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Increased medical application of psychotropic drugs raised attention concerning their toxicological effects. In fact, more than 160
psychotropic drugs including antidepressants and antipsychotics, have been shown to cause liver side effects, but the underlying
mechanisms are still poorly understood. Here, we discovered that fluoxetine, a common antidepressant, was specifically sensed by
NLRP3 inflammasome, whose subsequent activation resulted in the maturation of caspase-1 and IL-1β, as well as gasdermin D
(GSDMD) cleavage, which could be completely abrogated by a selective NLRP3 inhibitor MCC950 or Nlrp3 knockout (Nlrp3−/−).
Mechanistically, mitochondrial damage and the subsequent mitochondrial reactive oxygen species (mtROS) accumulation were
crucial upstream signaling events in fluoxetine-triggered NLRP3 inflammasome activation. In fluoxetine hepatotoxicity models,
mice showed the alterations of aminotransferase levels, hepatic inflammation and hepatocyte death in an NLRP3-dependent
manner, and MCC950 pretreatment could reverse these side effects of fluoxetine. Notably, we also found that multiple
antidepressants, such as amitriptyline, paroxetine, and imipramine, and antipsychotics, such as asenapine, could specifically trigger
the NLRP3 inflammasome activation. Collectively, our findings implicate multiple psychotropic drugs may act as danger signals
sensed by the NLRP3 inflammasome and result in hepatic injury.
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INTRODUCTION
Drug-induced liver injury (DILI) is widely regarded as a serious
health burden. It is a leading reason of failures in drug
development and one of the two most frequent causes for drug
withdrawals and restrictions [1, 2]. Although it has been reported
that the incidence of DILI ranges from 2 per 100,000 to 19 per
100,000 patient-years, many studies show that the risk of this
hepatotoxicity is seriously underestimated [3, 4].
Since exploding rates of mental diseases, as well as subsequent

increasing application of psychotropic agents, more and more
evidences emerge on their liver-toxic effects. Previous studies
have shown that more than 160 psychotropic drugs, including
antidepressants and antipsychotics, can cause liver-side effects [5].
As the most common psychotropic drugs, almost all antidepres-
sants are generally considered to cause unpredictable, dose-
independent liver injury, even at therapeutic doses, and this
hepatotoxicity usually develops between several days and six
months during drug intake [6]. Antipsychotics, another common
psychotropic drugs, also have been shown to be closely
associated with the risk of DILI. The common first-generation
antipsychotics, like chlorpromazine, and second-generation anti-
psychotics, such as risperidone and olanzapine, evidence of
hepatotoxicity have been provided in both cases and animal

studies [7–11]. Simultaneously, it is worth noting that multiple
psychotropic drugs are strongly related to adverse metabolic
effects such as diabetes and obesity, which further highlighting
the need to recognize the hepatotoxic potential of psychotropic
drugs [12, 13]. However, the psychotropic drug-induced DILI is a
challenging not only in terms of diagnosis, but also in terms of
management.
NLRP3 inflammasome, one of the most representative immune

multiprotein platforms, is composed of a sensor NLRP3, adapter
ASC, and inflammatory protease caspase-1. This platform is
activated in response to diverse molecular patterns [14]. Studies
have shown that the NLRP3 inflammasome activation requires two
sequential signals: a priming signal and an activation signal. After
sensing danger signals, the activated caspase-1 triggers matura-
tion and secretion of proinflammatory cytokine IL-1β and, under
certain conditions, to induction of gasdermin D (GSDMD)-
mediated pyroptosis [15–17]. As an essential component of host
defense, however, the dysregulated NLRP3 inflammasome activity
causes uncontrolled inflammation, which underlies multiple
diseases, such as gout [18], type 2 diabetes [19], atherosclerosis
[20], and idiosyncratic drug-induced liver injury (IDILI) [21].
Growing evidences suggest that excessive activation of the NLRP3
inflammasome is a key risk factor for hepatotoxicity [22], and have
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been reported that application of the NLRP3 inflammasome
blockade can reduce hepatic inflammation and fibrosis in mice
[23]. Additionally, studies also have shown the role of NLRP3
inflammasome in hepatic injury driven by antiepileptic agents
such as carbamazepine [24] and antituberculosis drugs such as
isoniazid [25].
In our study, we revealed multiple psychotropic drugs including

