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snoRNAs: functions and mechanisms in biological processes,
and roles in tumor pathophysiology
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Small nucleolar RNAs (snoRNAs), a type of non-coding RNA, are widely present in the nucleoli of eukaryotic cells and play an
important role in rRNA modification. With the recent increase in research on snoRNAs, new evidence has emerged indicating that
snoRNAs also participate in tRNA and mRNA modification. Studies suggest that numerous snoRNAs, including tumor-promoting
and tumor-suppressing snoRNAs, are not only dysregulated in tumors but also show associations with clinical prognosis. In this
review, we summarize the reported functions of snoRNAs and the possible mechanisms underlying their role in tumorigenesis and
cancer development to guide the snoRNA-based clinical diagnosis and treatment of cancer in the future.
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FACTS

● SnoRNAs can be mainly divided into three types: H/ACA box
snoRNAs, C/D box snoRNAs, and scaRNAs.

● SnoRNAs are related to the modification of RNAs, including 2′-
O-methylation and pseudouridylation of rRNAs and ac4C of
18 S rRNA. SnoRNAs can also regulate alternative splicing and
have a function like miRNAs.

● SnoRNAs take part in the occurrence and development of
cancers.

OPEN QUESTIONS

● How are snoRNAs produced and what are their functions?
● How do snoRNAs take part in biological processes?
● How do snoRNAs take part in tumorigenesis and cancer

development?

INTRODUCTION
Small nucleolar RNAs (snoRNAs) are small non-coding RNAs widely
present in the nucleoli of eukaryotic cells and have a length of
60–300 nt [1]. snoRNAs are mainly encoded by intronic regions of
both protein coding and non-protein coding genes [2]. Normally,
snoRNAs can be mainly classified into three groups: H/ACA box
snoRNAs, C/D box snoRNAs, and small cajal RNAs (scaRNAs) [3].
The former two types of snoRNAs participate in the processing of
ribosomal RNA (rRNA) by adding 2′-O-methylation and pseudour-
idylation modifications to rRNA molecules, respectively. However,
a type of snoRNAs are located at Cajal bodies (CBs), so they are

called scaRNAs. They also follow C/D-H/ACA classification, but
some scaRNAs contain both C/D and H/ACA structures [4]. C/D box
snoRNAs bind to four essential proteins—Nop1p, Nop56p,
Nop58p, and Snu13p—to generate functional small nucleolar
ribonucleoproteins (snoRNPs). Likewise, H/ACA box snoRNAs form
functional snoRNPs by binding to Cbf5p, Gar1p, Nhp2p, and
Nop10p [5] (Fig. 1).
The length of eukaryotic C/D box snoRNAs usually ranges from

70 to 120 nt. These snoRNAs contain two conserved sequences:
the C box and the D box. The C box consists of the nucleotides
RUGAUGA, which are located at the 5′-end of the snoRNA
molecule. In contrast, the D box is located at the 3′-end and
consists of the nucleotides CUGA [6]. Together, these elements
depend on the base-pairing to fold into a structure called a kink-
turn. This structure is recognized by Snu13p, which then recruits
Nop1p (also called fibrillarin [FBL]), Nop58p, and Nop56p for 2′-O-
methylation modification [5, 7].
H/ACA snoRNAs are usually 60–75 nt in length and contain the

region called the pseudouridylation pockets wherein uridine
residues on the substrate RNA are isomerized [8]. H/ACA box
snoRNPs bind to Cbf5p, Nop10p, Gar1p, and Nhp2p, among which
Cbf5p acts as the catalytic protein involved in pseudouridylation
[9]. Eukaryotic H/ACA box snoRNAs contain two conserved
sequences: the H box and the ACA box, which are located
downstream of the first and second hairpin, respectively [10]
(Fig. 2).
Besides, some snoRNAs have been found that they have no

