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SIRT6 mediates MRTF-A deacetylation in vascular endothelial
cells to antagonize oxLDL-induced ICAM-1 transcription
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Oxidized low-density lipoprotein (oxLDL), a known risk factor for atherosclerosis, activates the transcription of adhesion molecules
(ICAM-1) in endothelial cells. We previously showed that myocardin-related transcription factor A (MRTF-A) mediates oxLDL-
induced ICAM-1 transcription. Here we confirm that ICAM-1 transactivation paralleled dynamic alterations in MRTF-A acetylation.
Since treatment with the antioxidant NAC dampened MRTF-A acetylation, MRTF-A acetylation appeared to be sensitive to cellular
redox status. Of interest, silencing of SIRT6, a lysine deacetylase, restored MRTF-A acetylation despite the addition of NAC. SIRT6
directly interacted with MRTF-A to modulate MRTF-A acetylation. Deacetylation of MRTF-A by SIRT6 led to its nuclear expulsion thus
dampening MRTF-A occupancy on the ICAM-1 promoter. Moreover, SIRT6 expression was downregulated with oxLDL stimulation
likely owing to promoter hypermethylation in endothelial cells. DNA methyltransferase 1 (DNMT1) was recruited to the SIRT6
promoter and mediated SIRT6 repression. The ability of DNMT1 to repress SIRT6 promoter partly was dependent on ROS-sensitive
serine 154 phosphorylation. In conclusion, our data unveil a novel DNMT1-SIRT6 axis that contributes to the regulation of MRTF-A
acetylation and ICAM-1 transactivation in endothelial cells.
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INTRODUCTION
Atherosclerosis, defined as the appearance of fat-laden plaques
in the major arteries, is a prototypic form of coronary heart
disease, which claims over half a million lives each year in the
US alone [1]. Multiple risk factors including smoking, obesity,
diabetes, hypertension, and hyperlipidemia, can lead to
atherosclerosis [2]. Decades of research have conclusively
demonstrated that atherosclerosis is primarily a pathology of
chronic inflammation [3]. Indeed, a plethora of immune cell
lineages can be detected within the atherosclerotic plaque and
subsequently contribute to atherogenesis in animal models and
in humans [4]. In order for the circulating leukocytes to trespass
through the vasculature and into the plaque, a firm interaction
has to be established between these cells and the endothelial
layer [5]. Previous studies showed that the
endothelium–leukocyte interaction is mediated by a group of
intercellular adhesion molecules (ICAMs). ICAM-1, for instance,
promotes the adhesion of monocytes, macrophages, and
neutrophils to the endothelium and is upregulated in the
human atherosclerotic plaques [6]. On the contrary, ICAM-1
deficiency prevents the progression of atherosclerosis, macro-
phage accumulation in the plaque, and vascular inflammation
in mice [7, 8]. In endothelial cells, ICAM-1 can be transcription-
ally activated by oxLDL which is a known risk factor for
atherosclerosis [9]. The sequence-specific transcription factor

NF-κB is believed to be a major activator of ICAM-1 transcription
through directly binding to the proximal ICAM-1 promoter [10].
Myocardin-related transcription factor A (MRTF-A) belongs to

the family of proteins initially identified as co-factors for the
sequence-specific transcription factor SRF [11–13]. Unlike the
founding member of this family Myocardin, which is exclusively
expressed in muscle cells, MRTF-A is ubiquitously expressed in all
tissues and cells [11]. Absence of MRTF-A is tolerated in
embryogenesis and adulthood as evidenced by the fact that
mice with germline MRTF-A deletion are born with Mendelian
ratios and exhibit no overt phenotype under physiological
conditions [14, 15]. Several lines of evidence point to a potential
role for MRTF-A in atherogenesis. We have previously confirmed
that MRTF-A is expressed in endothelial cells and interacts with
NF-κB to mediate oxLDL-induced ICAM-1 transcription and
leukocyte adhesion [16]. Minami et al. have demonstrated that
MRTF-A deficiency in an Apoe−/− background retards the process
of atherosclerosis in mice [17]. Besides, population studies have
identified a position correlation between MRTF-A polymorphisms
and increased risk of coronary heart disease [18, 19].
Transcriptional activity of MRTF-A is regulated by several factors

