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Gastric intestinal metaplasia (IM) is a precancerous lesion that increases the risk of subsequent gastric cancer (GC) development.
Therefore, the mechanism of IM has been the focus of basic and clinical research. Helicobacter pylori (H. pylori) infection has been
recognized as the main pathogenesis of gastric IM. However, more and more studies have shown that chronic inflammation of
gastric mucosa caused by bile reflux is the key pathogenic factor of gastric IM. Bile reflux activates the expression of IM biomarkers
via the bile acid receptor. In addition, microRNAs, exosomes, and epigenetics are also involved in the occurrence and development
of bile acid-induced gastric IM. Currently, the relevant research is still very few. The molecular mechanism of the phenotypic
transformation of gastrointestinal epithelial cells induced by bile acids has not been fully understood. This article mainly reviews the
physiology and pathology of bile acid, mechanism of gastric IM induced by bile acid, bile acid receptors, and so on, in order to
provide reference for further research.
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FACTS

● Gastric intestinal metaplasia (IM) is a precancerous lesion of
gastric cancer (GC), and early diagnosis and treatment is
important.

● Accumulative evidence has revealed that bile reflux is
associated with gastric IM and even carcinoma.

● Bile reflux into the stomach can not only directly stimulate the
gastric mucosal barrier, but also regulate multiple downstream
pathways to induce chronic inflammation of the gastric
mucosa.

OPEN QUESTIONS

● What is the action mechanism of bile acid-induced gastric IM?
● Is gastric IM reversible?

INTRODUCTION
Gastric cancer (GC) is a common malignant tumor of the digestive
system in the world, which ranks fifth in incidence and the fourth
leading cause of cancer-related death [1]. Although the treatment
has advanced greatly in recent decades, the prognosis for GC
patients is still poor, with five-year overall survival rates ranging
from 20% to 40%, mainly due to the rapid progress of local

recurrences and metastasis [2]. Gastric adenocarcinoma is the
most common form of GC, of which there are 2 histologic
subtypes: intestinal type and diffuse type. It is generally believed
that GC development, especially the intestinal type of noncardia
GC, follows the Correa’s cancer cascade—a successive progression
from chronic nonatrophic gastritis, by way of atrophic gastritis and
intestinal metaplasia (IM), to dysplasia [3] (Fig. 1). A study in Japan
demonstrated that the presence of gastric IM was the only criteria
associated with the development of intestinal-type GC [4]. The
relative risk of developing GC is 10 times higher for individuals
with IM than for those healthy individuals [5]. Therefore,
monitoring gastric IM and reversing it is an important idea to
stop the development of GC. Identifying its pathogenesis and
taking proper measures may become the key to GC prevention.
Increasing evidence has demonstrated that bile reflux is thought
to be associated with atrophic gastritis, IM, dysplasia, and even
carcinogenesis [6]. However, the mechanism of bile acid-induced
gastric IM in the stomach is not clear and needs further research.

DEFINITION, HISTOLOGIC SUBTYPING, AND CANCER RISK OF
GASTRIC IM
Definition
Gastric IM, a precancerous histopathological change, is defined as
the replacement of gastric columnar cells by cells of intestinal
morphology characterized by the presence of mucin-containing
goblet, Paneth and absorptive cells, resulting in normal gastric
mucosal epithelium and the surrounding glands are replaced by
intestinal epithelium and glands [7]. Helicobacter pylori (H. pylori)
infection is the most important risk factor for gastric atrophy and
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intestinal metaplasia [8]. In addition, male gender, old age,
ethnicity, dietary factors, such as smoked food, high salt intake,
pickled vegetables and nitrated meat, bile reflux, smoking, and
family history are also associated with gastric IM [9, 10].

Histologic subtyping
Most gastric IM is divided into complete IM and incomplete IM
based on hematoxylin and eosin staining. Occasionally, mixed
characteristics of complete and incomplete types are observed
[11]. The complete type resembles small intestinal epithelium
comprising mature absorptive columnar cells, goblet cells, and
Paneth cells, with a brush border given by large numbers of apical
microvilli. While the incomplete type displays goblet cells of
variable size and intervening columnar mucin-secreting cells
without a brush border [11]. Another classification system was
suggested by pathologists Filipe and Jass based on morphology
and classic mucin staining, which divided the gastric IM into three

types: type I corresponds to complete gastric IM and types II and III
are subclassifications of incomplete gastric IM [12].

