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Transcriptional and genetic alterations of cuproptosis-related
genes correlated to malignancy and immune-infiltrate of
esophageal carcinoma
Runmin Jiang1,2,6, Yu Huan3,6, Yan Li4,6, Xinyue Gao5, Qiang Sun 5✉, Feng Zhang 2✉ and Tao Jiang 1✉

© The Author(s) 2022

Esophageal carcinoma (ESCA) is a common type of cancer with high mortality. Cuproptosis is a new type of cell death and is
characterized by the dependence on mitochondrial respiration and protein lipoylation. However, the potential roles of cuproptosis-
related genes (CRGs) in ESCA remain elusive. Here, we systematically assessed the transcriptional and genetic alterations of CRGs in
ESCA. We identified a CRGs signature for ESCA patients. A 6-CRGs signature was constructed by the least absolute shrinkage and
selection operator (LASSO) regression analysis along with the univariate cox regression analysis and differential genes analysis. The
CRGs score could significantly stratify ESCA patients’ survival and a high CRGs score was significantly correlated with worse overall
survival. Moreover, higher CRGs score indicated higher pathology grades and aberrant cell adhesion, possibly via the PI3K-AKT
pathway, which could also underly their increased sensitivity to PI3K-AKT pathway inhibitors. In addition, patients with high CRGs
tend to hold more mutation load and abnormal APOBEC mutation. Notably, a higher CRGs score was anomalously associated with
more immune infiltration, which could explain its malignancy by increased PD-L1 stability and a higher proportion of bystander
T cells. In conclusion, our report revealed the significance of cuproptosis in ESCA and may have therapeutic potential in activating
the bystander T cells.
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INTRODUCTION
Esophageal carcinoma (ESCA) is one of the most common cancers
worldwide, ranking seventh in morbidity and sixth in mortality
among all cancers [1, 2]. Due to the lack of early diagnosis, most
patients (~75%) are diagnosed at late stages, which resulted in
only about 20–25% five-year survival rate for decades without
great improvement [3]. Thus, a more useful prognostic biomarker,
and therapeutic strategy as well, is still a pressing need.
Copper is one of the most important metals in bioactivities. Cells

have to maintain a modest copper concentration for survival and
function normally. It would result in life-threatening diseases once
the copper homeostasis was dysregulated such as genetic
variation [4, 5]. The function of key metal-binding enzymes will
be damaged in a low copper concentration. On the contrary, the
threshold-exceeded accumulation of copper would also be toxic
and lead to cell death [6]. Cuproptosis is a new type of cell death
and is characterized by the dependence on mitochondrial
respiration and protein lipoylation, which is distinct from known
death mechanisms, including apoptosis, ferroptosis, pyroptosis,
necroptosis, and non-cell-autonomous death mediated by cell-in-
cell structures [6–12]. Once overloaded, copper would bind directly
to lipoylated components of the tricarboxylic acid (TCA) cycle,

which leads to lipoylated protein aggregation and subsequent loss
of iron-sulfur cluster protein. This would contribute to proteotoxic
stress, ultimately resulting in cell death [6].
Accumulating evidence indicates the crosstalk between cuprop-

tosis and cancer. Elesclomol, a molecule that binds copper in the
environment and brings it into the cell to induce cell death, has
been employed in human clinical trials for epithelial cancer
therapy [13]. According to Tsvetkov’s reports, elesclomol was
supposed to work best in cancers with up-regulation of lipoylated
mitochondrial proteins and highly respiratory, which was sup-
posed to be especially useful for cancers that are naturally
resistant to apoptosis [6]. However, the applications of cuproptosis
in ESCA were yet to be explored.
Here, by comprehensive analysis of the cuproptosis-related

genes (CRGs) in ESCA, we reported that the higher GSVA score of
the cuproptosis pathway indicates the progression of ESCA cells
such as higher pathology grades and aberrant cell adhesion,
possibly via the PI3K-AKT pathway. We showed a positive
correlation between PI3K-AKT pathway inhibitors sensitivity and
CRGs expression in ESCA cells. Additionally, we developed a CRGs
signature as a promising prognostic model by the least absolute
shrinkage and selection operator (LASSO). The higher CRGs score
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suggested a bad survival ending while a more immune infiltration
in ESCA, which could be explained by the increased stability of PD-
L1 and the increased proportion of bystander T cells. Our analysis
revealed the significance of cuproptosis in ESCA and may have
therapeutic potential in activating the bystander T cells in ESCA.