including its post-translational modifications. Previous studies
have shown that MRTF-A can be subjected to phosphorylation
[20], SUMOylation [21], ubiquitination [22], and acetylation [23].
Modifications of MRTF-A modulate its activity by impacting its
stability, subcellular localization, and interactions with co-factors.
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In this study, we provide evidence to show the acetylation status
of MRTF-A correlates with ICAM-1 expression in endothelial cells.
Redox-sensitive repression of the lysine deacetylase SIRT6,
mediated by DNA methylation, leads to augmentation of MRTF-
A acetylation and ICAM-1 activation.

RESULTS
SIRT6 mediates redox-sensitive deacetylation of MRTF-A
When cultured endothelial cells (EAhy926) and primary human
aortic endothelial cells (HAECs) were exposed to oxLDL, ICAM-1
expression was upregulated (Figs. 1A, B). Paralleling ICAM-1

Fig. 1 SIRT6 mediates redox-sensitive deacetylation of MRTF-A. A, B EAhy926 cells and primary human aortic endothelial cells (HAECs) were
treated with or without oxLDL and collected at indicated time points. ICAM-1 expression was examined by qPCR (A). Immunoprecipitation
was performed with anti-acetyl lysine (B). C, D EAhy926 cells and primary human aortic endothelial cells (HAECs) were treated with or without
oxLDL and collected at indicated time points. CAM-1 expression was examined by qPCR C. Immunoprecipitation was performed with anti-
acetyl lysine (D). E An ICAM-1 promoter-luciferase construct was transfected into EAhy926 cells with wild type or mutant MRTF-A expression
construct followed by treatment with NAC. Luciferase activities were normalized by protein concentration and GFP fluorescence. F, G EAhy926
cells were transfected with indicated siRNAs followed by treatment with oxLDL and/or NAC for 24 h. ICAM-1 expression was examined by
qPCR (F). Immunoprecipitation was performed with anti-acetyl lysine G. Error bars represent SD (*p < 0.05, one-way ANOVA). All experiments
were repeated three times and one representative experiment is shown.
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upregulation, there was a simultaneous upregulation of MRTF-A
acetylation level whereas overall MRTF-A expression level was
marginally affected (Fig. 1B). Interestingly, treatment with an
antioxidant N-acetylcysteine (NAC) attenuated ICAM-1 induction
by oxLDL and dampened MRTF-A acetylation (Figs. 1C, D).

Consistently, over-expression of MRTF-A in endothelial cells
potently augmented the ICAM-1 promoter activity, however,
NAC treatment diminished activation of the ICAM-1 promoter.
Mutation of a series of 4 lysine residues within MRTF-A that
disables its acetylation [23] strongly crippled the ability of MRTF-A
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to trans-activate the ICAM-1 promoter and rendered MRTF-A
unresponsive to NAC treatment (Fig. 1E).
Sirtuin family of lysine deacetylase plays a key role in regulating

endothelial function. When individual sirtuin was depleted with
siRNA (Fig. S1 for validation of knockdown efficiency and
specificity), it was discovered that reducing the expression of
SIRT6 reversed the effect of NAC treatment to restore oxLDL-
induced ICAM-1 expression (Fig. 1F) and MRTF-A acetylation (Fig.
1G). Similar results were obtained with a second pair of
SIRT6 siRNAs (Fig. S2).