fluoxetine, asenapine, amitriptyline, paroxetine, and imipramine,
could act as danger signals to specifically trigger the NLRP3
inflammasome activation accompanied by caspase-1 maturation,
IL-1β secretion and GSDMD cleavage. Mitochondrial damage and
the subsequent mitochondrial reactive oxygen species (mtROS)
accumulation, which were requirements for the NLRP3 inflamma-
some activation triggered by fluoxetine. These data demonstrated
that the NLRP3 inflammasome may serve as a potential target for
the development of novel therapeutics for patients with hepatic
injury induced by psychotropic drugs.

RESULTS
Multiple psychotropic drugs with the ability to induce DILI
trigger the activation of inflammasome
Given the potential of psychotropic drugs in driving DILI, we were
curious about the role of inflammasome in it. Here, seven
common clinical psychotropic drugs (asenapine, amitriptyline,
mirtazapine, agomelatine, paroxetine, fluoxetine and imipramine)
related to liver injury were chosen for testing. As shown in Fig. 1A,
B and D, asenapine, amitriptyline, paroxetine, fluoxetine and
imipramine directly triggered the inflammasome activation
evidenced by caspase-1 maturation and IL-β generation. Mean-
while, the release of lactate dehydrogenase (LDH) (Fig. 1C) (a
programmed cell death associated with inflammation) and the
production of an inflammasome-independent cytokine TNF-α (Fig.
1E) were observed. The potential of fluoxetine in inducing the
secretion of downstream effector cytokines prompted us to
conduct a more in-depth study on it.

Fig. 1 Numerous psychotropic drugs directly trigger the inflammasome activation. A–E BMDMs were pretreated with LPS and then treated
with these psychotropic drugs for 12 h. Western blots of cell supernatants (SN) and whole-cell lysates (WCL) (A) were assessed. The caspase-1
activity (B) and the release of LDH (C) in SN were detected. The secretion of IL-1β (D) or accumulation of TNF-α (E) was detected by ELISA. Data
are represented as the mean ± SEM from three biological samples, *P < 0.05, **P < 0.01, ***P < 0.001 vs. the control. One-Way ANOVA analysis
was followed by Dunnett’s post-hoc test (ns, not significant).
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Multiple psychotropic drugs specifically induce the NLRP3
inflammasome activation
We further investigated the role of fluoxetine (Fig. 2A) on the
inflammasome activation. BMDMs were pretreated with LPS
followed by fluoxetine stimulation. The results indicated that the

production of caspase-1 and IL-β, and cleavage of GSDMD were
triggered by fluoxetine in a dose-dependent manner (Fig. 2B, C
and E). Similarly, the release of LDH (Fig. 2D) and the production of
TNF-α (Fig. 2F) were associated with the dose of fluoxetine.
Meanwhile, LPS-primed BMDMs were stimulated with fluoxetine
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for 1, 3, 6, and 12 h, respectively, and we observed the caspase-1
maturation (Fig. 2G and H), GSDMD cleavage, IL-β generation (Fig.
2G and J), LDH release (Fig. 2I), and TNF-α generation (Fig. 2K) in a
time-dependent manner. Furthermore, THP-1 cells were pre-
treated with PMA for 4 h followed by fluoxetine and MSU
stimulation for 12 h. As shown in Fig. 2L, both of fluoxetine and
MSU could trigger the maturation of caspase-1 and IL-1β.
Additionally, NLRP3 has the extraordinary capacity of sensing