Risk of developing cancer
Liming Shao et al. systematically assessed the risk of GC in patients
with gastric IM through 21 studies, which showed that incomplete
IM but not complete IM was significantly associated with a higher
risk of GC [13]. Incomplete IM, considered the most advanced
stage of IM, is a valid marker for identifying subjects at high risk of
GC [14]. Besides, it appeared that the risk of GC was higher among
patients with IM in the corpus than those with IM in the antrum
only [15, 16]. In clinical practice, the analysis of gastric IM
subtyping using a small number of biopsies for histopathological
examination is useful for monitoring the risk of GC.

THE PHYSIOLOGY AND PATHOLOGY OF BILE ACID
Bile acids, a 24-carbon derivative of cholanic acid in structure,
primarily synthesized in the liver, are the major components of
bile. Primary bile acids of cholic acid (CA) and chenodeoxycholic
acid (CDCA) are synthesized from cholesterol in hepatocytes and
conjugated with glycine or taurine, secreted into the bile [17].
Postprandial contraction of the gallbladder drains bile acids into
the intestine, and conjugated primary bile acids are stripped of
glycine and taurine in the terminal ileum and colon, mostly
reabsorbed into the blood to the liver [18]. A proportion is not
reabsorbed and reaches more distal parts where gut bacteria can
dehydroxylate the primary bile acids, forming the secondary bile
acids lithocholic acid (LCA), deoxycholic acid (DCA), and their
conjugated types, absorbed by passive diffusion in the colon or
excreted in stool [19]. The human bile acid pool is 2–4 g, and
cycles multiple times daily for a total of up to 30 g/day absorbed,
with less than 10% lost in feces [20] (Fig. 2).
Bile reflux, also known as duodenogastric reflux, refers to the

backflow of duodenal contents, including bile, pancreatic juice,
and duodenal juice, into the stomach [21]. There are many clinical
methods to diagnose bile reflux, mainly including endoscopy with

Fig. 1 GC development following the Correa’s cancer cascade.
Gastric IM is the key point for the development of GC. Whether it
can be reversed is a new idea for the treatment of GC.

Fig. 2 Bile acid circulation and bile reflux. Primary bile acids (e.g., CA and CDCA) are synthesized by cholesterol mediated. They conjugated
with glycine or taurine (G/T), and stored in the gallbladder. The majority (90–95%) of bile acid secreted into the small intestine are reabsorbed
in the terminal ileum through portal vein and circulate back to the liver. Gut microbiota contributes to the conversion of CA and CDCA into
secondary bile acids through dehydroxylation (e.g., DCA and LCA), which are mostly excreted from feces (5–10% of bile acid). Bile reflux to the
stomach can induce mucosal dysfunction through some factors, such as dissolution of the phospholipid layer, low pH, mastocyte-secreting
histamine, gastric antrum G-cell-secreting gastrin, microbiota disorder, and changes of the miRNA profile.
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histological examination, intragastric pH monitoring, radionuclide
scanning, gastric aspiration, and bile detection with special
probes. The normal gastric mucosal epithelium is covered with a
mucous gel layer and a bicarbonate layer, which blocks the
contact of harmful components in the stomach and mucosa.
Under normal circumstances, primary bile acids formed in the liver
are secreted into the intestine lumen, where they are modified by
the intestinal bacteria to produce secondary bile acids [22]. When
bile reflux occurs, secondary bile acids and free bile acids are
regurgitated into the stomach. Lecithin from bile acids and bile
salts is converted to lysolecithin by the action of phospholipase A,
which dissolves the phospholipid layer of the epithelial cell
membrane of the gastric mucosa, resulting in increased cell
permeability. Bile acids inhibit the activity of NO enzyme and the
sodium hydrogen exchange of cells, leading to intracellular DNA
damage, apoptosis, and mutation. Bile acids can also promote the
reverse diffusion of H+ and stimulate mast cells to release
histamine, so as to stimulate gastric acid secretion and further
aggravate gastric mucosal injury [23, 24]. Under low-pH condi-
tions, bile acids are converted to nonionic forms, making them
more cytotoxic, more likely to penetrate cell membranes, and
damage tight intercellular junctions [25]. In addition, bile reflux
can stimulate gastrin secretion from G cells, which promotes
gastric acid secretion and inhibits pyloric sphincter contraction,
further promoting bile reflux and forming a vicious circle. Reflux of
alkaline substances from bile into the stomach can cause flora
displacement, thus aggravating the inflammatory response of the
gastric mucosa [26]. Recent studies have shown that acidic bile
acids in gastric juice after successful Hp eradication can also
induce mucosal dysfunction with changes in the microRNA
(miRNA) profile, which might drive the development of gastric
carcinogenesis [27] (Fig. 2).

