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Disulfiram alleviates pristane-induced lupus via inhibiting
GSDMD-mediated pyroptosis
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Activation of multiple inflammasomes in monocytes/macrophages is associated with the pathogenesis of systemic lupus
erythematosus (SLE). Gasdermin D (GSDMD)-mediated pyroptosis, a common consequence of multiple activated inflammasomes, is
a programmed cell death with strong inflammatory responses. This suggested that targeting monocyte/macrophage pyroptosis
might provide an opportunity to cure SLE. Here, we aimed to investigate the effect of disulfiram (DSF), a small molecule inhibitor of
pyroptosis, and its potential therapeutic mechanism for SLE. The mRNA expression of GSDMD and IL-1β were significantly increased
in peripheral blood mononuclear cells (PBMCs) from SLE patients. Importantly, we found serum from SLE patients rather than
healthy controls induced GSDMD-mediated pyroptosis in THP-1 cells, as evidenced by enhanced LDH release, increased number of
PI-positive cells, and high expression of full-length GSDMD and N-terminal GSDMD. Interestingly, treatment with DSF obviously
inhibited pyroptosis of THP-1 cells induced by serum from SLE patients. Of note, DSF administration reduced proteinuria, serum
anti-dsDNA level, and renal immune complex. It also attenuated renal damage in PIL mice. Further research found that the high
level of serum IL-β and GSDMD-mediated pyroptosis of glomerular macrophages in PIL mice were rescued with DSF treatment.
These data implied that GSDMD-mediated monocytes/macrophages pyroptosis played an important role in the pathogenesis of
SLE and DSF might be a potential alternative therapeutic agent for SLE.
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INTRODUCTION
Systemic lupus erythematosus (SLE) is a systemic autoimmune
disease characterized by the production of autoantibodies, the
deposition of immune complexes, and the infiltration of immune
cells [1, 2]. SLE has diverse clinical manifestations affecting almost
any organ system, particularly the kidneys, the skin, and the
nervous system [3, 4]. However, the etiology of SLE remains
elusive up to now. Recently, emerging data highlighted the key
role of innate immune system in the pathogenesis of SLE [5, 6].
Monocytes/macrophages, the frontline innate immune cells, were
closely correlated with disease activity and poor outcomes in SLE
patients [7–10].
Pyroptosis, a type of programmed necrosis, is characterized by

large bubbles blowing from the plasma membrane, cell lysis, and
release of pro-inflammatory intracellular contents [11]. It was first
found in macrophages infected with Shigella flexneri [12] and
thought to be caspase-1-mediated monocyte/macrophage death for
a long time [11]. Recent studies identified that pyroptosis was directly
caused by gasdermin family proteins [13] and not cell-type specific
[14–17]. Gasdermin D (GSDMD), a member of gasdermin family, is
the substrate of caspase-1 and caspase-4/5/11. The activation of
caspase-1 by multiple inflammasomes including the NLRP3, NLRC4,
NLRP1, AIM2, or Pyrin cleaves GSDMD into an N-terminal GSDMD
fragment (GSDMD-NT). The same cleavage of GSDMD was also
observed with caspase-4/5/11 upon recognition of cytosolic

lipopolysaccharide (LPS), the major component of the gram-
negative bacterial cell wall [11]. GSDMD-NT further forms membrane
pores, resulting in cell rupture and release of the intracellular
contents, such as IL-1β and IL-18, to promote the inflammatory
response [13, 18]. Numerous studies have shown that pyroptosis
might be closely related to occurrence of many diseases [19–21]. For
example, serum of rheumatoid arthritis (RA) patients could induce
GSDMD-dependent pyroptosis in monocytes, which was promoted
by PTX3 and C1q.
Recent advances strongly hint that GSDMD-mediated mono-