SIRT6 interacts with MRTF-A and deacetylates MRTF-A
Next, we examined whether SIRT6 could interact with and
deacetylate MRTF-A. Myc-tagged SIRT6 was co-transfected into
HEK293 cells without FLAG-tagged MRTF-A; an anti-FLAG antibody
precipitated Myc-SIRT6 only when FLAG-MRTF-A was present (Fig.
2A). Furthermore, Co-IP experiments also demonstrated that
endogenous MRTF-A interacted with SIRT6 in endothelial cells
(Fig. 2B). Transduction with lentivirus carrying SIRT6 WT, but not an
enzymatically deficient SIRT6 (H133Y), dampened induction of
ICAM-1 expression under oxLDL stimulation while at the same time
attenuated MRTF-A acetylation in endothelial cells (Figs. 2C, D). Of
note, SIRT6 appeared to be able inhibited ICAM-1 transactivation
only in the presence of the wild-type MRTF-A but not the
acetylation mutant MRTF-A (Fig. 2E). Similarly, treatment with a
specific SIRT6 activator UBCS039 achieved equivalent effects as
SIRT6 over-expression to diminish ICAM-1 expression and MRTF-A
acetylation in a dose-dependent manner (Figs. 2F, G). Again, it was
observed that the effect of UBCS039 was only evident with wild-
type MRTF-A but not with the mutant MRTF-A (Fig. 2H).

SIRT6-mediated deacetylation promotes nuclear expulsion of
MRTF-A
We then explored the impact of SIRT6-mediated MRTF-A
deacetylation in endothelial cells. Immunofluorescence staining
showed that MRTF-A primarily resided in the cytoplasm of
endothelial cells under normal conditions and oxLDL treatment
prompted nuclear translocation of MRTF-A, which was largely
prevented by NAC; SIRT6 knockdown, however, nullified the effect
of NAC treatment and allowed oxLDL to stimulate MRTF-A nuclear
accumulation (Fig. 3A). Cellular fractionation followed by Western
blotting confirmed that reducing SIRT6 expression negated the
blockade of MRTF-A nuclear translocation by NAC (Fig. 3B). We
also used the occupancy of MRTF-A on the ICAM-1 promoter,
assessed by ChIP assay, as a proxy to determine its nuclear
accumulation. As shown in Fig. 3C, oxLDL enhanced occupancy of
MRTF-A on the ICAM-1 promoter whereas NAC treatment
abrogated MRTF-A recruitment; SIRT6 knockdown re-installed
MRTF-A on the ICAM-1 promoter. By comparison, whereas oxLDL
treatment augmented the occupancy of NF-κB/p65, the sequence-
specific transcription factor essential for MRTF-A recruitment to
the ICAM-1 promoter [16], neither NAC treatment nor SIRT6
knockdown affected p65 binding (Fig. 3C), indicating that MRTF-A

recruitment might be the rate-limiting step for oxLDL-induced
ICAM-1 transactivation.
In another set of experiments, we found that increasing SIRT6

expression, through lentiviral transduction, antagonized MRTF-A
nuclear accumulation prompted by oxLDL treatment, as measured
by immunofluorescence staining (Fig. 3D) and cell fractionation (Fig.
3E). Besides, SIRT6 over-expression also blocked the recruitment of
MRTF-A to the ICAM-1 promoter without altering NF-κB/p65 binding
(Fig. 3F). Taken together, these data suggest that SIRT6-mediated
MRTF-A deacetylation may control its subcellular localization.

