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As noncoding RNAs, circular RNAs (circRNAs) are covalently enclosed endogenous biomolecules in eukaryotes that have tissue
specificity and cell specificity. circRNAs were once considered a rare splicing byproduct. With the development of high-throughput
sequencing, it has been confirmed that they are expressed in thousands of mammalian genes. To date, only a few circRNA
functions and regulatory mechanisms have been verified. Adipose is the main tissue for body energy storage and energy supply.
Adipocyte metabolism is a physiological process involving a series of genes and affects biological activities in the body, such as
energy metabolism, immunity, and signal transmission. When adipocyte formation is dysregulated, it will cause a series of diseases,
such as atherosclerosis, obesity, fatty liver, and diabetes. In recent years, many noncoding RNAs involved in adipocyte metabolism
have been revealed. This review provides a comprehensive overview of the basic structure and biosynthetic mechanism of
circRNAs, and further discusses the circRNAs related to adipocyte formation in adipose tissue and liver. Our review will provide a
reference for further elucidating the genetic regulation mechanism of circRNAs involved in adipocyte metabolism.
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FACTS

● Adipocyte metabolism is a complex physiological process
involving a series of genes and regulatory factors.

● circRNAs are involved in adipogenesis and lipolysis in the
adipose tissue and the liver.

● circRNAs can act as miRNA sponges, transcriptional regulators,
protein scaffolds, or translation templates.

OPEN QUESTIONS

● Whether or not circRNAs have a biological function in
adipocyte metabolism?

● How do genes, miRNAs, and circRNAs coordinately regulate
adipocyte metabolism?

● Can circRNAs be used as biomarkers and as therapeutic
carriers?

INTRODUCTION
Adipocyte metabolism is a complex physiological process invol-
ving nutrition regulation, hormone regulation, and homeostasis. It
participates in a variety of physiological processes and is of great
significance to the life activities of the body. Abnormal adipocyte

metabolism and metabolic disorders have become epidemics in
various countries around the world [1, 2], and can cause metabolic
syndromes, including obesity, hepatic steatosis, adipose tissue
dysfunction, atherosclerosis, and type 2 diabetes [3, 4]. Studies
have shown that peroxisome proliferator-activated receptor γ
(PPARγ) [5], CCAAT/enhancer-binding protein (C/EBPα) [6], and the
sterol regulatory element-binding protein (SREBP) family [7]
participate in the adipocyte metabolism regulation. However, an
increasing number of noncoding RNAs (ncRNAs), including
microRNAs (miRNAs) [8–10], long noncoding RNAs (lncRNAs)
[11–14], and circular RNAs (circRNAs) [15, 16], have been shown to
be involved in the regulation of adipocyte metabolism [17]. These
ncRNAs regulate adipogenesis in a variety of ways [18].
ncRNAs are a general term for functional RNA that does not

code for proteins. They participate in gene expression regulation
through epigenetic modification, transcriptional, and posttran-
scriptional regulation [19]. Among them, circRNAs are an
emerging type of ncRNA with great research potential, following
miRNAs and lncRNAs in the noncoding RNA family. circRNAs are a
class of covalently enclosed endogenous biomolecules that were
first discovered in 1976 [20]. circRNAs play important roles in the
growth or development of tissues and organs, as they are involved
in cell cycle regulation, cell proliferation, and apoptosis in different
tissues or organs [21–25]. In the past few years, the biosynthesis
and molecular functions of circRNAs have been extensively
explored and verified. circRNAs can act as miRNA sponges to
adsorb and regulate the activity of miRNAs, and can also modulate
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the transcription and translation of downstream target genes by
binding to proteins [26].
The expression levels of circRNAs in tissues are low, with tissue-

specific and cell-specific expression patterns [27–29]. Although
circRNAs are closely related to a series of physiological processes
in animals, the biogenesis mechanism of circRNAs in different
animals has certain differences [30]. Previous studies have
confirmed that circRNAs are involved in adipogenesis and lipolysis
in adipose tissue, and also play regulatory roles in lipid
metabolism in hepatocytes [31]. Dysregulation of circRNAs is
closely related to the occurrence of a series of diseases, such as
adipogenesis-related disorders, diabetes, and metabolic diseases
[32, 33]. Therefore, in this paper, we have reviewed the basic
structure and biosynthesis mechanism of circRNAs, and further
discuss the regulatory roles of circRNAs in adipocyte metabolism.
Our review will provide a reference for further elucidating the
genetic regulation mechanism of circRNAs involved in adipocyte
metabolism.