RESULTS
The transcriptional and genetic landscape of cuproptosis-
related genes (CRGs) in ESCA
Firstly, we collected a total of 25 CRGs for analysis based on the
cuproptosis pathway and Genecard database (Table S1). In order
to further explore the expression correlations of CRGs, we
conducted a correlation analysis and showed the results in Fig.
1A, respectively. To investigate the global expression of CRGs, we
compared the expression level of CRGs between the normal and
ESCA samples. Heatmap revealed an increased overall expression
level of CRGs in ESCA samples (Fig. 1C). In line with this, although
there was no significance of GSVA scores among the different
grades, it still revealed an increased tendency of GSVA scores in
the higher grades in ESCA (Fig. 1D, E).

Identification of candidate prognostic CRGs
Next, we explored the relationship between the CRGs expression
and patients’ survival. From the 25 CRGs, eight genes SLC25A5,
SLC23A2, PDHX, COX7B, PIH1D2, FDX1, ATP7A, NDUFB1 (SLC25A5,
SLC23A2, PDHX, COX7B, PIH1D2, FDX1, ATP7A, and NDUFB1) were
ultimately filtered to be associated with prognosis using LASSO
regression analysis (Fig. 2A, B, Table S2). Meanwhile, univariate Cox
regression analysis and Kaplan–Meier survival curves were further
utilized to assess the significance of the eight CRGs expression on
the prognosis of ESCA patients. As shown in Fig. 2C, D, the higher
expression of SLC25A5, SLC23A2, PDHX, ATP7A, and COX7B
predicted a bad survival ending (P < 0.05) while patients would
obtain a longer survival when the expression of PHID2 was higher
(P < 0.05).

Construction and validation of a minimal CRGs signature that
predicted the survival of ECSA patients
In order to further confirm the expression levels of the eight genes,
we visualized their mRNA expression levels and found the
expression of SLC23A2, PDHX, COX7B, and ATP7A up-regulated in
tumor, while the expression of the other showed no significant
difference (Fig. 3A). Consistently, the representative immunohisto-
chemical staining images of these genes from The Human Protein
Atlas also showed a similar expression trend (Fig. 3B). We,
therefore, selected the six genes (SLC25A5, SLC23A2, PDHX, COX7B,
ATP7A, PIH1D2) as the minimal CRGs and the corresponding risk
score formula was as follows: Risk score = 0.22863 × expression of
SLC25A5+ 0.18401 ×expression of SLC23A2+ 0.33753× expression
of PDHX+ 0.28295 × expression of COX7B+ 0.23044 ×expression
of ATP7A -0.02041 × expression of PIH1D2. 95 patients were
assigned to the high CRGs-score group, and the other 44 patients
were assigned to the low CRGs -score (Fig. 3C). Notably, the 6 CRGs
signature could significantly stratify ESCA patients into two
prognostic groups with high scores predicting shorter overall
survival (Fig. 3C). Consistently, the 3-, 4-, and 5-year ROC curves
demonstrated that the CRGs-signature held a good prediction
performance (p < 0.05, AUCmax= 0.9, Fig. 3D)

Association of high CRGs score with abnormal cell adhesion
and PI3K-AKT pathway
To investigate the genes and pathways that underlie the survival
difference, we firstly identified the differential genes between the
high and low CRGs-score groups. Except for CRGs (SLC25A5,
COX7B), AMBP, AIFM1, MAP7D1, TSHZ3, CAV1, et al. showed a
significant difference (Fig. 4A). Further KEGG along with the GSEA
analysis revealed that the differential genes between high and low

CRGs group were mainly involved in the regulation of ECM
receptor, focal adhesion, cell adhesion, and PI3K-AKT signaling
pathway (Fig. 4B). Thus, we suppose that the different survival
endings of two CRGs-score groups may ascribe to the aberrant
function in cell adhesion, which possibly results from the
activation of PI3K-AKT signaling.