SIRT6 is transcriptionally repressed by DNMT1 in endothelial
cells
When endothelial cells were exposed to oxLDL, SIRT6 expression
levels were downregulated (Figs. 4A, B). To determine whether
SIRT6 expression was regulated at the transcriptional level, a SIRT6
promoter-luciferase construct was transfected into endothelial
cells: oxLDL treatment repressed the SIRT6 promoter activity, which
was normalized by NAC treatment (Fig. 4C). Numerous studies
have pointed to promoter hypermethylation as a mechanism for
SIRT6 gene repression [24–26]. Indeed, bisulfite assay demon-
strated that oxLDL treatment stimulated SIRT6 promoter hyper-
methylation, however, NAC treatment neutralized the effect of
oxLDL on SIRT6 promoter methylation (Fig. 4D). Further, treatment
with a pan-DNA methyltransferase inhibitor 5-Aza-dC dose-
dependently relieved the repression of SIRT6 expression by oxLDL
(Figs. 4E, F). DNA methylation in mammalian cells is catalyzed by
one of the three major DNA methyltransferases, DNMT1, DNMT3a,
and DNMT3b [27]. Knockdown of DNMT1, but not DNMT3a or
DNMT3b, canceled the repression of SIRT6 expression by oxLDL
treatment in endothelial cells (Figs. 4G, H). Consistent with these
observations, the ChIP assay showed that oxLDL treatment
stimulated the recruitment of DNMT1 instead of DNMT3a or
DNMT3b to the SIRT6 promoter region (Fig. 4I).

Redox-sensitive phosphorylation of DNMT1 mediates SIRT6
repression in endothelial cells
According to the above research results, we determined the
mechanism whereby DNMT1 contributes to SIRT6 repression by
oxLDL in endothelial cells. Quantitative PCR (Fig. 5A) and Western
blotting (Fig. 5B) showed that DNMT1 expression levels were not
altered by oxLDL. However, DNMT1 phosphorylation (serine 154)
was significantly upregulated by oxLDL treatment (Fig. 5B). In
addition, NAC treatment, whereas failing to influence DNMT1
expression, lessened DNMT1 phosphorylation (Figs. 5C, D). To
examine the functional relevance of oxLDL-induced DNMT1
phosphorylation, wild type DNMT1 and phosphorylation-deficient
mutant (S154A) DNMT1 were transfected along with the SIRT6
promoter-luciferase construct into endothelial cells: WT DNMT1
repressed the SIRT6 promoter whereas NAC blocked the repression
by WT DNMT1; S154A DNMT1 did not repress the SIRT6 promoter
and was irresponsive to NAC treatment (Fig. 5E). Collectively, these
data identify that redox-sensitive phosphorylation of DNMT1 may
be involved in SIRT6 repression in endothelial cells.

Fig. 2 SIRT6 interacts with MRTF-A and deacetylates MRTF-A. A HEK293 cells were transfected with FLAG-tagged MRTF-A and Myc-tagged
SIRT6. Immunoprecipitation was performed with anti-FLAG. B Immunoprecipitation was performed with EAhy926 cell lysates and HAEC cell
lysates. C, D EAhy926 cells and primary human aortic endothelial cells (HAECs) were infected with lentivirus carrying wild type or mutant SIRT6
expressing vector followed by treatment with oxLDL. ICAM-1 expression was examined by qPCR (C). Immunoprecipitation was performed
with anti-acetyl lysine (D). E An ICAM-1 promoter-luciferase construct was transfected into EAhy926 cells and HAECs with wild type or mutant
MRTF-A expression construct and SIRT6 expression construct. Luciferase activities were normalized by protein concentration and GFP
fluorescence. F, G EAhy926 cells and primary human aortic endothelial cells (HAECs) were treated with oxLDL in the presence or absence of
UBCS039. ICAM-1 expression was examined by qPCR (F). Immunoprecipitation was performed with anti-acetyl lysine (G). H An ICAM-1
promoter-luciferase construct was transfected into EAhy926 cells and HAECs with wild type or mutant MRTF-A expression construct followed
by treatment with UBCS039. Luciferase activities were normalized by protein concentration and GFP fluorescence. Error bars represent SD
(*p < 0.05, one-way ANOVA). All experiments were repeated three times and one representative experiment is shown.
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DISCUSSION
Endothelial dysfunction is considered the linchpin of atherogen-
esis [28–31]. Endothelial cells undergo profound transcriptomic
changes during atherosclerosis. Recently, single-cell RNA-seq
experiments have demonstrated that upregulation of
inflammation-related genes, including ICAM-1, in endothelial cells