MECHANISM OF GASTRIC IM INDUCED BY BILE ACID
IM is considered the point of no return in the GC. Investigating bile
acid-induced IM is important and necessary for the prevention of
GC. Matsuhisa et al. found that high concentrations of bile acid
appeared to be associated with an elevated risk of IM, regardless
of H. pylori infection [28]. Another study demonstrated that the
incidence of GC was at a high rate of 41% in a rat model of bile
reflux [27]. In addition, a retrospective cohort study indicated that
high concentrations of bile acids in the stomach were associated
with a higher incidence of GC [29]. Recent studies have shown
that IM biomarkers, microRNAs (miRNAs), exosomes, and epige-
netic modifications are associated with gastric IM.

IM biomarkers
Caudal-related homeobox transcription-factor 2 (CDX2), an
intestine-specific nuclear transcription factor, plays a critical role
in directing intestinal development, differentiation, and main-
tenance of the intestinal phenotype [14]. Studies have shown that
CDX2 is expressed in the intestinal metaplasia of the stomach,
while it is not expressed in the normal gastric mucosa [30].
Furthermore, CDX2 transgenic mice developed IM in the stomach
with the induction of mucin 2 (MUC2), while knockdown of CDX2
resulted in intestinal malformation and inactivation of the
expression of IM-related immunohistochemical marker, suggest-
ing that ectopically expressed CDX2 may play a key role in GC via
induction of IM [31].
The transcription-factor sex-determining region Y box2 (SOX2)

plays a pivotal role in the regulation of normal gastric phenotype
[32, 33]. For example, SOX2 gradually decreased expression in the
process of gastric mucosa developing into IM, but there is no
expression of SOX2 in small intestinal tissues and large intestinal
tissues [34, 35]. The abnormal loss of SOX2 expression is highly
correlated with IM of gastric and esophageal mucosa, which can
be used as a molecular marker to detect the occurrence of IM

[32, 36]. Moreover, SOX2 is negatively correlated with the
expression of intestinal-specific molecules such as CDX1 and
CDX2 in normal gastric epithelium, atrophic gastritis, and intestinal
metaplasia tissues [34, 35]. Yuan et al. found that bile acids
induced the expression of miR-21, which could inhibit the
expression of SOX2 by directly binding its 3′-UTR and abrogate
its suppression on the transcriptional activity of CDX2, thus
leading to IM [37].
Hepatocyte nuclear factor-4 alpha (HNF4α) is a ligand-activated

nuclear transcription factor, which is widely associated with the
transcriptional regulation of hepatocyte genes and plays a role in
regulating gene expression relating to drug metabolism, lipid
metabolism, cell proliferation, and inflammation [38–40]. In adults,
HNF4α is expressed in the colon and small intestine, not in the
gastric mucosa, but HNF4α mediated by the P1 promoter can be
observed in gastric IM tissues [41]. Zhen et al. found that bile
reflux activated the TGR5–ERK1/2 pathway after induction of
HNF4α expression, thus upregulating the expression of CDX2 [42].
Wang et al. found that bile acids promoted the development of
gastric IM through HNF4a/HDCA6/CDX2 pathway in vivo and
in vitro [43].
In addition, IM biomarkers also include mucin 2 (MUC2),

Kruppel-like factor 4 (KLF4), villin-1, and cadherin 17, which are
downstream of CDX2. Studies have shown that the expression of
them is elevated in gastric epithelial cells exposed to bile acids,
leading to the genesis of intestinal metaplasia [37, 43].