Association of high expression of CRGs with
TGX221 sensitivity
To investigate the potential drugs for ESCA therapy, we used the
Genomics of Drug Sensitivity in Cancer (GDSC) database to assess
the relationship between CRGs and drug sensitivity. As shown in
Fig. 5A, higher expression of COX7B was correlated with higher
sensitivity of various drugs, such as Bleomycin, TGX221, and
Dasatinib. Similarly, there are also positive correlations between
the SLC25A5 or PIH1D2 expression and the drug sensitivity.
Consistent with the Fig. 4B, among these drugs, TGX221 and SB
216763 were the PI3K-AKT pathway inhibitors, which showed a
great positive correlation with COX7B or SLC25A5 expression.
Thus, we selected the TGX221 for further experiments. To validate
the positive correlations between TGX221 and COX7B, we
transfected si-COX7B into EC109 cells and then verify the
efficiency by qRT-PCR (Fig. 5B). Next, we treated si-Con1 EC109
cells and si-COX7B EC109 cells with a gradient dose of TGX221 and
found that si-COX7B EC109 cells showed more cell viability when
treated with TGX221, indicating its lower sensitivity (Fig. 5C).
Similar results were also observed in si-SLC25A5 EC109 cells (Fig.
5D, E).

A high mutation load in patients with high CRGs score
We then explore the genetic alterations in the two CRGs-score
groups by taking advantage of the TCGA database. As shown in
Fig. 6A–D, patients with high CRGs score obtained a higher
loading of various variant classifications and types (missense
mutation, frameshift deletions, nonsense mutation, SNP, INS, DEL).
The top ten mutated genes in the high group are TP53, TTN,
MUC16, SYNE1, LRP1B, DNAH5, PCLO, FAT3, HMCN1, CSMD3, and
the low group has TP53, TTN, KMT2D, CSMD3, MUC16, SYNE1,
PCDH15, FLG, NOTCH1, COL6A5 (Fig. 5E). Patients with high CRGs
score had markedly higher frequencies of TP53(81%), and TTN
(49%)mutations compared to TP53(75%), and TTN (30%) in the low
CRGs-score group. Moreover, LRP1B, DNAH5, PCLO, FAT3, HMCN1
mutations were seems to be peculiar to high CRGs core patients,
indicating their association with the CRGs and worse bio-activities
in ESCA (Fig. 6E).

APOBEC family mutation landscape in two CRGs-score groups
APOBEC (apolipoprotein B mRNA-editing enzyme catalytic poly-
peptide) is a family of cytidine deaminase, whose transcription can
be activated by pro-inflammatory cytokines and chemokines [14].
It was found that the APOBECs family could drive the formation of
cancer-promoting virus mutants. Its gene coding function could
also induce cancer-promoting driving mutation which plays a
bridge role in inflammation-cancer transformation [15, 16]. In the
high CRGs score group, the mutation load between APOBEC-
enriched and non-enriched samples showed no significance and
the TCW loading rate (C > T and C > G mutations at T-C-A/T
trinucleotides) in APOBEC-enriched samples was 0.28, which was
lower than that in low CRGs score group (0.32). However, many
mutated APOBEC genes in the high CRGs score group (no less
than 10) were higher than the only 3 mutated APBEOC genes in
the low CRGs group, which may also underly the tumor
progression in the high CRGs score group (Fig. 7A, B).

