal, SAPE-OOH is distributed on ferroptotic cancer cells,
which is recognized by TLR2 on macrophage leading to increased
phagocytosis by macrophages [92], suggesting that ferroptosis
induction promotes phagocytosis by macrophages. Therefore,
ferroptosis modulates tumor immunotherapy by affecting immune
cell activity including T cells and macrophages (Fig. 5).

FUTURE PERSPECTIVE
Ferroptosis is triggered by intracellular iron-mediated lipid ROS
formation resulting in cell death. Conversely, SLC7A11/GPX4 axis
protects cells from ferroptosis by detoxification. In this process,
GPX4 exhibits antioxidant role in order to ferroptosis resistance,
while it is unclear whether other GPX4 family members including
GPX1-3 could inhibit ferroptosis. As an important ferroptosis
regulator, ferritin undergoes autophagic degradation by NCOA4. Is
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which in turn inhibits ferroptosis.
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there any other autophagy receptor for ferritin degradation? or
does GPX4 undergo ubiquitination and degradation? Although
SLC7A11 undergoes ubiquitination and degradation [57, 58], what
is the specific ubiquitin ligase for SLC7A11 degradation? Does
SLC7A11 undergo autophagic degradation? These issues need to
be further determined. The mediators of ferroptotic cells could
induce surround-cell ferroptosis [93], while the mechanism is still
unclear. Although ferroptosis effectively enhances cancer immu-
notherapy [44, 83, 87], induction of ferroptosis could impair T cell
survival [89]. Therefore, rational combined immune checkpoint
inhibitors with ferroptosis inducers are essential for enhancement
of cancer immunotherapy.
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