apparent complementarity with rRNAs at known modified
positions and they are called orphan snoRNAs. These indicated
that snoRNAs have more function other than 2′-O-methylation
and pseudouridylation of rRNAs. Kishore et al. indicated that HBII-
52/SNORD115 had no complementarity with known modified
positions of canonical snoRNAs. They found that HBII-52 bound to
exon Vb of the 5-HT2C receptor and regulated alternative splicing
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[11, 12]. Another study found that orphan snoRNA SNORA73
inhibits PARP1 auto-PARylation to affect cancer genome stability
by forming a small nucleolar ribonucleoprotein with PARP1 and
DKC1/NHP2 [13].
SnoRNAs are also reported that they play a significant role in

several tumors, such as lung cancer, gastric cancer. colorectal
cancer, breast cancer, and so on. This review focuses on the
functions of snoRNAs and the possible regulatory mechanisms
underlying their role in biological processes, as well as their
involvement in cancer pathophysiology.

POSSIBLE MOLECULAR MECHANISMS UNDERLYING THE ROLE
OF SNORNAS IN BIOLOGICAL PROCESSES
The common actions of snoRNAs include the 2′-O-methylation
and pseudouridylation of rRNAs [14]. In recent years, there has
been increasing research on snoRNAs, and several studies have
confirmed that snoRNAs can also regulate cell physiology by
guiding N4-acetylcytidine (ac4C) modifications, regulating alter-
native splicing (AS), and performing miRNA-like functions (Fig. 3).

2′-O-methylation
In 1981, Langberg et al. first detected methyltransferase activity in
extracts from HeLa cells [15]. In 2000, it was discovered that one
member of the C/D box snoRNP complex, i.e., Nop1p, was similar
in terms of sequence and structural motifs to methyltransferases
[16]. While all C/D box snoRNAs contain a C box and a D box, most
of them also contain two additional components: the C′ box and
the D′ box. One or two antisense elements (10–21 nt in length) are
present upstream of the D box and/or the D′ box. The sequence of
these antisense elements is complementary to that of the target
rRNAs. Therefore, the snoRNAs bind to target rRNAs through these
antisense elements [17–21].
As a methyltransferase, Nop1p is a key component of snoRNPs

[22]. It transfers the methyl group from SAM to the 2′-hydroxyl
group of ribose molecules in the target RNA [23]. The introduction
of the methyl group changes the spatial structure of the target

RNA and increases its hydrophobicity, protecting the RNA
molecule from nucleolytic attacks [24] (Fig. 4).

Pseudouridylation
Pseudouridylation is the most prevalent RNA modification and can
be found in all species of cellular RNA [25, 26]. Pseudouridylation
can maintain RNA stability and modulate ribosome synthesis.
Further, it plays an important role in transforming nonsense
codons into sense codons [27–29]. Cohn first found a new
nucleoside in 1951, which was named pseudouridine after soon
[30, 31]. Currently, there are two known modes of pseudouridyla-
tion: RNA-independent and RNA-dependent. RNA-independent
pseudouridylation can be achieved by an enzyme called
pseudouridine synthase, while RNA-dependent pseudouridylation
requires H/ACA box snoRNPs [32, 33]. H/ACA box snoRNAs bind to
target RNA and transform the target uridine into pseudouridine,
increasing target specificity. This modification occurs in the
pseudouridylation pockets of H/ACA box snoRNAs [34]. In
addition, Cbf5p can also act as an independent pseudouridine
synthase and modify transfer RNA (tRNA) substrates [35] (Fig. 5).

N4-acetylcytidine (ac4C)
As a highly conserved RNA modification, ac4C can be found on both
rRNAs, tRNAs, and mRNAs [36]. In 1978, Thomas et al. found that
ac4C was present in the ribosomes of rats, chickens, and budding
yeast [37]. Then, the acetyltransferases NAT10 and Kre33 were found
to catalyze ac4C modifications in humans and yeast, respectively.
NAT10 is an ATP-dependent RNA acetyltransferase and is necessary
for cytokinesis and nucleologenesis [38, 39]. It has been reported
that NAT10 can also regulate DNA damage responses and
telomerase function [38, 39]. Eukaryotic 18 S rRNAs contain two
acetylated cytidines, one in helix 34 and the other in helix 45. The
former is crucial for translation fidelity, whereas the latter is part of
the ribosome decoding site. With the help of snoRNAs, NAT10 can
catalyze the formation of ac4C on rRNA [40, 41].
Sharma et al. found that Kre33 could bind to rRNAs and tRNAs