Association of high CRGs score with immune infiltration, PD-
L1 stability, and an increased proportion of bystander T cells
To investigate the immune infiltration status between high and
low CRGs score groups, we next performed ssGSEA analysis of
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Fig. 1 The transcriptional and genetic alterations of cuproptosis-related genes in esophagus carcinoma. A The correlations between the
expression of cuproptosis-related genes (CRGs). B Mutation frequencies of 25 CRGs in 173 patients with esophagus carcinoma (ESCA). C The
heatmap showed the expression level and clinicopathologic features of 25 cuproptosis-related genes between normal and ESCA samples.
D, E Differences (D) and tendency (E) in GSVA score of 25 CRGs in ESCA samples with different pathology grades. Data was exhibited as
mean ± SD. Significance was assessed by Pearson’s correlation test (A), and KruskalWallis test (D). ns= not significant, *P < 0.05; **P < 0.01;
***P < 0.001.
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Fig. 2 Identification of candidate prognostic CRGs. A, B LASSO analysis filtered out the candidate prognostic CRGs of the 25 CRGs.
C Univariate Cox analysis of the candidate prognostic CRGs. D The Kaplan-Meier curves of the candidate prognostic CRGs for ESCA patients.
Significance was assessed by a log-rank test (B).
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Fig. 3 Construction of the minimal CRGs signature that predicted the survival of ECSA patients. A Differential gene expression of the
prognostic CRGs between normal samples and ESCA samples. The data was from the GEPIA2 database. B Representative images showed the
differential protein level of the prognostic CRGs between normal samples and ESCA samples. The data was from The Human Protein Atlas
database. C Kaplan-Meier survival curves of the CRGs- signature in ESCA patients. D The 3-, 4-, and 5-year ROC curves for CRGs- signature in
ESCA patients. Data was exhibited as mean ± SD. Significance were assessed by Wilcoxon test (A) and log-rank test (C). ns= not significant,
*P < 0.05; **P < 0.01; ***P < 0.001.
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Fig. 4 Higher CRGs score was related to abnormal cell adhesion via the Akt-PI3K pathway. A Differentially expressed genes (DEGs)
between the high-CRGs score group and the low-CRGs score group. B KEGG enrichment analyses of DEGs between high-CRGs score group
and low-CRGs score group. C GSEA enrichment analyses of DEGs between high-CRGs score group and low-CRGs score group.
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immune cells-related genes to assess the association between
CRGs score and the infiltration of immune cells. Unexpectedly, as
shown in Fig. 8A, the heat map of immune cells exhibited a much
more infiltration in the high CRGs-score group, such as activated
CD4+ T cells, activated CD8+ T cells, memory T cells, and NK
cells. Given that the high- CRGs score implies a bad survival
ending, it seems that more infiltration could not explain it well. To
solve this problem, we investigated the immune activation status
by comparing the expression of CD8A, CXCL9, CXCL10, GZMA,
GZMB, PRF1, and IFHG, TBX2, and TNF. As expected, the immune
activation status showed no difference between the high and low

CRGs score group (Fig. 8B). In addition, although the immune
checkpoints genes such as PD-L1 expression were downregulated
in the higher CRGs group, the stability of PD-L1 was upregulated
in these samples due to the upregulation of CMTM6 and CMTM4,
which could prevent PD-L1 from being targeted for lysosome-
mediated degradation [17] (Fig. 8C, D). Furthermore, the down-
regulation of CD39 also suggests a higher proportion of bystander
T cells, which may underly this problem as well (Fig. 8E). Next, we
checked the tumor mutation burden (TMB) score to evaluate the
PD-L1 effect on ESCA. Although there was no difference between
the high and low CRGs score group, the high CRGs-score group

Fig. 5 Higher expression of CRGs was related to more drug sensitivity. A The correlations between the drug sensitivity and CRGs
expression. B, C qRT-PCR analysis verified the efficiency of COX7B (B) and SLC25A5 (C) knockdown in EC109 cells. D Cell viability between
EC109 cells transfected with si-Con1 and si-COX7B when treated with a gradient dose of TGX221 (n= 5). E Cell viability between EC109 cells
transfected with si-Con2 and si-SLC25A5 when treated with a gradient dose of TGX221 (n= 5). Data was exhibited as mean ± SD. Significance
were assessed by two-tailed t-test (D, E). ns= not significant, *P < 0.05; **P < 0.01; ***P < 0.001.
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Fig. 6 Higher CRGs score patients held a higher mutation loading. A Variant classification graph between high-CRGs score group and low-
CRGs score group. B Variant type graph between high-CRGs score group and low-CRGs score group. C SNV class graph between high-CRGs
score group and low-CRGs score group. D Variation per sample between high-CRGs score group and low-CRGs score group. E Variant
classification summary graph between high-CRGs score group and low-CRGs score group. F Top 10 mutated genes between high-CRGs score
group and low-CRGs score group.
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appeared to hold a higher TMB score (Fig. 8F). Consistently, it was
also found in the ICVRG2010 cohort that the CRGs expression
(COX7B, PDHX) in PD-L1 response patients was higher than in
non-response patients, indicating a preferable curative potency
and better survival ending for patients with higher CRGs score
when treated with PD-L1 (Fig. 8G). Taken together, these results
revealed that a high CRGs score was associated with higher
immune infiltration and bystander T cells, and patients may be
more responsive to anti-PD-L1 therapy.