PROPERTIES AND BIOGENESIS OF CIRCRNAS
Structure of circRNAs
circRNAs do not have a 5′-end cap or a 3′-end poly(A) tail and
forms a closed-loop structure with covalent bonds. Therefore,
circRNAs are not easily affected by RNA exonuclease, their
expressions are more stable, and are not easily degraded
[34, 35]. With the rapid development of high-throughput
sequencing and bioinformatics analysis, thousands of circRNAs
have been identified in the cells and tissues of different species. It
has been discovered that circRNAs can be produced from
intergenic regions, intronic regions, coding regions, and 5′ or 3′
noncoding regions [36]. According to their location generated in
the genome, circRNAs are classified into the following three
categories [37, 38]: (1) exonic circRNAs (EcirRNAs), (2) exon–intron
circRNAs (EIcircRNAs), and (3) circular intronic RNAs (ciRNAs)
(Fig. 1). EcirRNAs are existed in the cytoplasm. They have a similar
miRNAs sponge effect to lncRNAs, and can indirectly regulate
gene expression by competitively binding to miRNAs [39].
However, EIciRNAs and ciRNAs are abundant in the nucleus, with
low enrichment for miRNA targets. EIciRNAs are able to interact
with U1 small nuclear ribonucleoprotein (U1 snRNP) to form an
EIciRNA–U1 snRNP complex that binds to the RNA polymerase II
(Pol II) transcription complex to facilitate the transcription of their
parental genes [40]. Inhibition of ciRNAs can result in the
decreased expression of their parental genes, although the
mechanism of this is not clear [41].

Biogenesis and characteristics of circRNAs
The biosynthesis mechanisms of different types of circRNAs are
different. To date, three different cyclization models have been
proposed [38, 42, 43]: intron pairing-driven circularization, RNA-
binding protein (RBP)-driven circularization, and lasso-driven
circularization (Fig. 1).
The intron pairing-driven circularization is an important

mechanism of circRNA biosynthesis. Most circRNAs are gener-
ated by back splicing, in which the downstream 5′ splice donor
is connected to the upstream 3′ splice acceptor [44]. Some
introns on both sides of the circRNA exons contain intronic
reverse complementary sequences (ICSs) [45], and these
sequences are paired by base pairing to form a circular
structure. The side-by-side orientation at the splicing site forms
RNA double strands, which is then cut to form two different
kinds of circRNAs with or without introns (Fig. 1) [27]. The
competitive pairing of complementary pairing sequences of
different cis-introns can produce multiple circRNAs from one
gene locus [41].
The biogenesis of circRNAs can also be driven by RNA-

binding proteins (RBPs) (Fig. 1). For example, the known

splicing factor Muscleblind can promote the circularization of
its second exon by binding to the flanking introns [46].
Quaking is another RBP known to play a role in mRNA splicing,
which leads to the formation of circRNA through the
combination of recognition elements in its upstream and
downstream introns [47].
Lasso-driven circularization is another major mechanism for

generating circRNAs. When the pre-mRNA undergoes canonical
GU/AG splicing, exon skipping splicing patterns can sometimes
occur, resulting in a lasso intermediate containing intron–exon,
and then the lasso intermediate is spliced to form circRNAs.
ciRNAs are originated from lariat introns. Their genesis relies on a 7
nt GU-rich motif at the 5′ splice site and an 11 nt C-rich motif at
the branchpoint site. The intron-containing lasso is cyclized
through covalent 2′, 5′-phosphodiester bond, and then the
redundant sequence from the 3′ end of the intron to the branch
site is degraded (Fig. 1) [41].