in yeast. Moreover, they showed that Kre33 could also bind to two

Fig. 1 The biosynthesis of snoRNAs and snoRNPs. Originate from the nucleolus, snoRNAs are mainly encoded in the intron region of the
gene transcribed by RNA polymerase II. SnoRNAs form functional snoRNPs through binding to core proteins. SnoRNAs stabilize the structure
of rRNA through modifying rRNA with 2 ‘- O-methylation and pseudouridylation.
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Fig. 2 Structures of snoRNAs and snoRNPs. The structure of C/D box snoRNAs A, C/D box snoRNPs B, H/ACA box snoRNAs C, and H/ACA box
snoRNPs D.

Fig. 3 Molecular mechanisms of snoRNAs in biological processes. The two common mechanisms of snoRNAs contain 2′-O-methylation and
pseudouridylation of rRNAs. It is reported that snoRNAs also can regulate alternative splicing, guide N4-acetylcytidine and regulate the level of
mRNA like a miRNA.
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orphan snoRNAs, snR4 and snR45. Through quantitative reverse-
phase high-performance liquid chromatography (RP-HPLC), they
confirmed that low levels of snR45 were related to a decrease in
18 S rRNA acetylation [38]. Tyc et al. discovered that in vertebrates,
the C/D box snoRNA U13 is complementary to the 3′ end of 18 S
rRNA owing to the presence of two extended complementary
base pair regions [42]. Meanwhile, Sharma et al. showed that
residue 1842, which is present between these two regions of
complementarity, corresponds to the acetylated residue C1773 in
yeast. They hypothesized that the C/D box snoRNA U13 could be
involved in 18 S rRNA acetylation. Using HPLC, they found that the
acetylation levels of 18 S rRNA purified from HCT116 cells were
reduced by half after the depletion of the C/D box snoRNA U13 for
72 h [38]. These findings strongly indicated that snoRNAs play a
role in 18 S rRNA acetylation.

Regulation of alternative splicing (AS)
AS is a process through which different combinations of splice
sites are selected from a pre-messenger RNA (pre-mRNA) to
produce variably spliced mRNAs [43]. In eukaryotes, AS signifi-
cantly enriches the proteomic and transcriptomic output of the
coding genome. In addition, AS is important for gene expression
[44]. Multiple mRNA subtypes are generated from the same gene
through AS in mammals. Due to their different coding capacities,
stabilities, and translational efficiencies, these subtypes are
translated into proteins with different structures and functions
[45]. A primary RNA transcript contains exons, introns, and
intervening sequences. Pre-mRNAs are converted to mature
mRNAs through the removal of introns and the joining of spliced
exons. This intron excision process is catalyzed by the spliceosome
[42]. Moreover, AS allows the generation of mRNAs with different

Fig. 4 C/D box snoRNPs modifie the target RNA by 2′-O-methylation. SnoRNAs bind to target RNAs by antisense elements upstream of D
box and/or D’ box. SnoRNAs form functional snoRNPs by binding to four core proteins, including Nop1p, Nop56p, Nop58p, and Snu13p.
Among them, Nop1p transfers the methyl group on s-adenosine-methionine to the 2′- hydroxyl group of the target RNA ribose.

Fig. 5 H/ACA box snoRNPs modifie the target RNA by Pseudouridylation. The H/ACA box snoRNAs form functional snoRNPs through
binding to core proteins, including Cbf5p, Nop10p, Nhp2p and Gar1p. SnoRNPs bind to target RNA by their pseudouridylation pockets. In
these pseudouridylation pockets, the target uridine in the target RNA is modified into pseudouridine.
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structures and functions, and therefore, different encoded
proteins. It also influences intracellular localization, protein
stability, enzymatic activity, and posttranslational modification of
gene products [46]. Some studies show that numerous snoRNAs
do not have binding site with rRNAs [47]. These indicate that
snoRNAs could have functions beyond the modification of rRNA.
Falaleeva et al. demonstrated that SNORD27 is present in nuclear
components that lack FBL. The whole genome was searched for
potential targets complementary to the SNORD27 sequence, and
complementarity was identified between the alternatively spliced
exons of the E2F7 gene and SNORD27. Further, low levels of
SNORD27 were found to be associated with reduced levels of
alternative exon skipping [48]. Moreover, Cavaillé et al. found that
the orphan snoRNA SNORD115 plays a role in regulating the AS of
serotonin receptor 2c (Htr2c) mRNA [12]. These findings indicate
that snoRNAs may be involved in the regulation of AS.