cyte/macrophage pyroptosis might be an effective drug target for
treating SLE. For a long time, the Lupus erythematosus (LE) cell
has been an important biomarker for systemic lupus erythema-
tosus and a standard for diagnosis. Past studies have indicated
that intact nuclei were released during pyroptosis, a process that is
tightly linked to LE cells formation [22]. In both male and female
SLE patients, NLRP3 inflammasome was highly activated in
macrophages [23]. Anti-dsDNA autoantibody, a marker SLE, could
activate NLRP3 inflammasome in monocytes/macrophages and
further amplify inflammatory responses [24]. It was also found that
the expression of AIM2 in peripheral blood mononuclear cells
(PBMCs) of lupus patients significantly increased, and was
positively correlated with disease activity. Also, AIM2 expression
was increased in kidney macrophages of lupus mice, and
knockdown of AIM2 significantly ameliorated tissue damage by
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inhibiting macrophages activation [25]. Furthermore, the protein
expression of GSDMD was remarkably elevated in kidney speci-
mens of SLE patients and MRL/lpr mice. Intriguingly, combination
therapy suppressed disease progression by attenuating GSDMD-
mediated pyroptosis [26]. Taken together, in monocytes/macro-
phages of SLE patients, abnormal activation of various inflamma-
somes might trigger the formation of pro-inflammatory GSDMD-
NT to mediate pyroptosis, which ultimately contributed to the
development of SLE.
Disulfiram (DSF) is widely used to treat alcohol addiction by

inhibiting aldehyde dehydrogenase for decades [27, 28]. Recently,
DSF was reported to be an inhibitor of GSDMD-mediated
pyroptosis, mainly by suppressing inflammatory caspase activa-
tion, the expression of GSDMD, and GSDMD pore formation
[29–32]. A subsequent study showed that DSF protected
experimental autoimmune encephalomyelitis (EAE) mice by
inhibiting GSDMD protein expression [33]. In this study, we aimed
to determine whether GSDMD-mediated monocyte/macrophage
pyroptosis promoted the development of SLE and DSF had a
therapeutic effect on pristane-induced lupus (PIL) mice model.

RESULTS
High mRNA expression of GSDMD and IL-1β in PBMCs from
SLE patients
Previous studies have shown that activated inflammasomes are
closely related to the severity of the disease in SLE patients
[25, 34–36], suggesting that GSDMD-mediated pyroptosis might
be involved in SLE. We first determined the expression of GSDMD
gene in PBMCs from SLE patients and healthy controls by real-time
PCR analysis. As shown in Fig. 1A, the expression levels of GSDMD
mRNA in PBMCs from SLE patients were significantly higher than
that from healthy controls. As the process of pyroptosis is
accompanied by increased expression of IL-1β [11, 37], we next
confirmed IL-1β gene expression in PBMCs from SLE patients and
healthy controls. Indeed, we found that PBMCs from SLE patients
expressed higher levels of IL-1β mRNA than PBMCs from healthy
controls (Fig. 1B). These results suggested that SLE patients might
express high mRNA of GSDMD and IL-1β in PBMCs.

DSF significantly inhibited GSDMD-mediated pyroptosis of
THP-1 cells induced by serum from SLE patients
PMBCs contain many different cells, including monocytes.
Previous studies have found that abnormal activation of various
inflammasomes existed in monocytes of SLE patients. Therefore,

we believed that monocytes in the PBMCs of SLE patients might
undergo GSDMD-mediated pyroptosis. In the following experi-
ment, we used serum from SLE patients, with and without mixing
DSF, to stimulate human monocyte line THP-1 and then observed
whether the cells underwent pyroptosis.
We first analyzed the cytotoxicity of DSF on THP-1 cells using

CCK-8 assay. The results showed that DSF (1, 5, 10, 20 μM) did not
have a significant effect on cell viability (Fig. 2A). Based on this and
previous results [30], we used 10 μM for subsequent vitro
experiments. Then the THP-1 cells were stimulated with serum
from healthy controls or SLE patients, with and without mixing
10 μM DSF.
When THP-1 cells were treated with serum from SLE patients,

they became swelling and blew out large bubbles from the
plasma membranes (Fig. 2B), the typical cell morphological
character of pyroptosis. Also, LDH release in supernatant and
the number of PI-positive cells increased in THP-1 cells treated
with serum from SLE patients (Fig. 2C, D), indicating that THP-1
cells died due to the loss of cell membrane integrity.
Next, to further determine whether cell death induced by serum

from SLE patients was mediated by GSDMD-dependent pyropto-
sis, we tested the expression of NLRP3, caspase-1, and cleaved
caspase-1 by immunofluorescent staining, and GSDMD by western
blot. As shown in Fig. 2E–H, the expression of NLRP3, caspase-1,
and cleaved caspase-1, total GSDMD, and cleaved GSDMD
increased after treatment with serum from SLE patients. Strikingly,
DSF significantly reduced bubbles, LDH release, the number of PI-
positive cells, and the expression of NLRP3, caspase-1, cleaved
caspase-1, total GSDMD, and cleaved GSDMD (Fig. 2B–H).
Collectively, these results implied that GSDMD-dependent mono-
cyte pyroptosis might occur in peripheral blood of SLE patients,
and be inhibited by DSF.