THE REGULATORY MECHANISM OF CIRCRNAS
Acting as miRNA sponges
Recent studies have shown that circRNA molecules are rich in
miRNA-binding sites and can act as miRNA sponges in cells
(Fig. 2A). circRNA binds to miRNAs to block the inhibitory effect of
the miRNA on its target genes, thereby upregulating the target
genes expression. This mechanism of action is called the
competitive endogenous RNA (ceRNA) [48]. CiRS-7 was discovered
to be a sponge of miR-138, revealing for the first time that
circRNAs can act as miRNA sponges [49]. CiRS-7 can also regulate
insulin transcription in pancreatic islet cells by adsorbing miR-7,
which promotes insulin secretion and increases the insulin levels
in pancreatic islet cells [50]. In liver, circRNA-0067835 acts as a
sponge of miR-155 to promote the expression of FOXO3a to
regulate liver fibrosis [51].
circRNAs not only can interact with a single miRNA but also can

regulate the activity of multiple miRNAs at the same time [52].
Hsiao KY et al. [53]. have shown that circCCDC66 plays an
oncogenic function in polyps and colon cancer. circCCDC66
contains several binding sites for miR-33b and miR-93. These two
miRNAs can target MYC oncogenes and thus accelerate tumor
growth and cancer invasion. Because circRNAs are stably
expressed in cells and have a large number of miRNA-binding
sites, they may be more effective miRNA sponges than linear RNA
molecules [54].

Modulating host gene expression in the nucleus
The circRNAs located at the transcription site of the host gene can
function by regulating the expression of their host genes. Zhang
et al. [41] have found that circRNAs derived from the introns of
ankrd52, MCM5, and SIRT7 genes are distributed in large amounts
in the nucleus. Knockdown of circ-ankrd52 leads to a significant
decrease in the expression of ankrd52 mRNA, indicating that circ-
ankrd52 has a regulatory effect on the expression of its host
genes. circRNAs also regulate the expression of parental genes in
the nucleus by interacting with proteins. For example, circEIF3J
and circPAIP2, as nuclear EIciRNAs, can recruit U1 snRNP and Pol II
complex onto the promoters of their parent genes to boost the
expression of their encoding genes (Fig. 2B) [40].

Functions of translated circRNAs
Although the coding ability of circRNAs was previously ignored,
the translation of endogenous circRNAs into proteins or polypep-
tides may be a common phenomenon [55]. Some circRNAs bind to
polysomes and are actively translated into new short peptides or
proteins in a cap-independent manner (Fig. 2C) [56, 57]. This type
of circRNAs has an open reading frame (ORF), which increases
their translation abilities through the internal ribosome entry site
(IRES) or m6A [57–59].
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Yang et al. [58]. have found that circ-FBXW7 is driven by IRES
and encodes a new functional protein, FBXW7-185aa. FBXW7-
185aa is highly expressed in the brains of healthy people. The
upregulation of FBXW7-185aa in glioblastoma cancer cells inhibits
both the proliferation of tumor cells and the progression of the
cell cycle. Knockdown of circ-FBXW7 promotes the malignant
phenotype of tumor cells. By analyzing the expression profile of
circRNAs of the differentiated mouse and human myoblasts,
Legnini et al. [60]. have revealed that circZNF609 is related to
heavy multimers and can translate into proteins in a splicing-
dependent and cap-independent manner. This is a typical
example of circRNA-encoded proteins in eukaryotes. In addition,
circRNAs also have coding functions in human cancer diseases
[61–63].