DISCUSSION
Previous studies suggested aberrant copper homeostasis (ACH)
was highly associated with cancers such as bladder cancer, breast
cancer, colorectal cancer, and prostate cancers [18–21]. Support-
ing this, in carcinogenesis, ACH was observed to contribute to the
proangiogenic response via various molecular pathways, which
played a fundamental role in cancer proliferation or angiogenesis
[22]. Moreover, copper accumulation in cancer cells was also
reported [23, 24].

Fig. 7 APOBEC family mutation landscape in two CRGs -score groups. A The mutation load and tCw load between the APOBEC and non-
APOBEC enriched samples in the high-CRGs score group. B The mutation load and tCw load between the APOBEC and non-APOBEC enriched
samples in the low-CRGs score group. Data was exhibited as mean ± SD. Significance were assessed by Wilcoxon test (A, B). ns= not
significant, *P < 0.05; **P < 0.01; ***P < 0.001.
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Fig. 8 Higher CRGs score was associated with more immune infiltration, PD-L1 stability, and more proportion of bystander T cells. A The
heatmap showed the immune infiltration status between the high-CRGs score group and the low-CRGs score group. B Expression of immune
activation genes between high-CRGs score group and low-CRGs score group. C Expression of immune checkpoint genes between high-CRGs
score group and low-CRGs score group. D Expression of PD-L1 stability genes (CMTM6, CMTM4) between high-CRGs score group and low-
CRGs score group. E Expression of bystander T cell genes (CD39) between high-CRGs score group and low-CRGs score group. F Tumor
mutation burden (TMB) score between high-CRGs score group and low-CRGs score group. G Expression of CRGs between response and non-
response patients that received PD-L1 inhibitor treatment in the IMvigor210 (mUC) cohort. Data was exhibited as mean ± SD. Significance
were assessed by two-tailed t-test (B–G). ns= not significant, *P < 0.05; **P < 0.01; ***P < 0.001.
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Here, we systematically investigate the role of the cuproptosis-
related genes in the prognosis, pathways, and immune infiltration
of ESCA. By performing LASSO analysis along with exploration of
their differential expression in mRNA and protein level, we
identified a 5 CRGs signature. The KM curve suggested that the
CRGs signature could stratify overall survival efficiently.
SLC25A5, SLC23A2, PDHX, COX7B, ATP7A, and PIH1D2 were

filtered out to construct the CRGs signature, which was rather
reasonable. SLC25A5 was identified as a biomarker in clear cell
renal cell carcinoma involving competitive endogenous RNA [25].
SLC23A2(SVCT2), which takes the function to reduce the oxidative
damage caused by copper overloaded [26, 27], was reported to be
a polymorphism in gastric cancer or chronic lymphocytic leukemia
[28, 29]. PDHX, which takes part in encoding the pyruvate
dehydrogenase (PDH) complex, was deficient in human breast
tumor samples, and low levels of PDHX were also associated with
decreased patient survival [30]. Consistently, in nasopharyngeal
carcinoma (NPC), COX7B was found to hold a high positive rate
(84.24%) in tumor samples and was thought to be a putative
molecular marker in NPC [31]. PIH1D2 was reported to be deleted
in paragangliomas [32].
Our reports revealed that CRGs was also associated with the

grading of ESCA. On one hand, the high grades samples of ESCA
appeared to hold a higher GSVA score of CRGs (Fig. 1 C, D). On the
other, the differential genes between high and low CRGs-score
groups showed enrichment in extracellular matrix interaction and
focal adhesion function, suggesting an aberrant cell adhesin in
high CRGs score samples. Consistent with our reports, Cu
concentration was also found to increase in tumor areas and
even correlated with the grade of cancer [33–35]. High serum Cu
levels were also found in cancer patients resistant to chemother-
apy compared to patients responding to treatment [35] and
promote the scatter and formation of secondary tumors by
activating cell proliferation-related enzymes [22].
Interestingly, in our analysis, patients with high CRGs score gained