DSF ameliorated the disease activity in PIL mice
To determine the therapeutic effect of DSF on PIL mice, BALB/c mice
were injected intraperitoneally with pristane and then treated with a
dose of 50mg/kg DSF or equivalent sterile saline. As shown in
Fig. 3A, B, DSF significantly reduced proteinuria and serum level of
anti-dsDNA antibodies in PIL mice. In addition, DSF mitigated
inflammatory cell infiltration, mesangial cell proliferation, and
structural disorder of renal tubules in the kidney of PIL mice
(Fig. 3C, D). Similarly, the deposition of IgG and C3 notably decreased
in the kidney of DSF-treated PIL mice (Fig. 3E, F). Taken together,
these findings demonstrated that DSF could rescue lupus-associated
renal impairment in PIL mice.

Fig. 1 mRNA expression of GSDMD and IL-1β was increased in PBMCs from SLE patients. A GSDMD mRNA expression in PBMCs from SLE
patients (n= 16) and healthy controls (HC, n= 14). B mRNA expression of IL-1β in PBMCs from SLE patients (n= 12) and HC (n= 11). mRNA
determination was performed by real-time PCR. Values were shown as mean ± SD of three independent experiments. **p < 0.01, ***p < 0.001.
HC healthy controls, SLE Systemic lupus erythematosus.
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DSF inhibited glomerular macrophage pyroptosis in PIL mice
As the process of pyroptosis amplifies inflammatory response by
releasing IL-1β and other Inflammatory factors [11, 37], we
detected the level of serum IL-1β. We found that the serum levels
of IL-1β increased in PIL mice, while DSF remarkably inhibited the

release of IL-1β (Fig. 4D). The kidney is a vulnerable organ for SLE
patients, and approximately 60% of SLE patients are suffering
from lupus nephritis (LN). To demonstrate the involvement of
GSDMD-mediated pyroptosis in renal lesions of PIL mice, the
expression of NLRP3, cleaved caspase-1, caspase-1, and GSDMD
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were examined. As expected, a significant increase in the
expression of NLRP3, cleaved caspase-1, caspase-1, and GSDMD
in the glomerulus could be detected in the kidneys of PIL mice,
which was suppressed by DSF (Fig. 4A). To further confirm
whether the macrophages underwent GSDMD-mediated pyrop-
tosis in the glomerulus, an immunofluorescence co-localization
assay was performed. In the PIL mice, the expression of GSDMD in
glomerular macrophages increased significantly (Fig. 4B). Of note,
DSF weakened the intensity of immunofluorescent staining of
GSDMD in the glomerular macrophages of lupus mice (Fig. 4B).
Furthermore, we calculated the proportion of GSDMD in macro-
phages to the total amount of GSDMD in whole glomerular region
and found that GSDMD is mainly expressed in monocytes/
macrophages (Fig. 4C). These results indicated DSF might inhibit
glomerular macrophage pyroptosis in PIL mice.

DISCUSSION
SLE is a multifactorial systemic autoimmune disease, characterized
by production of abundant autoantibodies [3]. Increasing evi-
dence has demonstrated that dysregulated cell death and
defective removal of dead cells underlie the onset of SLE
[38–40]. In SLE patients, defective removal of dead cells
contributes to the exposure of autoantigens and the release of
damage-associated molecular patterns (DAMPs), thereby amplify-
ing inflammation and immune responses [4]. Multiple inflamma-
tory deaths have been found to be important in SLE pathogenesis
and progression, such as NETosis, necroptosis, and secondary
necrosis after apoptosis. NETosis, a specialized form of cell death
in neutrophils, might lead to tissue damage in patients with SLE
[41, 42]. Some animal studies proved that inhibition of NETosis
could protect against lupus-related damage to kidneys, and skin in
lupus-prone mouse models [43, 44]. Necroptosis is a form of
programmed necrotic cell death mediated by the receptor-
interacting protein kinase (RIPK) 1/RIPK3/mixed lineage kinase
domain-like protein (MLKL) pathway [45]. Previous studies found
that RIP3-dependent necroptosis was activated in SLE patients
and inhibition of RIP3 kinase could inhibit the development of LN
in MRL/lpr mice [46, 47].
Pyroptosis is another programmed cell death that could cause