damage-associated molecular patterns (DAMPs) such as MSU, ATP, or
silica [26]. Since both antidepressant fluoxetine and MSU could
directly trigger inflammasome activation, we wondered whether the
generation of inflammatory cytokines induced by fluoxetine would
also occur through the NLRP3 inflammasome. To elucidate this,
BMDMs were treated with LPS to provide for the activation of NLRP3
inflammasome by inducing the synthesis of NLRP3 and pro-IL-1β,
and then stimulated with fluoxetine, nigericin (Nig), and poly(dA:dT).
The fluoxetine-induced caspase-1 maturation, IL-1β generation,
GSDMD cleavage, and TNF-α accumulation were abrogated in the
presence of MCC950 (a specific NLRP3 inflammasome blocker) [27]
(Fig. 3A–C). In contrast, AIM2 inflammasome did not appear to be
essential for fluoxetine signaling, because the administration of
synthetic oligodeoxynucleotide (ODN) [28], a selective and potent
blocker of AIM2, completely blocked poly(dA:dT)-triggered AIM2
inflammasome activation rather than fluoxetine (Fig. 3A–C). To
further clarify the requirement for the NLRP3 inflammasome in
antidepressant fluoxetine-induced downstream events. We then
assessed the effect of fluoxetine on inflammasome activation in Nlrp3
knockout (Nlrp3−/−) BMDMs. As shown in Fig. 3D and E, the
fluoxetine-triggered the maturation of caspase-1 and IL-1β were
completely abrogated in Nlrp3−/− BMDMs. Furthermore, the cleavage
of GSDMD and production of TNF-α were also blocked in Nlrp3−/−

BMDMs (Fig. 3D and F).
Notably, we also found that other psychotropic drugs including

asenapine, amitriptyline, paroxetine, and imipramine could trigger
inflammasome-dependent cytokines caspase-1 and IL-1β produc-
tion, and cleavage of GSDMD. Moreover, they could be abrogated
by MCC950 pretreatment or Nlrp3 deficiency (Fig. 3G and H, Fig.
S1A and B). Likewise, there was an obvious influence on TNF-α
production (Fig. S1C and D). Taken together, multiple psycho-
tropic drugs could specifically trigger NLRP3 inflammasome
activation to induce the secretion of downstream effector
cytokines.

Mitochondrial damage and mtROS accumulation are crucial
molecular signals in fluoxetine-induced NLRP3 inflammasome
activation
Next, we further studied how fluoxetine triggered NLRP3
inflammasome activation. ASC oligomerization seems to be an
indispensable step in NLRP3 inflammasome activation [29],
offering conditions for the secretion of mature cytokines. As
shown in Fig. 4A, fluoxetine triggered dimerization as well as
oligomerization of the ASC molecules in a time dependent
manner, suggesting that fluoxetine acted upstream events to
induce the activation of NLRP3 inflammasome.
The mitochondrial damage and release of the mtROS into

cytosol are essential upstream signaling events implicated in the

NLRP3 inflammasome activation [30, 31]. Then, we assessed the
role of mitochondrial damage in fluoxetine-induced the NLRP3
inflammasome activation. JC-1 staining results indicated that
fluoxetine directly triggered mitochondrial damage (Fig. 4B and C).
Furthermore, we also wondered whether the accumulation of
mtROS was involved in fluoxetine-induced the aberrant activation
of the NLRP3 inflammasome. To clarify this, BMDMs were treated
with LPS followed by fluoxetine stimulation. The amount of mtROS
accumulation was detected by flow cytometry. The results
indicated that fluoxetine could induce mtROS generation in a
dose-dependent manner (Fig. 4D). We then pretreated LPS-primed
BMDMs with N-Acetylcysteine (NAC, a ROS scavenger) [32] to
further verify whether the mtROS affected the fluoxetine-triggered
NLRP3 inflammasome activation. As shown in Fig. 4E, the
accumulation of mtROS was inhibited. Meanwhile, fluoxetine-
induced production of caspase-1 and IL-1β were indeed impaired
in response to the NAC (Fig. 4F and G). Similarly, the decrease of
TNF-α was also observed (Fig. 4H). In summary, these data
suggested that the mitochondrial damage and the subsequent
mtROS accumulation were indispensable steps in fluoxetine-
induced NLRP3 inflammasome activation.