MicroRNA(miRNA)-like functions
miRNAs are short regulatory RNAs that can regulate post-
transcriptional gene expression. Lai found that miRNAs inhibit
translation by binding to specific sequences in the 3′-untranslated
region, thereby performing regulatory functions [49].
Surprisingly, in 2008, Ender et al. used northern blotting and

verified that small RNAs could be derived from the snoRNA ACA45.
They also found that these ACA45-derived small RNAs had miRNA-
like functions, through which they could target CDC2L6 [50].
Additionally, Ono et al. demonstrated that while the C/D box
snoRNA HBII-180C contains a 2′-O-methylation site, it also has an
M-box region, through which it can act as a miRNA and inhibit the
mRNA and protein expression of target genes [51]. Hence, the
literature suggests that some snoRNAs can play miRNA-like roles
within cells.

SNORNAS IN CANCER
SnoRNAs in lung cancer
Non-small-cell lung carcinoma (NSCLC) is a major contributor to
cancer-related deaths. NSCLC accounts for more than 75% of all
lung cancer cases, and patients are often diagnosed at an
advanced stage, which considerably diminishes the probability of
complete recovery [52, 53]. Despite the significant progress in
treatments for lung cancer, the prognosis of NSCLC continues to
remain dismal [54].
Cui et al. found that the levels of NOP10, a component of H/ACA

box snoRNPs, are elevated in NSCLC and are related to poor
outcomes. Additionally, they found that the reduction of
pseudouridylation resulting from the knockout of SNORA7A,
SNORA7B, and SNORA65 and the inhibition of NOP10 can
decrease the proliferation, invasion, and migration of lung cancer
cells. [55] According to Mourksi et al., low levels of SNORA80E can
increase the rate of apoptosis and the cleavage of caspase-3 and
PARP1 in lung cancer cells, while increased levels of this snoRNA is
associated with reduced p53 levels. SNORA80E inhibits apoptosis
through a p53-dependent pathway [56]. Zheng et al. showed that
low levels of SNORD78 could also inhibit cell proliferation. This
effect is likely related to the consequent increase in the proportion
of G0/G1 cells. P21 and P16, which are G0/G1 arrest markers, are
up-regulated after SNORD78 knockdown. Moreover, the low
expression of SNORD78 also increases the proportion of Bax/Bcl-
2-positive cells, thus promoting cell apoptosis. Overall, the results
indicate that low levels of SNORD78 promote apoptosis and
induce cell cycle arrest, thereby inhibiting cell proliferation [57]. In
addition, Tang et al. demonstrated that SNORA71A could
influence the cell cycle, cell migration, cell invasion, and the
epithelial–mesenchymal transition (EMT) via the phosphorylation
of MEK and ERK1/2 in MAPK signaling pathway [58]. Taken
together, these findings suggest that snoRNAs are involved in the
development of NSCLC.

SnoRNAs in colorectal cancer (CRC)
CRC is a common type of cancer with the fourth-largest contributor
to cancer mortality [59]. The treatments for CRC include surgery,
chemotherapy, radiotherapy, and targeted therapy. However,
despite the rapid development of therapeutic strategies against
CRC, the prognosis of patients with CRC is still poor [60].
Owing to increasing research on snoRNAs, new evidence