more immune infiltration while a bad survival ending. Although the
immune-escaping genes such as PD-L1(CD274), and LAG3 in high
CRGs score patients were downregulated, the PD-L1 would be more
stable in these patients due to the high expression of CMTM4, which
is regarded as the PD-L1 stabler. Consistent with our reports. Zhou B
also found that Cu ionophore disulfiram can induce stabilization of
PD-L1 by overloading cancer cells with Cu [36]. Moreover, bystander
T cells were often observed in cancers, such as lung cancer and
colon cancer, which represented a poor immunotherapy response
[37, 38]. Here, we found the CRGs score could filter patients with
bystander T cells, due to the high CRG score patients held the lower
expression of CD39 (ESPDN1), the marker of bystander T cells
[37, 38]. Nonetheless, the relationship between cuproptosis and the
bystander T cells should be further explored.
In conclusion, our study comprehensively explored the expres-

sion profiling and mutation landscape of cuproptosis-related
genes in ESCA. By constructing the cuproptosis-related genes
(CRGs) signature, we reported that a higher CRGs score
represented the progression of ESCA, because worse survival
outcomes, higher pathology grades, aberrant cell adhesion and
APOBEC mutation loading were found in patients with high CRGs
scores. In addition, higher CRGs score patients tend to hold more
immune infiltration, which we analyzed that the higher proportion
of bystander T cells and the more stable PD-L1 expression would
underlie it. Our results provide a new prognostic predictor and
offer novel insights into the clinical application of cuproptosis and
immune checkpoints targeting therapies.

MATERIALS AND METHODS
Data source
The CRGS were collected from Tsvetkov’s reports [6] and Genecard. A total
of 25 CRGs were included in this study (Table S1). The gene expression

data and clinical data were downloaded from The Cancer Genome Atlas
database (TCGA) up to March 1, 2022 (https://portal.gdc.cancer.gov). A
total of 174 samples were collected, including 11 normal samples and 163
tumor samples. Transcripts per million (TPM) of gene expression data was
utilized for further analysis. The clinical data includes the age, clinical
stages, pathology grades, and Barrett’s esophagus.
GEPIA2 was used to compare the expression levels of genes between

normal and tumor samples. Human Protein Atlas (HPA) was utilized to
compare the expression level of the protein between normal and tumor
samples.
The mutation annotation format (MAF) data of ESCA was downloaded

from the UCSC Xena server and analyzed with the “maftools” R package.
Oncoplot was drawn according to the descending order of mutations.
To compare the gene expression between response and non-response

patients treated with a PD-L1 inhibitor, the data of the IMvigor210 (mUC)
cohort from patients with mUC receiving PD-L1 inhibitor treatment were
collected. The expression data and clinical data were obtained from the
IMvigor210 (mUC) dataset (http://research-pub.gene.com/
IMvigor210CoreBiologies) with the ‘IMvigor’ package in R.

Construction of the CRGs signature
To reduce the risk of over-fitting, the least absolute shrinkage and selection
operator (LASSO) with 10-fold cross-validation was performed with the
“glmnet” R package screening for CRGs related to overall survival as
described [39]. Next, univariate Cox regression analysis were conducted to
assess whether this risk score model displayed good predictive ability for
prognosis. Then, CRGs with no significance in their expression between
normal and ESCA tumors were excluded. Next, The CRGs-score of each
patient was calculated based on the amount of calculated gene expression
and the corresponding coefficient. The formula was as the following:

CRG score ¼
X

Expi � coefið Þ

where Expi and Coefi represented the expression of each gene and the risk
coefficient, respectively. Next, we classified the patients into high-risk
group and low-risk group according to the optimal cutoff value of risk
score that was analyzed by the R package “survival”. Kaplan–Meier analysis
was carried out to explore the prognostic significance of the CRGs
signature in ESCA by the “ggsurvplot” package. Then, to assess the
predictive efficiency of the CRGs-signature, receiver operating character-
istic (ROC) of 5-year survival was performed with the “survivalROC”
package in the TCGA-ESCA cohort.