MiRNAs
MiRNA, a class of small endogenous noncoding RNA molecules,
leads to mRNA degradation or translational inhibition of specific
target genes by base-pairing to their mRNAs [44]. They can
participate in a series of physiological and pathological processes,
including development, differentiation, cell proliferation, apopto-
sis, organogenesis, and homeostasis [45]. Within diverse cancer
types, the expression of miRNA is substantially different compared
with their normal tissue [46]. Li et al. found that bile acid-
stimulated IM induced the upregulation of miR-92a-1–5p [47].
Wang et al. found that DCA inhibited miR-1 in gastric cells to
induce high expression of HDAC6 and HNF4α, thereby inhibiting
the expression of downstream IM markers [43]. Further studies are
needed to confirm the role of miRNA in gastric IM.

Exosomes
Exosomes, a type of membrane vesicles with a diameter of
approximately 40–100 nm [48], contain multiple biological mole-
cules, such as proteins, lipids, and mRNAs, and play an important
role in regulating tumor development, metastasis, and drug
resistance [49, 50]. Xu et al. demonstrated that DCA-activated
macrophages could secrete exosomes to carry miR-30a-5 to
gastric epithelial cells, thereby promoting gastric IM by targeting
FOXD1 [51]. It was found that IM might arise from spasmolytic
polypeptide-expressing metaplasia (SPEM) [52]. DCA could pro-
mote SPEM by macrophage-derived exosomes [53]. Further
studies are needed to explore the role of exosomes in gastric IM.

Epigenetics
Epigenetics is defined as the study of chemical modifications of
DNA and histone proteins that alter the structure of chromatin
without changes to the underlying nucleotide sequence. N6
methyladenine (m6A) is the most common modification of mRNA
in mammals [54]. AlkB homolog 5 (ALKBH5) is one of the currently
discovered m6A demethylases, which plays an important role in
the dynamic regulation of m6A [55]. Ben et al. demonstrated that
ALKBH5 activated CDX2 by targeting the ZNF333/CYLD axis and
activating NF-kappaB (NF-κB) signaling [56]. Therefore, targeting
ALKBH5 and ZNF333 may be an effective preventive and
therapeutic strategy for GIM in patients with bile reflux.
Transcription-factor Dickkopf (Dkk) family is a specific antagonist
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of the Wnt signaling pathway, which participates in many
developmental processes of embryo formation and plays an
important role in maintaining adult tissue homeostasis [57, 58].
Studies have shown that enhanced expression of DKK1 has been
observed in various cancers, which promotes tumor cell prolifera-
tion, invasion, and migration [59]. Lu et al. found that DKK1 was
epigenetically downregulated by promoter methylation, thereby
inhibiting bile acid-induced gastric IM [60].

BILE ACID RECEPTORS
Bile acid receptors, mainly including G-protein-coupled receptor 5
(TGR5), farnesoid X receptor (FXR), pregnane X receptor (PXR),
constitutive androstane receptor (CAR), and vitamin-D receptor
(VDR), regulate bile acid metabolism, glucose utilization, fatty acid
synthesis and oxidation, energy-homeostasis balance, immune-
cell function, nerve activity, and other functions [61, 62]. In gastric
IM, FXR and TGR5 are widely studied. Bile acids, acting as signaling
molecules, regulate downstream signal-transduction pathways by
activating the nuclear receptor FXR or the plasma-membrane
receptor TGR5 (Table 1).

FXR
The bile acid-activated nuclear receptor FXR, mainly expressed in
the liver and intestine, is a key regulator of signaling pathways and
cellular functions, such as bile acid homeostasis, lipid metabolism,
and glucose metabolism [63, 64]. Many studies in vitro have
shown a rank order for the ability of bile acids to activate FXR:
CDCA > DCA > LCA > CA, while this order had differences in mouse
[65, 66]. It is generally recognized that unconjugated bile acids
have greater potential to activate FXR than conjugated bile acids
[67]. A previous study has reported that high expression levels of
FXR are associated with the gastric IM formation [68]. Xu et al. first
reported that CDCA stimulating the normal gastric epithelial cells
of the rat upregulated the expression of CDX2 and MUC2 by
activating FXR [69]. Subsequently, Li et al. revealed that DCA
activated the FXR/NF-kappaB signaling pathway, thereby upregu-
lating CDX2 and MUC2 expression in normal gastric epithelial cells
[70]. Further, Zhou H et al. found that FXR and CDX2 were
concomiantly overexpressed and were positively correlated in IM
tissues [71]. Recently, more and more studies on the bile acid-
induced IM via activating FXR have been reported (Table 1).