is a signature event in atherogenesis [32]. We have previously
confirmed that MRTF-A is essential for oxLDL-induced ICAM-1
transcription in endothelial cells. In this study, we describe a
DNMT1-SIRT6 axis that antagonizes oxLDL-induced ICAM-1
transcription by regulating MRTF-A acetylation and consequently
nuclear accumulation (Fig. 5F).
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We present evidence to show that SIRT6 antagonizes ICAM-1
transactivation by modulating MRTF-A activity. This observation is
consistent with preliminary reports that implicate SIRT6 in the
pathogenesis of coronary heart disease (CHD). Xu et al. have
shown that SIRT6 deficiency in Apoe−/− mice exacerbate
atherosclerosis when fed a Western diet [33]. Of interest, the
same study also demonstrates that SIRT6 deletion further
increases the expression of VCAM-1, an adhesion molecule that
can be transcriptionally activated by MRTF-A with similar functions
as ICAM-1, in the arteries although the potential involvement was
not determined. Recent research by Camici and colleagues has
shown that endothelial-specific SIRT6 aggravates whereas
endothelial-specific SIRT6 over-expression ameliorates the inci-
dence and severity of stroke, one of the most common
consequences of CHD [34]. Mechanistically, the authors propose
that beneficial effects SIRT6 confers depend on the preservation of
blood–brain barrier and survival of endothelial cells. It should be
emphasized that although we and other researchers have arrived
at the same conclusion that SIRT6 suppression may underscore
the pathogenesis of atherosclerosis and, more broadly, coronary
heart disease, the underlying mechanism may not entirely rely on
MRTF-A. SIRT6 has been reported to inhibit the activity of NF-κB by
either removing the active acetyl H3K9 marker from NF-κB target
genes or by de-repressing the transcription of IκB [35]. In addition,
SIRT6 can interact with and deacetylate FOXO1 to expel FOXO1
from the nucleus thus de-activating FOXO1 [36]. Because FOXO1
contributes to endothelial dysfunction and has been shown to
directly bind to the ICAM-1 promoter and activate ICAM-1
transcription [37, 38], it is plausible to speculate that SIRT6 might
modulate oxLDL-induced ICAM-1 expression by targeting FOXO1.
We have previously reported that MRTF-A deacetylation can be

modulated by two lysine deacetylases under different circum-
stances. HDAC5 deacetylates MRTF-A in macrophages to ameliorate
TNF-α induced pro-inflammatory mediators [39]. Alternatively, SIRT1
deacetylates MRTF-A in dermal fibroblasts to defy senescence
induced loss of collagen type I expression [40]. Here we show that
SIRT6 interacts with and deacetylates MRTF-A in vascular endothelial
cells. Apparently, all three deacetylases target the same four lysine
residues within the N-terminus of MRTF-A. This discrepancy could be
accounted for several explanations. First, differential expression
levels of HDACs have been noted in endothelial cells [41, 42]. Thus,
the ability of a specific deacetylase to modulate MRTF-A is
dependent on its availability. Second, the catalytic activities of
HDACs are subjected to the regulation by intracellular redox status
and metabolic intermediates [43–48]. It is possible that even if a
specific deacetylase is expressed in endothelial cells in sufficient
quantity it may be rendered inactive by the intracellular milieu.
Third, HDACs themselves are targets of post-translational modifica-
tions. SIRT6, for instance, can be phosphorylated and nitrated with
varying consequences [49–52]. Thus, whether MRTF-A can be
targeted by a specific deacetylase is also determined by the cell
type-specific post-translational modification machinery. These issues
need to be carefully examined in future studies.
In summary, our data echo recent findings that targeting SIRT6

bears translational significance in the intervention of coronary

heart disease. SIRT6 expression appears to be downregulated in
the atherosclerotic plaque in humans and animal models [53, 54]
and in cultured endothelial cells by oxLDL treatment, which can
be reversed by the DNMT inhibitor 5-Aza-dc (Fig. 4). Because
administration of 5-Aza-dc attenuates atherosclerosis in Ldlr−/−

mice [55], it is tempting to speculate that a combined regimen
consisting of a DNMT inhibitor and a SIRT6 activator could be
considered a novel therapeutic solution for patients with CHD.