Fluoxetine induces idiosyncratic hepatotoxicity through
NLRP3 inflammasome
Previous studies have reported that fluoxetine could induce
unpredictable, dose-independent hepatotoxicity [33]. Additionally,
among the coexisting inflammation factors, LPS is generally
considered to be a determinant of susceptibility to IDILI [34]. Here,
we simulated IDILI in mice through co-exposing to non-
hepatotoxic doses of LPS and fluoxetine, and assessed the role
of NLRP3 inflammasome in fluoxetine-driven hepatic injury in vivo.
Animals were treated with LPS and subsequently stimulated with
fluoxetine. As shown in Fig. 5A–D, fluoxetine alone did not result
in any pathological changes compared with the control group.
However, compared with other groups, combination of fluoxetine
and LPS induced elevation of the levels of serum AST, ALT, IL-1β,
and TNF-α. Additionally, TUNEL staining and H&E staining showed
that co-exposure to LPS and fluoxetine induced liver inflammation
and hepatocyte focal necrosis, which were not occurred in the
fluoxetine group and control group (Fig. 5E). Collectively, these
data indicate that for the development of idiosyncratic hepato-
toxicity in fluoxetine using individuals requires participation of
additional inflammation inducers such as LPS. Thus, likelihood of
idiosyncratic hepatotoxicity development in fluoxetine-using
individuals is higher when they have inflammation-related
diseases such as bacterial infection or gout.

Fluoxetine-induced idiosyncratic hepatic injury could be
reversed by MCC950 pretreatment in vivo
Next, the MCC950 were administered before mice were co-
exposed to LPS and fluoxetine, to block the NLRP3 inflammasome
activation in vivo. According to the biochemical analysis, we found
that pretreatment with MCC950 could dramatically reduce the
serum levels of ALT and AST, and suppress the IL-1β production
and TNF-a accumulation triggered by LPS/fluoxetine in vivo
(Fig. 6A–D). Similarly, the liver inflammation and hepatocyte focal

Fig. 2 Fluoxetine triggers the maturation of downstream effector cytokines and cleavage of GSDMD. A The fluoxetine chemical structure.
B–F BMDMs were pretreated with LPS and subsequently stimulated with a range of fluoxetine concentrations. The cleaved caspase-1, as well
as IL-1β in SN and the cleaved GSDMD in WCL (B) were assessed by western blotting. The caspase-1 activity (C) and the LDH release (D) were
measured. Using ELISA to measure the secretion of IL-1β (E) and accumulation of TNF-α (F) in SN. G–K BMDMs were first primed with LPS and
then stimulated with fluoxetine (40 μM) for 1, 3, 6, and 12 h, respectively. The expression levels of the cleaved caspase-1 and IL-1β in SN and
the cleaved GSDMD (G) in WCL were detected using western blot analysis. Activity of caspase-1 (H), release of LDH (I), secretion of IL-1β (J) as
well as generation of TNF-α (K) in SN were also assessed. L PMA-primed THP-1 cells were stimulated with fluoxetine and MSU, and then the
expression levels of cleaved caspase-1 and IL-1β were detected by western blotting. Data are represented as the mean ± SEM from three
biological samples, *P < 0.05, **P < 0.01, ***P < 0.001 vs. the control, ns, no significant. One-Way ANOVA analysis was followed by Dunnett’s
post-hoc test.
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necrosis were observed in the LPS/fluoxetine group through
TUNEL staining, H&E staining and F4/80 staining, while these
situations were obviously improved in the presence of MCC950
(Fig. 6E). These data suggested that the NLRP3 inflammasome
played a crucial role in fluoxetine/LPS-driven hepatotoxicity.