supporting the association between snoRNAs and CRC develop-
ment has been uncovered. Liu et al. found that SNORD1C
promotes the development of CRC by regulating β-catenin and
TCF7 expression. High levels of SNORD1C are associated with a
reduced five-year survival rate in CRC patients [61]. Another study
showed that SNORA21 can promote CRC cell proliferation by
regulating cancer-related pathways such as Hippo signaling
pathway and Wnt signaling pathway and so on, and that high
levels of SNORA21 is related to distant metastasis in CRC [62].
Fang’s group showed that in CRC, SNORD126 up-regulates FGFR2,
thereby activating the PI3K-AKT pathway. The proteins down-
stream of this pathway include CREB, P27, MDM2, IKK, mTOR,
p70S6K and GSK-3β. The overexpression of SNORD126 promotes
the phosphorylation of GSK-3β and p70S6K, and promote the
development of CRC via the PI3K-AKT signaling pathway [63].
SNORD12C/78 regulates the expression of target genes EIF4A3
and LAMC2 in a ZFAS1-dependent manner through NOP58-
mediated 2’-O-methylation, promoting the development of CRC
[64]. Hence, snoRNAs could be viable therapeutic targets for CRC.

SnoRNAs in gastric cancer (GC)
GC, one of the most common malignant tumors, is the second-
largest contributor to cancer-associated deaths in the world [65].
Like most tumors, the treatments of GC include surgery,
radiotherapy, chemotherapy, and targeted therapy. Notably, early
diagnosis is believed to improve the treatment outcomes and
prognosis of GC significantly.
The study showed that in GC, SNORD105B could promote

tumorigenesis by binding to ALDOA and thereby upregulating the
expression of C-myc [66, 67]. In addition, Liu et al. demonstrated
that the overexpression of SNORA21 was associated with
increased lymph node metastasis and distant metastasis in GC
[68]. These studies suggest that snoRNAs may play a significant
role in the occurrence and development of GC.

SnoRNAs in breast cancer (BC)
BC is the most common malignant tumor among women and the
primary cause of cancer-related death in this group [69]. Hence,
there is a great need to find effective prognostic biomarkers and
therapeutic targets for BC.
Su et al. found that the levels of FBL were elevated in BC. FBL, a

core protein of C/D box snoRNPs, was found to be important for
the accumulation of snoRNAs and could affect Myc levels [70]. In
turn, Myc also induced FBL expression. Meanwhile, low levels of
FBL increased p53 activity, while its overexpression reduced the
p53 response. Therefore, the findings indicated that snoRNAs
could contribute to the development of BC by modulating the p53
response [71]. Another study found that snoRNA U50 mediates the
methylation of C2848 in 28 S rRNA [72], suggesting that it may act
as a tumor suppressor-like gene. Additionally, Dong et al.
discovered that snoRNA U50, which inhibits cell colony formation,
is frequently downregulated in BC [73]. Hence, snoRNA U50 may
exert tumor-suppressive effects in BC. SNORD50A/B significantly
enhances their interaction by forming a complex between the E3
ubiquitin ligase TRIM21 and its substrate GMPS, thereby promot-
ing GMPS ubiquitination. Deletion of SNORD50A/B in p53 wild-
type breast cancer cells releases GMPS and induces GMPS
translocation into the nucleus, where GMPS can recruit USP7
and form a complex with p53, thereby reducing p53 ubiquitina-
tion, stabilizing p53 protein, and suppressing malignant pheno-
types [74]. Kim et al. indicated that SNORA73A、SNORA73B and
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SNORA74A bound to PARP-1 to activate the catalytic activity of
PARP-1 and mediated ADPRylation of DDX21, so as to promote
cell proliferation in BC [75]. Moreover, Hu et al. found that in BC,
SNORA71A promoted the binding of G3BP1-ROCK2 and increased
the expression of ROCK2, promoting EMT process [76]. These
evidences together support the association of snoRNAs with the
occurrence and development of BC.