cell lysis and amplify inflammatory responses. Emerging studies
have shown that pyroptosis might participate in the progression
of SLE [22–24, 26]. Our study provided new evidence for the
involvement of GSDMD-mediated monocytes/macrophages pyr-
optosis in SLE. Another finding is that DSF might ameliorate
disease severity of PIL mice by suppressing monocytes/macro-
phages pyroptosis.
Monocytes/macrophages are innate immune cells with diverse

biological functions including antimicrobial effect, antigen proces-
sing and presentation, clearance of apoptotic cells, wound
healing, and promotion of inflammatory responses [48–51].
Emerging data have revealed that monocytes/macrophages were
associated with disease activity and poor prognosis in SLE [7–9].
Further studies found that multiple inflammasomes, such as
NLRP3 or AIM2, were activated in monocytes/macrophages of SLE
patients [23–25]. More importantly, blocking or regulating

macrophage inflammasome activity could attenuate disease
progression in murine lupus [25, 52], suggesting that regulating
the common downstream signaling of inflammasome activation
might be the key to treatment of SLE.
Activation of different inflammasomes could collectively trigger

pro-caspase-1 to form caspase-1, resulting in maturation of
inflammatory factors such as IL-1β [53, 54]. Also, activated
caspase-1 cleaves GSDMD to form GSDMD-NT, mediating the
process of a programmed death, pyroptosis [13]. According to the
cell death recognition model for the immune system, apoptotic
cells induce immune tolerance and necrotic cells promote
immune responses [55–58]. Pyroptosis as a form of programmed
necrosis can elicit a robust inflammatory reaction and lead to
target organs injury. The pore-forming protein GSDMD as the final
pyroptosis executioner downstream of inflammasome activation
controls pro-inflammatory cytokine release, such as IL-1β. IL-1β is
considered to be an important pro-inflammatory cytokine that can
drive inflammation, cause tissue damage and fibrosis, and amplify
the effects of other cytokines. In the present study, we first found
that the mRNA expression of GSDMD and IL-1β were significantly
increased in PBMCs from SLE patients. Importantly, serum isolated
from SLE patients could promote the expression and activation of
GSDMD to induce pyroptosis in THP-1 cells. In addition, we also
found serum level of IL-1β and GSDMD-mediated pyroptosis of
glomerular macrophages were elevated in PIL mice. From the
results of immunofluorescence staining, we found that other cells
in the glomerulus of PIL mice also marginally expressed GSDMD,
indicating these cells in the glomerulus might undergo pyroptosis.
However, we quantified the ratio of GSDMD expression in
macrophages and found that macrophages were the main cells
expressing GSDMD in the glomerulus of PIL mice. These data
indicate that GSDMD-mediated pyroptosis of macrophages might
have a pivotal role in the initiation of SLE.
DSF, an inexpensive and safe drug, has been widely used for

the treatment of alcohol addiction by inhibiting acetaldehyde
dehydrogenase in the clinic. Over the past several decades, DSF
was demonstrated to have strong anti-cancer activity both
in vivo and vitro. Further research found that DSF exerted a
tumor suppressor effect by regulating different pathways in
cancer cells, including inhibiting the proteasome and changing
the MAPK or MMP pathway. Recently, it has been discovered to
prevent GSDMD-mediated pyroptosis by affecting multiple steps
including inflammatory caspase activation, the expression of
GSDMD, and GSDMD pore formation. In this study, we explored
the therapeutic potential of DSF against SLE. As expected, DSF
treatment could alleviate lupus-like features in PIL mice, as
evidenced by reduction of serum anti-dsDNA antibodies level
and the deposition of renal immune complex, and improvement
of the pathological damage to kidneys. To reveal the mechanism
of DSF in the treatment of SLE, we investigated whether DSF
could inhibit monocytes/macrophages pyroptosis. As a result,
DSF effectively inhibited GSDMD-mediated pyroptosis of THP-1
cells induced by serum from SLE patients. In vivo experiments,
we further found that DSF treatment reduced the release of
serum IL-1β and suppressed glomerular macrophage pyroptosis
in PIL mice. All the above investigations demonstrated that DSF