DISCUSSION
The psychotropic drug-induced hepatotoxicity is a serious health
threat and one of the leading reasons for limiting their
development. In our study, the psychotropic drugs fluoxetine
[35], asenapine [36], amitriptyline [37], paroxetine [38], and
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imipramine [39] with hepatotoxicity reports specifically triggered
the NLRP3 inflammasome activation accompanied by the secre-
tion of downstream effector cytokine such as IL-1β, as well as the
production of the indirectly regulated cytokine TNF-α. We thought
that the production of TNF-α has been indirectly regulated by
inflammasome activation, because the inflammasome-dependent
inflammatory cytokine IL-1β could induce TNF-α production by
activating NF-κB signaling pathway [40, 41]. What supported our
inference was that our study Fig. 3C and F showed that the
production of TNF-α induced by fluoxetine could be blocked by
the selective NLRP3 inhibitor MCC950 pretreatment or Nlrp3
deficiency.
Additionally, the fluoxetine hepatotoxicity models showed that

fluoxetine alone could not cause hepatic injury in the absence of
LPS. However, in the presence of LPS, fluoxetine induced
alterations in liver enzyme levels, hepatic inflammation and
hepatocyte death, and this is mediated by the NLRP3 inflamma-
some. These results suggested that the IDILI related to aberrant
activation of the NLRP3 inflammasome caused by fluoxetine may
depend on a mild inflammatory state induced by LPS. Consistent
with our studies, it has been reported that coexisting inflamma-
tory mediators like LPS could be regarded as the determinants of
susceptibility to IDILI [34] and non-hepatotoxic doses of LPS could
decrease the threshold for toxicity and/or increase the magnitude
of response [42]. Furthermore, given that other psychotropic
drugs could also specifically trigger the NLRP3 inflammasome
activation, the role of NLRP3 inflammasome in psychotropic drug-
driven hepatotoxicity should be considered. Meanwhile, the
model of fluoxetine hepatotoxicity has revealed that MCC950
pretreatment could reverse the hepatic injury when co-exposure
to LPS and fluoxetine, suggesting that these adverse reactions
caused by multiple psychotropic drugs could be rescued or
prevented by small molecule inhibitors of the NLRP3
inflammasome.
As studies reported, multiple DAMPs such as monosodium urate

(MSU) crystals [43], cholesterol crystals [44], asbestos, and silica
[26, 45] are usually regarded as the NLRP3 inflammasome agonist.
Meanwhile, they drive various inflammatory-related diseases such
as gout [43], atherosclerosis [46], silicosis [26], and even DILI [47]
by inducing aberrant activation of the NLRP3 inflammasome.
Consistent with these studies, our findings showed that multiple
psychotropic drugs directly triggered aberrant activation of the
NLRP3 inflammasome, indicating that in certain special cases, they
can be regarded as exogenous DAMPs, triggering aberrant
response of the innate immune and resulting in idiosyncratic
hepatotoxicity.
Interestingly, the effects of selective serotonin reuptake

inhibitors (SSRIs) on inflammatory response are contradictory
since these agents act either as anti- or pro-inflammatory. As the
most common SSRI, fluoxetine has been reported to play an anti-
or proinflammatory role in microglia related to the quality of the
living environment [48]. Additionally, it is worth noting that the
response of fluoxetine to inflammation in different tissues is also
paradoxical. For example, fluoxetine affects depression by
inhibiting the activation of NLRP3 inflammasome in microglia