SnoRNAs in Hepatocellular carcinoma (HCC)
HCC is common cancer with a high mortality rate [77]. Currently,
therapies for HCC include surgery, radiotherapy, chemotherapy,
and other comprehensive treatments, which extend life expec-
tancy to a certain extent [78, 79]. However, owing to the
unavailability of early screening markers, most patients with HCC
are diagnosed in the advanced stage, and the lack of effective
treatment leads to high rates of mortality [80].
Fang et al. found that orphan snoRNA SNORD126 promotes cell

growth in HCC and binds to hnRNPK protein to up-regulate FGFR2,
thus activating the PI3K-AKT pathway. Meanwhile, FGFR2 down-
regulation suppresses the growth of Huh-7 cells with high levels of
SNORD126. Hence, SNORD126 appears to regulate HCC develop-
ment via the PI3K-AKT pathway [81]. SnoU2_19 participates in the
regulation of the Wnt/β-catenin signaling pathway by inducing
the translocation of β-catenin between the cytoplasm and
nucleus, thereby promoting the progression of hepatocellular
carcinoma [82]. SNORD52 upregulated CDK1 by binding and
enhancing the stability of CDK1 proteins to promote HCC
tumorigenesis [83]. SNORD17 reduces p53 activation by anchoring
nucleophosmin 1 and MYB-binding protein 1a in the nucleolus to
drive HCC progression [84]. In addition, other studies have shown
that the overexpression of SNORD105 can increase cell viability
and motility in HCC [85] and SNORA42 can promote the
development of HCC by inhibiting p53 signal pathways [86].
Further, SNORD113-1 suppresses tumorigenesis in HCC by
regulating the transforming growth factor-β (TGF-β) and
mitogen-activated protein kinase/extracellular signal-regulated
kinase (MAPK-ERK) pathways [87]. These studies indicate that
snoRNAs are involved in the development of HCC.

SnoRNAs in ovarian cancer (OC)
Of all gynecological tumors, OC has the highest mortality rate [88].
Despite advancements in surgery and chemotherapeutics, the
five‐year survival rate in women diagnosed with OC remains
below 30% [89].
Zhang et al. found that SNORA72 influences cell stemness in OC

via the Notch1/c-Myc pathway [90]. In addition, SNORD89 can
affect cell proliferation, invasion, migration, and self-renewal
ability in OC by regulating the Notch1/c-Myc pathway [91].
Therefore, snoRNAs may play a role in the development of OC.

SnoRNAs in leukemia
Leukemia is classified into several types, including acute
lymphoblastic leukemia, acute myeloid leukemia (AML), chronic
lymphocytic leukemia, and chronic myelogenous leukemia [92].
The main treatment strategies for leukemia include chemotherapy
and radiotherapy, although the former causes severe toxicity and
adverse effects.
Valleron et al. discovered that SNORD112, SNORD113, and

SNORD114 are ectopically expressed at the DLK1-DIO3 locus in
acute promyelocytic leukemia. Their study showed that the
variants of SNORD114-1 cause cell cycle arrest at G0/G1 and
inhibit cell growth [93]. Another study by Pauli et al. demonstrated
that the knockout of SNORD42A could reduce 2′-O-methylation
levels of U116, causing ribosome activity and protein translation
decreased. SNORD42A deficiency could inhibit cell proliferation
and colony-forming ability in malignant cells [94]. All in all,
snoRNAs may be related to the development of leukemia
(Table 1).Ta
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CONCLUSION
Previously, snoRNAs were thought only to be involved in 2′-O-
methylation and pseudouridylation. However, with an increase in
the number of studies, other functions of snoRNAs, including ac4C
modification, AS regulation, and microRNA-like actions, have been
discovered. Accumulating evidence indicates that the levels of
snoRNAs are perturbed in malignant tissues. However, their
specific roles in tumors have not been fully elucidated. In the
existing studies, snoRNAs mainly bind to proteins, mRNAs, rRNAs,
etc. directly or participate in protein regulatory pathways to
regulate the modification and stability of proteins and RNAs,
regulate protein expression and subcellular localization, and
change the activity of proteins and protein complexes, thereby
involved in tumorigenesis and cancer progression. According to
the previous studies, 2’-O-methylation, pseudouracillation, ac4C
modification, AS regulation, and microRNA-like effects also play
key roles in tumorigenesis and cancer development. However,
there are few reports that snoRNAs participate in tumor regulation
by means of the above ways. So the questions whether and how
snoRNAs use these pathways to participate in tumor regulation
warrants further investigation. Such research could improve our
understanding of the link between cancer and snoRNAs and
bolster the use of snoRNAs as effective biomarkers and
therapeutic targets for various cancers.
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