Fig. 2 GSDMD-mediated pyroptosis of THP-1 cells induced by serum from SLE patients was suppressed by DSF. A Effect of DSF on the cell
viability of THP-1 cells. Cells were treated with DSF (0, 1, 5, 10, 20 μM) for 48 h and then cell viability measured by CCK-8 assay. B The
morphological features of THP-1 cells treated with serums from healthy controls or SLE patients, with or without mixing 10 μM disulfiram.
C Lactate dehydrogenase (LDH) release from THP-1 cells treated as indicated. D Hoechst33342/Propidium Iodide (PI) double staining in THP-1
cells after different treatments. E Representative immunofluorescence images showing the expression of NLRP3, caspase-1, and cleaved
caspase-1 in THP-1 cells treated as indicated. F The expression of full length and cleaved GSDMD in THP-1 cells. The cells were incubated in
different mediums and analyzed by western blot analysis. β-actin was used as a protein loading control. G, H The expression level of total
GSDMD and cleaved-GSDMD relative to β-actin were quantified. Total GSDMD= full length-GSDMD+ cleaved-GSDMD. Significant differences
were calculated using one-way ANOVA. Values were shown as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001. Each experiment was repeated
three times. FBS fetal bovine serum, HC Healthy control, NS not significant, PI propidium iodide, LDH Lactate dehydrogenase.

L. Zhuang et al.

4

Cell Death Discovery           (2022) 8:379 



Fig. 3 DSF ameliorated lupus-associated manifestations in PIL mice. PIL mice were treated with a dose of 50mg/kg DSF or equivalent sterile
saline for 14 weeks. A Proteinuria of mice in each group was assessed using Albustix test every 2 weeks. B The level of serum anti-dsDNA
antibodies was examined by ELISA. C Representative photographs of the kidneys from each group by H&E staining. Inflammatory cell
infiltration was with black arrows, and mesangial cell proliferation was with white arrow. D Austin scores of kidneys from each group.
E, F Representative images in glomeruli of kidneys from each group stained for the deposition of IgG and C3. n= 8 animals for each group.
*p < 0.05, **p < 0.01, ***p < 0.001. PIL pristane-induced lupus, IgG immunoglobulin G, C3 Complement 3.
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might protect PIL mice against lupus-like symptoms via
inhibiting monocytes/macrophages pyroptosis and also pro-
vided further support for the role of monocytes/macrophages
pyroptosis in SLE. Nowadays, many mechanisms have been
found that might contribute to SLE development, so DSF might
protect PIL mice from lupus-like symptoms via multiple
mechanisms, and abrogating monocytes/macrophages pyropto-
sis can be one of them.
Recently, several studies have revealed divergent results on the

role of GSDMD in SLE. On the one hand, consistent with our
findings, expression and activation of GSDMD were increased in
kidney specimens of SLE patients and lupus mice, which could be
inhibited by combination therapy of different immunosuppressive
agents [26]. On the other hand, in a TLR7-induced model of SLE,

GSDMD−/− mice developed more severe kidney damage and
produced more autoantibodies [59]. The possible reason was that
in the absence of GSDMD, the NLRP3 inflammasome might
cooperate with caspase-3/8 to cause GSDME-induced pyroptosis
[60, 61]. In our experiment, DSF could simultaneously reduce the
expressions of NLRP3 inflammasome and GSDMD, so it might
avoid the occurrence of GSDME-mediated pyroptosis caused by
inflammasome activation.
In conclusion, Our study reveals that GSDMD-mediated mono-

cytes/macrophages pyroptosis represents a therapeutically targe-
table mechanism in SLE and DSF might have protective effects
against SLE. These findings open up new perspectives for
understanding the molecular mechanisms and identifying the
potential therapeutic intervention of SLE.