Other functions
In addition to the above-mentioned effects, circRNAs can also
regulate the expression of the target genes by interacting with
RNA-binding proteins (RBP) (Fig. 2D). Yang et al. [64]. have shown
that circ-HuR is a potential target for the treatment of gastric
cancer. As a tumor suppressor, circ-HuR interacts with CCHC-type
zinc finger nucleic acid-binding protein (CNBP) and therefore
inhibits its binding to the human antigen R (HuR) promoter,
leading to the downregulation of HuR. Another mechanism of
action of circRNAs is to generate cDNA by reverse transcription.
The generated cDNA enters the nucleus to destroy the integrity of
genomic DNA, thereby exerting pseudogene effects [65]. circRNAs
can also be used as potential biomarkers for some diseases
[66–68]. For example, hsa_circ_0066755 is significantly increased
in the plasma and tissues of patients with nasopharyngeal
carcinoma [69] and can be used as an effective diagnostic marker
for nasopharyngeal carcinoma.

CIRCRNAS RELATED TO ADIPOCYTE METABOLISM
Abnormal adipocyte metabolism
Adipocyte metabolism refers to the process of digestion,
absorption, synthesis, and decomposition of body adipose tissue
with the help of various related enzymes. Abnormal adipocyte
metabolism always causes other diseases, such as hyperlipidemia,
metabolic syndrome, nonalcoholic fatty liver disease, and athero-
sclerosis [70–72]. Adipocyte metabolism is a complex physiologi-
cal process involving a series of genes and regulatory factors.
Maintaining the homeostasis of adipocyte metabolism is of great
significance for preventing or treating the occurrence of
adipogenesis-related disorders. circRNAs exhibit specific expres-
sion patterns in different cell types, tissues, and developmental
stages, and can affect metabolic processes in vivo [15]. An
increasing number of studies have emphasized the roles of
circRNAs in adipocyte metabolism and related diseases (Table 1).

circRNAs regulate adipocyte metabolism in adipose tissue
circRNAs have been found to affect the adipose function of many
species, including humans, mice, pigs, and cattle (Fig. 3). Zhu et al.
[16] have demonstrated that hsa_circH19 is highly expressed in
the blood of patients with metabolic syndrome. Knockdown of the
hsa_circH19 gene promotes the differentiation of adipose stem
cells by targeting PTBP1. Arcinas et al. [73] have sequenced
human visceral and subcutaneous adipose tissue and determined
that circTshz2-1 and circArhgap5-2 are indispensable regulators of
adipogenesis in vitro. These findings indicate that the expression
of circRNAs is essential for maintaining adipocyte metabolism. In
human obesity diseases, circSAMD4A acts as a miRNA sponge of
miR-138-5p and regulates the expression of EZH2 to control
adipogenesis in obese individuals [74]. As a miR-103 sponge,
circARF3 inhibits the activity of miR-103 and increases the

Fig. 1 The biogenesis of circRNAs. Base pairing between intronic reverse complementary sequences (ICSs) of the flanking introns or the RBPs
dimerization prompts the 3′ splice donor site joined with the 5′ splice acceptor site, leading to the backsplicing. This event results in the
formation of exon–intron circRNAs (EIcircRNAs) or exonic circRNAs (EcircRNAs). Alternatively, circRNAs can also arise from exon-containing
lariats or intronic lariats.
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expression of TRAF3, a downstream target of miR-103. This
reduces inflammation in mouse adipose tissue induced by a high-
fat diet [75]. Exosomes from gastric cancer cells can deliver ciRS-
133 to preadipocytes, and then ciRS-133 promotes the differentia-
tion of preadipocytes into brown adipocytes by activating
PRDM16 and inhibiting miR-133, which aggravates cancer-
related tumor cachexia. Therapy targeting ciRS-133 may alleviate
metabolic disorders in patients with tumor cachexia [76].
circRNAs not only can act as miRNA sponges in adipose tissue