METHODS
Cell culture and transient transfection
Immortalized human endothelial cells (EAhy926) were maintained in
DMEM supplemented with 10% FBS as previously described [56]. MRTF-A
expression constructs [23, 57], SIRT6 expression constructs [58], DNMT1
expression constructs [59], ICAM-1 promoter-luciferase constructs [16], and
SIRT6 promoter-luciferase construct [60] have been previously described.
Oxidized LDL (oxLDL) was purchased from Sigma. UBCS039 and 5-Aza-dC
were purchased from Selleck. Small interfering RNAs were purchased from
Dharmacon: SIRT1 siRNA, TCGAACAATTCTTAAAGAT; SIRT2 siRNA, GAGGC-
CAUCUUUGAGAUCAGCUAUU; SIRT3 siRNA, ACUCCCAUUCUUCUUUCAC;
SIRT4 siRNA, GGUACUGGGCUAGAAACUU; SIRT5 siRNA, GCCAAGUUCAA-
GUAUGGCA; SIRT6 siRNA, AAGAATGTGCCAAGTGTAAGA; SIRT7 siRNA,
GCCUGAAGGUUCUAAAGAA; DNMT1 siRNA, GCCUCAUCGAGAAGAAUAU;
DNMT3a siRNA, GCGUCACACAGAAGCAUAU; DNMT3b siRNA, UUGUU-
GUUGGCAACAUCUGAA. Forty-eight hours after transfection and reporter
activity, cells were collected and measured by using a luciferase reporter
assay system (Promega) as previously described [61, 62].

Protein extraction and western blot
Whole-cell lysates were obtained by re-suspending cell pellets in the lysis
buffer (50 mMTris pH 7.4, 150mM NaCl, 1% Triton X-100) with freshly added
protease inhibitor (Roche) as previously described [63, 64]. Nuclear proteins
were prepared with the NE-PER Kit (Pierce) following the manufacturer’s
recommendation. Cell lysates were incubated with specific antibodies at 4 °C
overnight and then conjugated with Protein A/G-plus Agarose beads (Santa
Cruz). Alternatively, FLAG-conjugated beads (M2, Sigma) were added to and
incubated with lysates overnight. The precipitated immune complex was
eluted with 3X FLAG peptide (Sigma) before being released by boiling with
1X SDS electrophoresis sample buffer. Proteins were separated by 8%
polyacrylamide gel electrophoresis with pre-stained markers (Bio-Rad) for
estimating molecular weight and efficiency of transfer to blots. Proteins were
transferred to nitrocellulose membranes (Bio-Rad) in a Mini-Trans-Blot Cell
(Bio-Rad). The membranes were blocked with 5% nonfat dry milk in Tris-
buffered saline buffer (0.05% Tween 20, 150mM NaCl, 100 mMTris-HCl
pH7.4) at 4 °C overnight. Western blot analyses were performed with anti-
ICAM-1 (Proteintech, 60299-1), anti-MRTF-A (Santa Cruz, sc-32909), anti-SIRT6
(Abcam, ab62739), anti-FLAG (Sigma, F3165), anti-MYC (Santa Cruz, sc-40),
anti-DNMT1 (Santa Cruz, sc-20701), anti-phosphorylated S154 DNMT1
(Thermo Fisher, PA5-12963), and anti-β-actin (Sigma, A2228) antibodies. For
densitometrical quantification, densities of target proteins were normalized
to those of β-actin as previously described (Sun et al., 2020; Wu et al., 2020a).
Data are expressed as relative protein levels compared to the control group
which is arbitrarily set as 1.