Fig. 4 DSF reduced the level of serum IL-1β and inhibited glomerular macrophage pyroptosis in PIL mice. A Representative
immunohistochemical staining images of NLRP3, caspase-1, cleaved caspase-1 and GSDMD in the kidneys. B Double immunofluorescence
staining of glomerular macrophages (green) and GSDMD (red) in each group. F4/80 represented macrophages. C GSDMD in monocytes/
macrophages as a proportion of total GSDMD was calculated. D The level of serum IL-1β in each group was detected by ELISA. n= 8 animals
for each group. Each experiment was repeated three times. Significant differences were calculated using one-way ANOVA. Values were shown
as mean ± SD. **p < 0.01, ***p < 0.001. PIL pristane-induced lupus. DAPI 4′, 6-diamidino-2-phenylindole.
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MATERIALS AND METHODS
Reagents
Antibodies included mouse GSDMD (Affinity Biologicals, catalog AF4012,
Ancaster, Canada), human GSDMD and cleaved GSDMD (Abcam, catalog
ab215203 and ab210070, Cambridge, MA, USA), β-actin (ProteinTech
Group, catalog 66009, Chicago, IL), horseradish peroxidase (HRP)-con-
jugated secondary antibodies (Jackson ImmunoResearch, catalog 111-035-
003 and 115-035-003, West Grove, PA), NLRP3 (Affinity Biologicals, catalog
DF7438, Ancaster, Canada), caspase-1 (Santa Cruz Biotechnology, catalog
sc392736, Dallas, TX, USA), cleaved caspase-1 (Affinity Biologicals, catalog
AF4022, Ancaster, Canada), F4/80 (Santa Cruz Biotechnology, catalog
sc377009, Dallas, TX, USA), IgG conjugated to Alexa Fluor 555 (Abcam,
catalog ab150114, Cambridge, MA, USA) and rabbit anti-mouse C3
antibody (Abcam, catalog ab97462 Cambridge, MA, USA).
Pristane, Hoechst33342, and propidium iodide(PI) were purchased from

sigma-aldrich (St. Louis, MO, USA). PrimeScript RT Reagent Kit and SYBR
Green PCR Kit were obtained from TaKaRa (Tokyo, Japan). Other reagents
included 1% Penicillin-streptomycin (Gibco Laboratories, Grand Island, NY,
USA), lymphocyte separation medium (TBD Sciences, Tianjin, China), TRIzol
Reagent (Invitrogen, Carlsbad, CA, USA), RPMI-1640 medium (South Logan,
UT, USA), Cell Counting Kit (CCK8, Dojindo, Kumamoto, Japan), the CytoTox
96 Non-Radioactive Cytotoxicity Assay (Promega, Madison, WI, USA),
hematoxylin and eosin (H&E, Boster Biological Technology co. ltd, Wuhan,
China), DSF (APExBio, Houston, TX, USA), RIPA buffer (Beyotime, Shanghai,
China), BCA protein assay kit (Thermo Fisher Scientific, Waltham, MA, USA),
DAB working solution (Noble Ryder Technology Co.Ltd, Beijing, China), 4′,
6-diamidino-2-phenylindole (Thermo Fisher Scientific, Waltham, MA, USA)
and enzyme-linked immunosorbent assay (ELISA) kits for IL-1β (Neo-
Bioscience Technology Company, Shenzhen, China) and anti-dsDNA
antibodies (Cusabio Life Science Inc., Wuhan, China).

Mice
Female BALB/c mice, at 6-8 weeks of age, were purchased from
Guangdong Medical Laboratory Animal Center (GDMLAC, Guangdong,
China) and housed under a pathogen-free condition with a 12-h light and
dark cycle in the laboratory animal center of Southern Medical University.
All procedures for animals experiment were approved by the Southern
Medical University Experimental Animal Ethics Committee (No. L2017032).

PIL mouse model
BALB/c mice were injected intraperitoneally (i.p.) with 0.5 ml pristane
and proteinuria was assessed using Albustix test every 2 weeks. The
following scale was used for semi-quantitative evaluation: 0 score=
absent, 1 score= 300–1000 mg/L, 2 score= 1000–3000 mg/L,
3 score= 3000–20,000mg/L, and 4 scoreå 20,000mg/L. When all
BALB/c mice had obvious proteinuria, they were randomly divided
into two groups: the PIL group (n= 8), and the PIL+ DSF group (n= 8).
The mice in the PIL+ DSF group were intraperitoneally treated with a
dose of 50 mg/kg DSF for another 14 weeks. In the PIL group, the mice
were injected with equivalent sterile saline daily. Eight normal female
BALB/c mice received the same sterile saline intraperitoneally as
control.