[49]. Furthermore, fluoxetine mitigates NLRP3 inflammasome and
caspase-1 activation through autophagy activation after subar-
achnoid hemorrhage (SAH) to treat early brain injury [50]. In
contrast, fluoxetine treatment shows a marked pro-inflammatory
effect in liver tissue. The previous study has shown that fluoxetine
treatment can lead to liver inflammation and oxidative stress [33].
Other studies also have shown that fluoxetine induces portal zone
inflammation, lobular inflammation. and hepatomegaly [51, 52].
Consistent with these studies, our work suggest that fluoxetine
induces idiosyncratic hepatotoxicity by triggering aberrant activa-
tion of the NLRP3 inflammasome. Although we still poorly
understood the underlying molecular mechanisms of fluoxetine’s
differential response in inflammation, monitoring of potential liver
injury during fluoxetine treatment appears to be warranted.
In summary, our studies demonstrate that fluoxetine and other

psychotropic drugs with similar effects can act as exogenous
DAMPs directly trigger the NLRP3 inflammasome activation
accompanied by caspase-1 activation, IL-1β secretion and GSDMD
mediated pyroptosis. Meanwhile, mitochondria damage and
mtROS accumulation as the crucial molecular signals that are
conducive to fluoxetine triggere its activation. In this way,
combined with selective small molecule inhibitors of NLRP3
inflammasome may be a valid therapeutic strategy for the
treatment of liver injury caused by multiple psychotropic drugs.

MATERIALS AND METHODS
Mice
Wild-type (WT) female C57BL/6 mice (eight-week-old) in the study were
obtained from SPF Biotechnology Co., Ltd of Beijing, China. Female Nlrp3−/−

mice were supported by Dr. Tao Li from National Center of Biomedical
Analysis (Beijing, China). All mice were maintained under a pathogen-free
condition (22 ± 2 °C) and held under a 12-h dark/light cycle. We tried our
best to minimize the suffering as well as the number of animals used. When
assessing experimental outcomes, the investigators were blinded to the
treatments.

Chemicals and antibodies
The chemicals and antibodies in our study were listed in Supplemental
Table 1. All small molecular compounds were dissolved in DMSO.

Cell preparation and culture
BMDMs were isolated and collected from the Nlrp3−/− mice or WT mice
using a standard reverse perfusion procedure and then cultured in
Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine
serum (FBS), 1% penicillin/streptomycin, as well as murine recombinant
mouse macrophage colony-stimulating factor (MCS-F; 50 ng/mL). Addi-
tionally, human THP-1 cells, which were a gift from Dr. Tao Li from NCBA,
were incubated in Roswell Park Memorial Institute (RPMI) 1640 medium
(1% penicillin/streptomycin and 10% FBS) and primed with 100 nmol PMA
for 6 h. Cells were kept in a humidified 5% (v/v) CO2 incubator at 37 °C.

Inflammasome activation assay
To assess the activation of the inflammasome, WT and/or Nlrp3−/− BMDMs
(1.2 ×106 cells/mL) were incubated in 12-well plates overnight. Next, cells
were pretreated with ultrapure LPS (50 ng/mL) for 4 h and then stimulated