RNA isolation and real-time PCR
RNA was extracted by using the RNeasy RNA isolation kit (Qiagen).
Reverse transcriptase reactions were performed using a SuperScript First-

Fig. 3 SIRT6-mediated deacetylation promotes nuclear expulsion of MRTF-A. A EAhy926 cells were transfected with a SIRT6 expression
vector followed by treatment with oxLDL. Immunofluorescence staining was performed with anti-MRTF-A. B EAhy926 cells and HAECs were
transfected with a SIRT6 expression vector followed by treatment with oxLDL. Cytoplasmic and nuclear proteins were extracted as described
in Methods and MRTF-A protein in different fractions was detected by Western. C EAhy926 cells and HAECs were transfected with a SIRT6
expression vector followed by treatment with oxLDL. ChIP was performed with anti-MRTF-A, anti-NF-κB/p65, or IgG. D EAhy926 cells were
transfected with indicated siRNAs followed by treatment with oxLDL and/or NAC for 24 h. Immunofluorescence staining was performed with
anti-MRTF-A. E EAhy926 cells and HAECs were transfected with indicated siRNAs followed by treatment with oxLDL and/or NAC for 24 h.
Cytoplasmic and nuclear proteins were extracted as described in Methods and MRTF-A protein in different fractions was detected by Western.
F EAhy926 cells and HAECs were transfected with indicated siRNAs followed by treatment with oxLDL and/or NAC for 24 h. ChIP was
performed with anti-MRTF-A, anti-NF-κB/p65, or IgG. Error bars represent SD (*p < 0.05, one-way ANOVA). All experiments were repeated three
times and one representative experiment is shown.
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Fig. 4 SIRT6 is transcriptionally repressed by DNMT1 in endothelial cells. A, B EAhy926 cells and HAECs were treated with or without oxLDL
and collected at indicated time points. SIRT6 expression was examined by qPCR (A) and Western (B). C A human SIRT6 promoter construct was
transfected into EAhy926 cells followed by treatment with oxLDL and/or NAC. Luciferase activities were normalized by protein concentration
and GFP fluorescence. D EAhy926 cells and HAECs were treated with or without oxLDL for 24 h. DNA methylation was evaluated as described
in Methods. E, F EAhy926 cells and HAECs were treated with oxLDL in the presence or absence of 5-Aza-dC for 24 h. SIRT6 expression was
examined by qPCR (E) and Western (F). G, H EAhy926 cells and HAECs were transfected with indicated siRNAs followed by treatment with
oxLDL for 24 h. SIRT6 expression was examined by qPCR (G) and Western (H). I EAhy926 cells and HAECs were treated with oxLDL and
harvested at indicated time points. ChIP assay was performed with anti-DNMT1, anti-DNMT3a, anti-DNMT3b, or IgG. Error bars represent SD
(*p < 0.05, one-way ANOVA). All experiments were repeated three times and one representative experiment is shown.
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strand Synthesis System (Invitrogen) as previously described [65, 66].
Real-time PCR reactions were performed on an ABI Prism 7500 system
with the following primers: ICAM-1, 5'-AGCGGCTGACGTGTGCAGTAAT-3'
and 5'-TCTGAGACCTCTGGCTTCGTCA-3'; SIRT6, 5'-TGGCAGTCTTC-
CAGTGTGGTGT-3' and 5'-CGCTCTCAAAGGTGGTGTCGAA-3'; DNMT1, 5'-
AGGTGGAGAGTTAT

GACGAGGC-3' and 5'-GGTAGAATGCCTGATGGTCTGC-3'. Ct values of
target genes were normalized to the Ct values of a housekeeping control
gene (18 s, 5'-CGCGGTTCTATTTTGTTGGT-3' and 5'-TCGTCTTCGAAACTCC-
GACT-3' for both human and mouse genes) using the ΔΔCt method and
expressed as relative mRNA expression levels compared to the control
group which is arbitrarily set as 1.