Isolation of human peripheral blood mononuclear cells
(PBMCs)
Human PBMCs were isolated from peripheral blood of SLE patients and
healthy controls using a lymphocyte separation medium according to the
manufacturer’s instruction. SLE patients were from the Third Affiliated
Hospital of Southern Medical University and fulfilled the classification
criteria of American College of Rheumatology (ACR) for SLE. Healthy
controls matched the SLE patients, including age and gender. We obtained
informed consent from all participants.

Real-time PCR analysis
Total RNA was extracted from PBMCs using TRIzol Reagent and reversely
transcribed into cDNA using the PrimeScript RT Reagent Kit according to
the corresponding instructions. The expression of the genes encoding
GSDMD and IL-1β was quantified by real-time PCR using the SYBR Green
PCR Kit following the manufacturer’s protocol and GAPDH used as a
loading control. The PCR was performed under the following standard
thermal conditions: 30 s at 95 °C, 40 cycles at 95 °C for 30 s, and 34 s at
60 °C. All samples were replicated in parallel three times and PCR reactions
performed in triplicate. The level of gene encoding expression was

calculated using SDS software (Applied Biosystems). The primer sequences
are listed in Table 1.

Collection of serum samples and cell culture
Peripheral venous blood (5 ml) was collected in a tube filled with
procoagulants from each SLE patient or healthy control. After the blood
samples were centrifuged at 500 g/r for 10 min, the supernatant was
collected and centrifuged at 1500 g/min for 10min to get the upper serum.
The THP-1 cells, human acute monocytic leukemia cell line, were

provided by American Type Culture Collection (ATCC, Manassas, VA, USA)
and cultured in RPMI-1640 medium supplemented with 10% fetal bovine
serum (FBS) and 1% Penicillin-streptomycin at 37 °C under 5% CO2. The
THP-1 cells were treated with 10% serum from randomly mixed five SLE
patient samples or five healthy control samples with or without 10 μM DSF
for 48 h, and the cell morphology was observed with an inverted
microscope.

Cell viability assay
The effect of DSF on THP-1 cells viability was measured using a CCK8
following the manufacturer’s instructions. THP-1 cells were incubated at
different concentrations of DSF (0 μM, 1 μM, 5 μM, 10 μM, 20 μM) for 48 h
and then 10 μl CCK-8 reagent was added to cells followed by additional
1–4 h incubation. Finally, the absorbance at 450 nm was measured.

Hoechst33342 and PI double staining
Cell cytotoxicity was determined by Hoechst33342 and PI double staining.
THP-1 cells were cultured in 10% serum from SLE patients and healthy
controls, with or without 10 μM DSF for 48 h, and washed twice with
phosphate buffered saline (PBS). After that, cells were stained with
Hoechst33342 and PI for 15minutes in the dark and then observed and
photographed under an inverted fluorescence microscope (Carl Zeiss,
Jena, Germany).

Lactate dehydrogenase (LDH) assay
Cell death after different treatments was assessed by quantifying LDH
release from supernatants using the CytoTox 96 Non-Radioactive
Cytotoxicity Assay according to the manufacturer’s instructions.

Analysis of serum samples
The ELISA kits were used to measure the serum levels of IL-1β and anti-
dsDNA antibodies following the manufacturer’s protocols.

Assessment of renal injury
All mice were anesthetized with a lethal dose of pentobarbital and then
their kidney tissues collected. The left kidney tissues were fixed in 10%
formalin, then embedded in paraffin and sectioned at 4μm- thickness with
a section cutter. Then the sections were stained with H&E according to the
manufacturer’s instructions. Renal injury was scored by pathologists who
were blinded to the experimental information using the Austin score as
previously described [62].
Some right kidney tissues were made into 4 μm thick frozen sections for

evaluation of glomerular IgG and complement C3 deposition. The frozen
sections were blocked with 5% goat serum for 1 h and stained with goat
anti-mouse IgG conjugated to Alexa Fluor 555 and rabbit anti-mouse C3
antibody in combination with anti-rabbit IgG conjugated to tetramethylr-
hodamine isothiocyanate (TRITC). The different intensity of IgG/C3
deposition was evaluated as 0-3 scores, where 0 indicates no deposition
and 3 represents strong deposition, as previously described methods
[63, 64].