Fig. 3 Multiple psychotropic drugs specifically induce NLRP3 inflammasome activation. A–C In the presence or absence of ODN or
MCC950, fluoxetine, Nig as well as poly(dA:dT) were incubated in LPS-primed BMDMs. The maturation of caspase-1, secretion of IL-1β in SN
and the cleavage of GSDMD in WCL (A) were assessed by western blotting. Using ELISA kits to test the levels of IL-1β (B) and TNF-α (C) in SN.
D–F WT and Nlrp3−/− BMDMs were preated with LPS, and then stimulated with fluoxetine. Western blotting analysis was applicated to assess
the expression levels of caspase-1 and IL-1β in SN and the cleavage of GSDMD (D) in WCL. The levels of IL-1β (E) and TNF-α (F) in SN were
measured by ELISA kits. G LPS-primed BMDMs were pretreated with MCC950 and then stimulated with asenapine, amitriptyline, paroxetine,
fluoxetine and imipramine, the expression of cleaved caspase-1 and IL-1β in SN and cleaved GSDMD in WCL were assessed by western
blotting. H WT and Nlrp3−/− BMDMs were pretreated with LPS, and then stimulated with these psychotropic drugs. Western blotting analysis
was applicated to assess the cleaved caspase-1 and IL-1β in SN and the cleaved GSDMD in WCL. Data are represented as the mean ± SEM from
three biological samples; ***P < 0.001, ns, not significant, unpaired Student’s t test (two groups) or One-Way ANOVA analysis followed by
Dunnett’s post-hoc test (multi groups).
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Fig. 4 Mitochondrial damage and mtROS accumulation are crucial molecular signals for fluoxetine-induced NLRP3 inflammasome
activation. A The oligomerization of ASC after DSS crosslinking in WCL was measured by western blotting. B, C The mitochondrial damage
was assessed using a JC-1 mitochondrial membrane potential assay kit. D LPS-primed BMDMs were stimulated with fluoxetine for 6 h and the
mtROS content was measured by flow cytometry. E–H LPS-primed BMDMs were pretreated with NAC and then treated with fluoxetine (40 μM)
for 6 h, the mtROS content (E) was measured by flow cytometry. The expression levels of cleaved caspase-1 and IL-1β in SN (F) were detected
by western blotting and using ELISA kits to detect the secretion of IL-1β (G) and generation of TNF-α (H) in SN. Data are shown as the
mean ± SEM from three biological samples; *P < 0.05, **P < 0.01, ***P < 0.001, ns, not significant. One-Way ANOVA analysis followed by
Dunnett’s post hoc test.
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with various psychotropic drugs (asenapine, amitriptyline, mirtazapine,
agomelatine, paroxetine, fluoxetine and imipramine, 40 μM) for 12 h,
respectively. The inflammasome-related downstream effector cytokines
were detected.

Caspase assay
Activity of caspase-1 in cell supernatants was measured by Caspase-Glo 1
reagent. The experimental protocol of activity of the caspase-1 assay was
similar to described previously [53, 54].

Immunoblotting
After psychotropic drugs treatment, the cell supernatants were
collected and then trichloroacetic acid was added to precipitate
proteins. The method of western blotting analysis has been described
previously [55].

LDH release
BMDMs were pretreated with LPS and then treated with psychotropic
drugs for twelve hours. Then, the release of LDH in cell culture
supernatants was detected using a LDH cytotoxicity assay kit.

Enzyme-linked immunosorbent assay (ELISA)
The levels of TNF-α and IL-1β in cell supernatants and serum were
measured using Mouse ELISA Kits, which were performed under the
manufacturer’s instructions.

ASC oligomerization
LPS-primed BMDMs were stimulated with fluoxetine (40 μM) for 1, 3, 6, and
12 h, respectively, and then lysed with Triton Buffer [56] for 15min. Next,
these samples were collected and centrifuged at 6500 g for 15min (4 °C).

Fig. 5 Fluoxetine induces hepatic injury via triggering the activation of the NLRP3 inflammasome in vivo. A–D WT C57BL/6 mice were
injected with LPS (2mg/kg) and then stimulated with fluoxetine (10mg/kg, 20mg/kg, n= 6/group). The levels of mouse serum ALT (A) and
AST (B) were measured by GTP and GOT kits, and IL-1β (C) and TNF-α (D) were detected by ELISA kits. E H&E staining (scale bar: 200 μm) and
TUNEL staining (scale bar: 100 μm) were used to assess inflammatory infiltration and TUNEL positive. Data are shown as the mean ± SEM.
*P < 0.05, **P < 0.01, ***P < 0.001vs LPS group, ns, not significant. One-Way ANOVA analysis followed by Dunnett’s post-hoc test.
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The supernatants were used as whole-cell lysates (WCL) and the pellet
were washed and resuspended with 200 μL phosphate-buffered saline
(PBS) and then cross-linked with 4 mM disuccinimidyl suberate (DSS) at
37 °C for 30min with rotation. After centrifuging at 6500 g for 15min, the
cross-linked pellets were collected and resuspended in 1 x SDS loading
buffer for western blotting assay.