TGR5
The bile acid-activated membrane receptor TGR5, widely dis-
tributed in the liver, intestine, brown adipose tissue, and immune
cells, involves in the regulation of energy metabolism, glucose
metabolism, and inflammatory response [72, 73]. Secondary bile
acids LCA and DCA are potent agonists for TGR5 [74]. Zhen et al.
revealed that DCA treatment induced HNF4α expression via TGR5
and following ERK1/2-pathway activation [42]. Thus, inhibition of
the TGR5–HNF4α signaling-cascade response may be a potential
therapeutic target to prevent the progression of the Correa
cascade and the proceeding of GC. At present, further studies are
needed regarding the role played by the bile acid receptor TGR5
in gastric intestinal metaplasia.

MONITOR AND REVERSE GASTRIC IM
Monitor the gastric IM
Gastric IM, a key point in the multistep process of GC, is
considered to be an important gastric premalignant lesion.
Therefore, endoscopic surveillance of the progression of gastric
IM is an effective means of prevention of GC. Operative link for
gastric cancer metaplasia assessment (OLGIM) indicates that
OLGIM stage III and IV are significantly more likely to develop
intraepithelial neoplasia than OLGIM stage 0–II [75]. It is
recommended that the patients with OLGIM stage III/IV should Ta
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be followed up with a high-quality endoscopy every 3 years [76].
American Gastroenterological Association recommended that the
patients with incidental findings of gastric IM on endoscopy
should detect and eradicate H. pylori. Endoscopic surveillance is
reasonable for gastric IM patients at high risk of GC, including
those with incomplete IM, extensive IM involving the gastric body
and sinuses or the gastric horn, and a family history of GC. Routine
short-interval repeat endoscopy for the purpose of risk stratifica-
tion is not recommended for patients with gastric IM [77].
Meanwhile, the application of pigment endoscopy and narrow-
band imaging endoscopy improves the detection rate of gastric
IM [78, 79]. The confocal laser endomicroscopy has a sensitivity
and specificity of 98.13% and 95.33% for the diagnosis of IM, and
can also differentiate its subtypes [80].
Long-term exposure to bile acids has been shown to increase

the risk of transition from normal mucosa to IM, and eventually
leads to the development of GC over many years [81–83].
However, there are no clear studies on whether bile-reflux
monitoring can be used to monitor and delay the development
of gastric IM. Combining our previous description of bile acid and
gastric IM, we may speculate that bile- reflux monitoring will be a
possible means for monitoring and delaying the development of
gastric IM in the future. Endoscopy may show duodenogastric
reflux or the presence of bile in the stomach. Endoscopic findings
most often include bile pooling, erythema of the gastric mucosa,
thickened gastric folds, erosions, and gastric atrophy [84].
Histologic features include foveolar hyperplasia, edema, acute or
chronic inflammation, and IM [84]. These features are not specific
to bile reflux, which are similar to those found in some chemical
injuries, so it is important to exclude competing etiologies. The
aspiration of gastric juice under endoscopy allows chemical
analysis of the fluid and determines the presence of bile acids [85].

Modalities for establishing bile reflux also include measurement of
bilirubin in the stomach using a fiber-optic spectrophtometer, or
biliary radionuclide scanning showing radiotracer in the stomach
[86, 87].

The reversal of gastric IM
As a general treatment approach to bile reflux, the first step may
be to stop any food or nonessential medications that might cause
gastrointestinal motor dysfunction, such as strong tea, coffee,
alcohol, and opioids [88]. Proton-pump inhibitors are common,
which reduce the secretion of gastric acid and duodenal contents
[89]. In addition, it also has a potent anti-inflammatory effect via
inhibition of chemokines and adhesion molecules [90, 91]. Gastric
mucosal-protective agents with the binding ability of bile acids,
such as hydrotalcite, strengthen the gastric mucosal barrier,
thereby alleviating gastric mucosal injury caused by bile reflux
[92]. Prokinetic agents, such as mosapride and domperidone, can
reduce bile reflux [93, 94]. In addition, short-term use of
ursodeoxycholic acid (UDCA) may be appropriate. It changes the
relative concentrations of lipophilic bile acids with high cytotoxi-
city, and with time promotes mucosal healing [95, 96]. Combina-
tion therapy could be tried if individual therapies are ineffective.
Surgical management of bile reflux may be considered in severely
symptomatic patients, especially those with reflux caused by
previous surgery. The most commonly used operative procedures
include the Roux-en-Y procedure, the Braun enteroenterostomy,
and Henley jejunal interposition. A Roux-en-Y choledochojeju-
nostomy can be used to divert bile directly from the biliary tree
after cholecystectomy [97]. In addition, surgical treatment is also
suitable for patients with cancer or poor drug-treatment out-
comes. In summary, the symptoms caused by bile reflux can be
alleviated by drugs and surgery. However, there are no high-