Table 1. The sequences of PCR primers.

Gene Sequences

Human GSDMD Forward: 5′-AGCCCTACTGCCTGGTGGTTAG-3′

Reverse: 5′-CCTGCGATCTTTGCCTGTCCTG-3′

Human IL-1β Forward: 5′-GCGGCATCCAGCTACGAATCT-3′

Reverse: 5′-CGGAGCGTGCAGTTCAGTGAT-3′

Human GAPDH Forward: 5′-CAAGGCTGTGGGCAAGGTCAT-3′

Reverse: 5′-AGTGGGTGTCGCTGTTGAAGTC-3′
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Western blot analysis
Protein levels of full-length GSDMD and cleaved GSDMD were determined
by western blot. Firstly, cells were lysed in RIPA buffer containing protease
inhibitor phenylmethanesulfonyl fluoride (PMSF) for half an hour. Proteins
were quantified using the BCA protein assay kit. Then proteins were
separated on 12% SDS polyacrylamide gel and transferred to polyvinyli-
dene difluoride (PVDF, Merck Millipore, Billerica, MA, USA) membranes. The
membranes were blocked with nonfat milk at room temperature for 1 h
and incubated with primary antibodies against GSDMD, cleaved GSDMD
and β-actin at 4 °C overnight. After washing, the membranes were
incubated for 1 h with HRP-conjugated secondary antibodies at room
temperature and visualized using electrochemiluminescence (ECL) western
blotting substrate reagent (Perkin-Elmer, Waltham, MA, USA) following the
manufacturer’s instructions. The protein bands were analyzed using
ImageJ software (version 1.8.0) and the expression of the proteins
normalized to the loading control β-actin.

Immunohistochemistry analysis
Paraffin-embedded renal tissue sections were incubated with 3%
hydrogen peroxide for 30min and blocked with 5% goat serum for 1 h,
followed by being stained with a rabbit anti-mouse NLRP3, caspase-1,
cleaved caspase-1, or GSDMD antibody overnight at 4 °C. Thereafter, the
sections were washed with PBS and incubated with an HRP-conjugated
secondary antibody at room temperature for 1 h. Subsequently, these
sections were stained with the DAB working solution and counterstained
with Hematoxylin. All images were acquired by an upright microscope
(Carl Zeiss, Jena, Germany).

Immunofluorescence staining
Immunofluorescence staining was performed to measure the expression of
NLRP3, cleaved caspase-1, and caspase-1 in THP-1 cells. Firstly, the cells
were blocked with 5% goat serum and incubated with a rabbit monoclonal
antibody against NLRP3, caspase-1, or cleaved caspase-1 overnight at 4 °C.
Then the sections were washed with PBS three times and sequentially
stained with TRITC-conjugated anti-rabbit IgG at room temperature for 2 h.
Cell nuclei were stained with 4′, 6-diamidino-2-phenylindole.
To assess the expression of GSDMD in macrophages, double immuno-

fluorescence staining was performed. Firstly, frozen sections of kidney
tissues were blocked with 5% goat serum and incubated with a rabbit
monoclonal antibody against GSDMD as well as a rat monoclonal antibody
against F4/80 overnight at 4 °C. Then the sections were washed with PBS
three times and sequentially stained with TRITC-conjugated anti-rabbit IgG
and FITC-conjugated anti-rat IgG at room temperature for 2 h. Cell nuclei
were stained with 4′, 6-diamidino-2-phenylindole. Images were taken using
a fluorescence microscope.

Statistical analysis
All data in this experiment were analyzed by SPSS software (version 23.0)
and the figures drawn with Graphpad Prism (version 7.0). Independent-
samples T-test, one-way ANOVA, or the non-parametric Wilcoxon rank-sum
test were used according to data distribution. Data are displayed as the
mean ± SD. P values < 0.05 was defined as statistically significant.

DATA AVAILABILITY
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.
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