but also directly bind to RNA-binding proteins to participate in
expression. The expression of circ_0075932 is prominent in human
normal adipose tissue. Studies have shown that exosomes
released from adipose cells overexpressing circ_0075932 can
significantly promote cell inflammation and apoptosis.
circ_0075932 promotes cell inflammation and apoptosis by
directly binding to the RNA-binding protein PUM2 and promoting
PUM2-mediated activation of the AuroraA/NF-kB pathway [77].
Mesenchymal stem cells (MSCs) are highly plastic stem cells,

including adipose-derived mesenchymal stem cells (ADSCs) and
bone marrow stem cells (BMSCs). They have the ability to self-
renew and differentiate into bone cells, chondrocytes, and
adipose cells [78]. Recent studies have shown that a significant
number of circRNAs are involved in the adipogenesis of MSCs
[79–81]. For example, circFOXP1 indirectly regulates EGFR and
non-canonical Wnt signaling pathways by sponging miR-17-3p/
miR-127-5p to maintain the stemness of MSCs [82]. Knockdown of
circRNA CDR1as leads to increased osteogenic differentiation and
decreased adipogenic differentiation of BMSCs, while overexpres-
sion of CDR1as causes the opposite effect. Mechanismly, CDR1as
promotes adipocyte differentiation by competitively binding miR-
7-5p with WNT5B [80]. circRNA-vgll3 can directly sequester miR-
326-5p in the cytoplasm and inhibits the activity of miR-326-5p,
thereby promoting the osteogenic differentiation of ADSCs [79].
miR-338-3p was found to be related to the upregulation of
circRNA_013422 and circRNA_22566 during the osteogenic
differentiation of mouse adipose-derived stromal cells [83]. miR-
338-3p regulates the osteogenic differentiation of mouse bone

marrow stromal stem cells by targeting Runx2 and Fgfr2 [84].
circRNA_23525 can regulate the expression of Runx2 by targeting
miR-30a-3p and is considered to be an active regulator of the
osteogenic differentiation of ADSCs [85].
In animals, Jiang et al. [86] have investigated the expression

profiles of circRNAs during the development of bovine adipose
tissue, and revealed that overexpression of circFUT10 significantly
inhibits PPARγ and C/EBPa expression. circFUT10 functions as a
ceRNA for miRNA let-7c/let-e to regulate the differentiation of
bovine adipocytes by targeting PPARGC1B. Zhang et al. [87]. have
identified that six circRNAs play potential functions during yak
adipocyte differentiation. Kang et al. [88] have discovered that
circFLT1 and lncCCPG1 are differentially expressed in bovine
adipocytes. Overexpression of circFLT1 and lncCCPG1 together
promotes adipocyte differentiation and inhibits adipocyte pro-
liferation. By analyzing the expression of circRNAs in the
subcutaneous adipose tissue of large white pigs and Laiwu pigs,
Li et al. speculated that circRNAs may regulate adipose
differentiation and lipid metabolism in pigs [89]. circRNAs are
very abundant in pig muscle, adipose tissue, and liver, and are
expressed dynamically in a spatiotemporal manner [90]. cir-
cLCLAT1, circFNDC3AL, circCLEC19A, and circARMH1 regulate
miRNAs through the PPAR pathway to influence the differentia-
tion of chicken adipose cells and tissue-specific adipose deposi-
tion [91]. circ-PLXNA1 is mainly expressed in duck adipose tissue
and the liver. Inhibition of circ-PLXNA1 limits the differentiation of
duck adipose cells [92].

circRNAs and liver lipid metabolism
The liver plays an important role in the metabolic processes of
lipid digestion, absorption, decomposition, synthesis, and trans-
portation. Obesity, excessive drinking, and diabetes may cause
lipid metabolism disorders in the liver. Excessive lipid accumula-
tion in the liver generates a large amount of reactive oxygen
species in the cells, which causes endoplasmic reticulum stress
and mitochondrial dysfunction in hepatocytes and finally induces
the occurrence of nonalcoholic fatty liver disease (NAFLD) [93–96].