Fig. 3 Mechanism of bile acid-induced gastric IM. Bile acids increase intestinal marker expression via the pathways of FXR/SNAI2/miR-1, FXR/
miR-92a-1–5p/FOXD1/NF-κB/CDX2, FXR/SHP/CDX2, FXR/NF-κB/CDX2, TGR5/ERK1/2/HNF4a, miR-21/SOX2/CDX2, and the promoter methyla-
tion and downregulation of DKK1 in the stomach. An m6A modification-associated positive feedforward loop between ALKBH5 and NF-kB
signaling is involved in generating the IM. Bile acid-induced ALKBH5 enhances ZNF333 levels through an m6A–YTHDF2-dependent manner. In
addition, macrophage-derived exosomes facilitate cellular communication between macrophages and gastric epithelial cells in the DCA
microenvironment, which promotes the development of SPEM and contributes to gastric IM by transferring miR-30a-5p.
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quality studies on whether the treatment of bile reflux can
reverse IM.
Currently, there is a controversial debate whether or not gastric

IM is reversible. It is generally believed that H. pylori eradication
before the occurrence of gastric IM can help control gastritis, while
once gastric IM is established, H. pylori eradication cannot reverse
gastric IM but can help prevent or delay the progression of gastric
IM [98, 99]. However, a meta-analysis showed that H. pylori
eradication did not reverse gastric IM and reduce the risk of GC in
patients with IM [100]. Therefore, more evidence is needed to
determine whether H. pylori eradication can delay and reverse IM.
In addition, a clinical study showed that a healthy diet may play a
key role in inhibiting IM, which can be used as a primary
prevention measure for the disease [101]. Certain vitamins and
selenium may reduce the risk of GC [102–104]. For some patients
with low folic acid level, appropriate supplementation of folic acid
can alleviate progress of precancerous lesions and reduce the
incidence of GC [105, 106]. Other studies have shown that
endoscopic radiofrequency ablation provides a new direction for
delaying gastric mucosal atrophy and IM, but more clinical
evidence is still needed. In recent years, traditional Chinese
medicine (TCM) in the treatment of gastric IM has highlighted
obvious advantages. However, the lack of standardized TCM-
syndrome diagnosis and the lack of clinical evidence to support
need to be addressed in subsequent studies. It has been reported
that resveratrol has a potential reversal effect on bile acid-induced
gastric IM via PI3K/AKT/P-FoxO4 signaling pathway [107]. How-
ever, more studies are needed to further investigate whether the
mechanism of bile reflux can be targeted to reverse IM.

SUMMARY AND PROSPECTS
Gastric IM, an important precancerous lesion of GC, is considered a
critical stage in the prevention and control of GC because it
provides a wide time window for clinical intervention of GC. Early
diagnosis and treatment of gastric IM are of great significance for
the prevention of GC. As shown in Fig. 3, bile reflux into the
stomach acts as a signaling molecule involved in the development
of IM by regulating downstream signaling pathways. Currently,
there are few mechanisms for bile acid-induced gastric IM,
including activation of bile acid receptors of FXR and TGR5,
secretion of exosomes by macrophages acting on gastric epithelial
cells, epigenetics, and miRNA involvement, which ultimately lead
to the elevation of IM biomarkers. At present, some achievements
have been made on the classification, pathogenic factors, and
prevention and treatment methods of gastric IM. However, the
molecular regulation mechanism of bile acid-induced gastric IM
has not been fully clarified, and the related process cannot be fully
explained. Therefore, more studies are needed to explore the
mechanism of gastric IM and clarify the specific mechanism of
intestinal metaplasia induced by bile acid reflux to provide a new
plan for the prevention and treatment of early GC.
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