Differential genes exploration and gene set enrichment
analysis
Differential genes between the high CRGs score and low CRGs score group
were identified by the “limma” package in R with the criterion of |log2(fold
change) | > 0.5 and adjusted p value < 0.05.
Furthermore, we performed the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis and gene set enrichment
analysis (GSEA) of CRGs with the R package “clusterProfiler”. P < 0.05 and the
false discovery rate (FDR q) < 0.05 was considered statistically significant.

Evaluation of chemotherapeutic drug sensitivity
Genomics of Drug Sensitivity in Cancer (GDSC) (https://
www.cancerrxgene.org/) were used to explore the relationship between
mRNA expression level and drug sensitivity. To be specific, the IC50 of small
molecules in various cell lines and the mRNA gene expression were obtained
from GDSC. Then, Pearson analysis was carried out to evaluate the
correlation between gene expression and IC50. P-value was adjusted by FDR.

Cell culture
The human esophagus carcinoma cell line (ECA-109) was obtained from the
American Type Culture Collection (ATCC). The identity of the EC109 cell line
was validated to be correct by Short tandem repeat (STR). Cells were
cultured with DMEM (Gibco, ThermoFisher Scientific, Waltham, USA)
medium supplemented with 10% fetal bovine serum, 50 μgml−1 strepto-
mycin, 100 units ml-1 penicillin, (Gibco), and incubated at 37 °C with 5% CO2.

Cell transfection
siRNA of candidate genes and the control si-Con were commercially
purchased from Tsingke (Tsingke Biotechnology Co., Ltd., Beijing, China).
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Cells were transfected according to the protocols of the ViaFect™ (Promega,
Wisconsin, USA). The sequences of siRNA were shown in Table S2

RNA isolation and quantitative real-time PCR
Total cellular RNA was extracted using the TRIzol reagent (Invitrogen,
Carlsbad, CA, USA). The Complementary DNA (cDNA) was synthesized with
the PrimeScript RT reagent kit (Takara, 6210, China). The RT-qPCR was
performed with SYBR Green Supermix (Bio-Rad, 172-5850, USA). The gene
expression levels data were calculated using the 2-ΔΔC t method,
normalized with GAPDH expression levels. The primer sequences used
are listed in Table S3.

Drug sensitivity measurements
Drug sensitivity was determined using the cell counting kit-8 assay (CCK-8
assay kit, Bimake, Houston, USA). Cells were seeded in 96-well plates at a
density of 5000 cells per well and cultured overnight for adhesion. Then,
gradient doses of TGX221(Selleck, USA, Texas) were added to the culture
medium for 24 h. Next, 2 h after 10 µl of CCK-8 administration per well, the
optical density was measured at 450 nm with a microplate reader with a
spectrophotometer (Mutiskan Go, ThermoFisher).

Immune infiltration analysis
The set of marker genes for 28 immune-related cells and types were collected
from Jia et al. [40]. The ssGSEA method of the Gene Set Variation Analysis
(GSVA) package was applied to analyze the infiltration level of different
immune cells in high CRG-score and low-CRGs score expression profile data.

Statistical analysis
Data was exhibited as mean ± SD. Pearson’s correlation test was used to
assess the correlation between CRGs expression levels in ESCA samples.
Levene test was used to assess the variance homogeneity of data in
different groups. Student t tests or Wilcoxon tests were utilized to estimate
the significance between the two groups. In addition, Kruskal-Wallis’s test
was used for comparing more than two variables in this study (Fig. 1D).
Significance between Kaplan-Meier survival curves was determined with
the log-rank test. Univariate Cox regression analysis was used to estimate
the hazard ratio (HR) and 95% confidence interval (95% CI). Mann-Whitney
U test was employed to compare the number of somatic mutations. All
statistical analysis were performed with R (v 4.1.0). p < 0.05 is considered to
be a statistically significant.

DATA AVAILABILITY
The datasets in this study are publicly available. They can be found at the location
described before. Briefly, TCGA database: https://portal.gdc.cancer.gov/; UCSC Xena
server: http://xenabrowser.net/; GEPIA2: http://gepia2.cancer-pku.cn/; Human Protein
Atlas database: http://www.proteinatlas.org/; GDSC database: http://
www.cancerrxgene.org/. IMvigor210 (mUC) dataset: http://research-pub.gene.com/
IMvigor210CoreBiologies/.
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