Fig. 2 Regulatory mechanisms of circRNAs functions. A circRNAs can act as miRNA sponges, decreasing the ability of miRNAs to target
mRNAs. B circRNAs may recruit the RNA polymerase II (Pol II) and U1 small nuclear ribonucleoprotein (U1 snRNP) to the promoter of the host
gene to facilitate their host gene transcription. C circRNAs might bound by ribosomes and translate into small peptides. D circRNAs can
function as RNA-binding proteins (RBPs) scaffolds and indirectly modulate these proteins functions.
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At present, many circRNAs have been identified to participate in
the regulation of lipid metabolism and influence the development
of lipid disorders [97, 98].
The consumption of a high-fat diet by the mother alters the

expression of miRNAs in the liver of the offspring and impair their
metabolic health [99]. Existing researches have discovered another
new mechanism of the effect of maternal obesity on liver lipid
metabolism in offspring. By performing liver RNA sequencing on
the offspring of high-fat diet-fed C57BL/6J mice, Chen et al. [100].
have identified 231 differentially expressed circRNAs, with 121
upregulated and 110 downregulated. The expression of cir-
cRNA_0000660 is significantly correlated with the expression of
Igfbp1, and knockdown of circRNA_0000660 reduces liver lipid
accumulation. Maternal obesity certainly causes the offspring to
suffer from metabolic disorders and impairs health through
altered circRNAs expression levels in the liver. circHIPK3 can
regulate the expression of lipid metabolism in hepatocytes.
circHIPK3 not only enhances adipose deposition and triglyceride
content in HepG2 cells but also causes diabetes-related metabolic
disorders, such as hyperglycemia and insulin resistance, by
reducing miR-192-5p and upregulating the downstream transcrip-
tion factor FOXO1 [101].
An increasing number of scholars have revealed the important

regulatory roles of circRNAs in hepatic steatosis [102, 103] (Fig. 4).
In rodents, the binding of miR-34a and PPARα hinders lipid
metabolism and promotes hepatic steatosis, but circRNA_0046366
and circRNA_0046367 can compete with PPARα to bind miR-34a.
circRNA_0046366 and circRNA_0046367 are endogenous regula-
tors of miR-34a, and they reduce hepatic steatosis by blocking the
interaction of miR-34a and miRNA response element (MRE)
located in PPARα mRNA. Abnormal circRNA_0046366, cir-
cRNA_0046367/miR-34a/PPARα signal transduction may be a
new potential target to treat hepatic steatosis [104, 105]. In

high-fat diet-induced hepatic steatosis, circRNA_021412 is sig-
nificantly downregulated [106]. The decreased expression of
circRNA_021412 weakens its competitive inhibition of miR-1972,
resulting in the repression of Lpin1, a miR-1972 targeted gene.
Decreased Lpin1 expression levels then induce down-regulation of
long-chain acyl CoA synthase (ACSL), which ultimately leads to
hepatic steatosis.
NAFLD refers to excessive fat deposition in hepatocytes that is

not related to heavy alcohol use. A large number of NAFLD
patients may further develop nonalcoholic steatohepatitis (NASH)
[107]. Abnormal expression of circSCD1 affects lipidation of
hepatocytes and promotes fatty liver disease through the JAK2/
STAT5 pathway [98]. Jin et al. [97]. have constructed four
circRNA–miRNA–mRNA pathways in the NASH mouse model and
found that the circRNA sexpression profile can be used the
diagnosis of NASH.

CONCLUDING REMARKS
With the development of science, technology, and biotechnology,
methods to identify circRNAs have also increased rapidly
[108, 109]. However, there are still some challenges to studying
the expression circRNAs and their related networks in the disease
processes [110, 111]. Although there are several independent
pieces of evidence that support the miRNAs sponge function of
circRNAs, but how to coordinate between the genes, miRNAs and
circRNAs requires more comprehensive studies.
circRNAs regulate gene expressions through different targets in

different types of diseases and even in different disease stages
[112]. Previous studies have provided important evidences for
circRNAs as important regulators of adipocyte metabolism.
However, in specific diseases caused by abnormal adipocyte
metabolism, the expression and regulation of circRNAs needs to

Table 1. Functional circRNAs involved in adipocyte metabolism.