Measurement of mitochondrial damage and mtROS
measurement
The JC-1 mitochondrial membrane potential assay kits were used to
assess the damage of mitochondrial. BMDMs in diameter culture dish
tubes (100 mm) were pretreated with LPS for four hours. Then, the cells
were transferred to 1.5 mL tubes and stimulated with fluoxetine for 6 h
and then incubated with JC-1 (10 μM) at 37 °C for fifteen minutes. After

cells were washed with PBS twice and resuspended with 200 μL PBS,
flow cytometry was used to evaluate the mitochondrial damage.
Similarly, to assess the fluoxetine-induced mtROS accumulation, BMDMs
in the diameter culture dish tubes were treated with LPS and then
transferred to tubes followed by fluoxetine stimulation for six hours.
Next, the samples were washed with hank’s balanced salt solution
(HBSS) twice and stained with 4 mM MitoSOX Red mitochondrial
superoxide dismutase indicator for fifteen minutes. After staining and
washing, 200 μL HBSS were added to resuspend cells and the
production of mtROS was conducted by flow cytometry.

Biochemical analysis
The mouse serum levels of AST and ALT were evaluated with commercially
available kits (Nanjing Jiancheng Bioengineering Institute).

Fig. 6 MCC950 pretreatment rescues LPS/fluoxetine-induced hepatotoxicity. A–D WT C57BL/6 mice were pretreatment with MCC950
(50mg/kg, n= 5 LPS and LPS/FLU groups, n= 6 other groups) and then treated with LPS (2 mg/kg) and finally fluoxetine (20mg/kg) was
administrated. The levels of mouse serum ALT (A), AST (B), IL-1β (C), and TNF-α (D) were assessed by corresponding kits. E H&E staining (scale
bar: 200 μm), TUNEL staining (scale bar: 100 μm) and F4/80 staining (scale bar: 100 μm) were used to analyze the liver inflammatory infiltration
and TUNEL positive. Data are shown as the mean ± SEM. ***P < 0.001 vs the LPS/FLU group, ns, not significant, Statistics differences were
analyzed using Student’s t test.
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Stimulation with fluoxetine in vivo
LPS (2mg/kg) or PBS vehicles was administered to the WT C57BL/6 mice
(female; 8-week-old; n= 6/group) via tail vein for two hours. Then, the mice
were injected intraperitoneally with fluoxetine (10mg/kg or 20mg/kg) or its
carrier (PBS) six hours before mouse serum and liver tissue were collected.
The serum levels of ALT or AST was measured with GPT or GOT kits and the
serum levels of TNF-α or IL-1β was assessed with the Mouse ELISA kits.
Simultaneously, using hematoxylin and eosin (H&E) staining and TUNEL
staining to evaluate the injury of liver tissue.

Combination of MCC950 and fluoxetine
The WT C57BL/6 mice (female; 8-week-old; n= 5 LPS and LPS/FLU groups,
n= 6 other groups) were injected intraperitoneally with 50mg/kg MCC950
or PBS. One hour later, LPS (2mg/kg) or its carrier were given via the tail
vein and then fluoxetine (20mg/kg) or PBS were administrated via
intraperitoneal injection. After 6 h, the mouse serum levels of ALT, AST, IL-
1β, and TNF-α were detected by corresponding kits, and the liver tissues
injury were assessed by H&E staining, TUNEL staining and F4/80 staining.

Statistical analyses
Excel was used for statistics and GraphPad Prism 6 (a GraphPad Software)
was applicated for analysis. All of the results were presented as the
mean ± SEM. Comparisons were performed by One-Way ANOVA analysis
(multigroups) or Student’s t-test (two groups). The difference was
considered statistically significant when P < 0.05.

DATA AVAILABILITY
All data will be made available upon request.
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