Fig. 5 Redox-sensitive phosphorylation of DNMT1 mediates SIRT6 repression in endothelial cells. A, B EAhy926 cells were treated with or
without oxLDL and collected at indicated time points. DNMT1 expression was examined by qPCR (A) and Western (B). C, D EAhy926 cells were
treated with oxLDL and/NAC for 24 h. DNMT1 expression was examined by qPCR (C) and Western (D). E A human SIRT6 promoter-luciferase
construct was transfected with EAhy926 cells with wild-type or mutant DNMT1 followed by treatment with NAC. Luciferase activities were
normalized by protein concentration and GFP fluorescence. Error bars represent SD (*p < 0.05, one-way ANOVA). All experiments were
repeated three times and one representative experiment is shown. F A schematic model.
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Chromatin immunoprecipitation (ChIP)
Chromatin immunoprecipitation (ChIP) assays were performed essentially
as described before [67, 68]. Briefly, chromatin in control and treated cells
were cross-linked with 1% formaldehyde. Cells were incubated in lysis
buffer (150mM NaCl, 25 mMTris pH 7.5, 1% Triton X-100, 0.1% SDS, 0.5%
deoxycholate) supplemented with protease inhibitor tablet and PMSF.
DNA was fragmented into ~200 bp pieces using a Branson 250 sonicator.
Aliquots of lysates containing 200 μg of protein were used for each
immunoprecipitation reaction with anti-MRTF-A (Santa Cruz, sc-10768),
anti-DNMT1 (Santa Cruz, sc-20701), anti-DNMT3a (Santa Cruz, sc-20703), or
anti-DNMT3b (Santa Cruz, sc-20704). Precipitated genomic DNA was
amplified by real-time PCR with the following primers: ICAM-1 proximal
promoter, 5'-CCCTGCCACCGCCGCC-3' and 5'-AGGGGCGGTGCTGCTTTCC-3';
ICAM-1 intronic region, 5'-AATTCCAGAGCTGACTTATCC-3' and 5'-ATCT
CAGGCTTTGTTGAGC-3'; SIRT6 promoter, 5'-AACTCTGCGTGGCATTCAAA-3'
and 5'-AAATGCGGGACACAGGCTAT-3'. A total of 10% of the starting
material is also included as the input. Data are then normalized to the
input and expressed as % recovery relative to the input as previously
described [56, 69]. All experiments were performed in triplicate wells and
repeated three times.

Immunofluorescence microscopy
Endothelial cells were fixed with 4% formaldehyde. After being permeabilized
with TBST (.25% Triton X-100, 150mM NaCl, 50mM Tris pH7.4), endothelial
cells were blocked with 5% BSA, and incubated with indicated primary
antibodies at 4 °C overnight. Several washes with PBS, cells were incubated
with FITC-labeled secondary antibodies (Jackson) for 30min. DAPI (Sigma) was
added and incubated with cells for 5min prior to observation. Immuno-
fluorescence was visualized on a confocal microscope (LSM 710, Zeiss).

SIRT6 promoter DNA methylation analysis
SIRT6 promoter methylation status was analyzed with bisulfite conversion
followed by sequencing essentially as described previously [24, 25]. Briefly,
genomic DNA isolated from EAhy926 cells was subjected to bisulfite
treatment using the EZ DNA Methylation Gold Kit (ZymoResearch). The
modified DNA was amplified and the PCR products were cloned into pCRII-
TA vectors (Invitrogen) and sequenced using the Sanger sequencing.

Statistical analysis
Sample sizes reflected the minimal number needed for statistical
significance based on power analysis and prior experience. Two-tailed
Student’s t-test (for comparison between two groups) or ANOVA with post-
hoc Scheffe test (for comparison among three or more groups) was
performed using an SPSS package. Unless otherwise specified, p-values <
0.05 were considered statistically significant.

DATA AVAILABILITY
All data generated or analyzed during this study are included in this published article
are available from the corresponding author on reasonable request.
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