CircRNA Mechanism/
Partner

Role in fat metabolism Species Reference

hsa_circH19 PTBP1 Promotes hADCSs adipogenic differentiation Human [16]

circSAMD4A miR-138-5p/ EZH2 Promotes preadipocyte differentiation Human [74]

circARF3 miR-103/ TRAF3 Alleviates mitophagy-mediated inflammation Mouse [75]

ciRS-133 miR-133/ PRDM16
pathway

Promotes white adipose browning Human [76]

circ_0075932 PUM2 Promoting effect on inflammation and apoptosis in dermal keratinocytes Human [77]

circRNA-vgll3 miR-326-5p Promotes osteogenic differentiation of adipose-derived mesenchymal
stem cells

Human [79]

circRNA CDR1as miR-7-5p/ WNT5B Promotes adipogenic and suppresses osteogenic differentiation
of BMSCs

Human [80]

circRNA_013422/
circRNA_22566

miR-338-3p Regulates osteogenic differentiation of bone marrow stromal stem cells Mouse [83, 84]

CircRNA-23525 miR-30a-3p Regulates osteogenic differentiation of adipose-derived mesenchymal
stem cells

Mouse [85]

circFUT10 let-7c/let-e Promotes adipocyte proliferation and inhibits adipocyte differentiation Bovine [86]

circFLT1 miR-93 Facilitates adipocyte differentiation and suppress proliferation Bovine [88]

circRNA_26852 miR-874、miR-486 circRNAs might regulate adipogenic differentiation and lipid metabolism Pig [89]

circ-PLXNA1 miR-214/ CTNNB1 Inhibition of circ-PLXNA1 limited the differentiation of duck adipocyte Duck [92]

circRNA_0000660 miR-693/ Igfbp1 Reduces liver lipid accumulation Mouse [100]

circHIPK3 miR-192-5p Enhances fat deposition and triglyceride content in HepG2 cells Human [101]

circRNA_0046366 miR-34a/ PPARα Hinders lipid metabolism and cause liver steatosis Human [104]

circRNA_0046367 miR-34a/ PPARα Alleviates hepatic steatosis Human [105]

circRNA_021412 miR-1972/ LPIN1 Contributes to the hepatic steatosis via disrupting the balance of
lipogenesis and catalytic separation

Human [106]

circSCD1 JAK2/ STAT5 Promotes the occurrence of fatty liver disease Mouse [108]
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be further studied. In addition, the differential expression at the
RNA levels does not necessarily indicate a significant difference of
related proteins. Therefore, it is necessary to correlate circRNAs
and protein analysis to comprehensively study the disease-
resistance mechanism of circRNAs. In the future, circRNAs may

also be used as biomarkers for metabolic syndrome to predict the
occurrence of certain metabolic diseases. However, due to the
complexity of metabolic syndrome, the discovery of biomarkers
still face multiple challenges [113]. Although some important
research results have been obtained in mice, rats, and other

Fig. 3 Schematic representation of circRNAs regulating adipogenic differentiation. The arrow represents promotion and the T represents
inhibition. circTshz2-1, circArhgap5-2, circH19, circSAMD4A, circARF3, ciRS-133, circ_0075932, circFOXP1, CDR1as, circFLT1, and circ-PLXNA1
promote the differentiation of adipose cells, while circFUT10 inhibits the differentiation of adipose cells.

Fig. 4 Schematic representation of circRNAs regulating liver lipid metabolism. The arrow represents promotion and the T represents
inhibition, circRNA_0000660, circHIPK3, and circRNA_021412 promote lipid deposition by functioning as an ceRNA, whereas
circRNA_0046366, circRNA_0046367, and circSCD1 inhibit lipid deposition in hepatocytes.
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biological models [114, 115], its application in human diseases still
needs further exploration.
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