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Breast cancer (BC) constitutes a major health problem worldwide, making it the most common malignancy in women. Current
treatment options for BC depend primarily on histological type, molecular markers, clinical aggressiveness and stage of disease.
Immunotherapy, such as αPD-1, have shown combinatorial clinical activity with chemotherapy in triple negative breast cancer
(TNBC) delineating some therapeutic combinations as more effective than others. However, a clear overview of the main immune
cell populations involved in these treatments has never been provided.
Here, an assessment of the immune landscape in the tumor microenvironment (TME) of two TNBC mouse models has been
performed using single-cell RNA sequencing technology. Specifically, immune cells were evaluated in untreated conditions and
after treatments with chemotherapy or immunotherapy used as single agents or in combination. A decrease of Treg was found in
treatments with in vivo efficacy as well as γδ T cells, which have a pro-tumoral activity in mice. Focusing on Cd8 T cells, across all the
conditions, a general increase of exhausted-like Cd8 T cells was confirmed in pre-clinical treatments with low efficacy and an
opposite trend was found for the proliferative Cd8 T cells. Regarding macrophages, M2-like cells were enriched in treatments with
low efficacy while M1-like macrophages followed an opposite trend. For both models, similar proportions of B cells were detected
with an increase of proliferative B cells in treatments involving cisplatin in combination with αPD-1. The fine-scale characterization
of the immune TME in this work can lead to new insights on the diagnosis and treatment of TNBC.
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INTRODUCTION
Breast cancer (BC) is the most common malignancy in women,
and the fifth leading cancer death worldwide [1]. The triple
negative breast cancer (TNBC) subtype accounts for 15-20% of BC
cases and has the worst prognosis [2].
Until recently, the backbone of therapy against TNBC has been

chemotherapy, including alkylating agents such as cyclopho-
sphamide [3] and cisplatin [4], anti-microtubules such as taxanes
[5] and antineoplastic agents such as doxorubicin [6]. The immune
checkpoint inhibitors (ICIs) anti-PD-1 and anti-PD-L1 have been
recently approved for TNBC therapy in combination with
chemotherapy, but they are so far clinically active only in a
minority of patients and for a limited timeframe [7–10].
PD-1 predominantly regulates effector T cell activity within tissue

and tumors by binding the programmed cell death ligand 1 (PD-
L1). In turn, this binding inhibits kinases involved in T cell activation
[11]. In physiological conditions, the interaction of PD-1 with its
ligands has been shown to play an important role in the
maintenance of the balance between autoimmunity and periph-
eral tolerance [12, 13]. In the tumor microenvironment (TME), PD-1
and its ligand PD-L1 perform a vital role in progression and survival

of cancer cells; the overexpression of PD-L1 by tumor cells is used
as self-defense by the tumor against the cytotoxic T cells which
contribute to cell killing [14]. PD-L1 expression on many tumors is a
component of a suppressive microenvironment that leads to T cell
dysfunction and exhaustion [15]. This state of exhaustion is
characterized by the progressive loss of proinflammatory cytokines
production, the loss of the cytotoxic activity, the decrease in the
proliferative potential and an increase in apoptosis [16]. As a
consequence, blocking the PD-1/PD-L1 inhibitory pathway can re-
activate T cells in the TME with the release of inflammatory
cytokines and cytotoxic granules to eliminate tumor cells. PD-1 is
also highly expressed on regulatory T cells (Tregs), where it may
enhance their proliferation in the presence of PD-L1 [17]. As Tregs
suppress effector immune responses, blockade of the PD-1
pathway may enhance antitumor immune responses.
TNBC is believed to be an immunogenic BC subtype, but it is

currently unclear which cell populations are involved in the
immune response within the TME during specific conditions as
well as their proportion in specific treatments [18].
Single-cell RNA sequencing (scRNA-seq) gives the possibility to

differentiate among cell populations that are not distinguishable by
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cell surface markers and morphology alone, opening the possibility of
identifying previously uncharacterized cellular populations, pheno-
types and transitional states. This approach has revolutionized our
ability to study the immune system and allow us to break through the
bottleneck of immunology studies [19, 20].
In this work, we have investigated at the single cell level, report

and discuss in detail the transcriptome of innate and adaptive
intratumoral immune cells in two syngeneic, immune competent,
orthotopic murine models of local and metastatic TNBC. Mice were
treated with ICIs and several different types of chemotherapeutics,
alone or in combination. From previous reports, capecitabine (alone
or with ICIs) was the less effective drug [21]. While platinum,
doxorubicin and taxanes showed synergy with ICIs and had
superimposable activity, intermittent, medium dosage cyclopho-
sphamide (C140) plus vinorelbine and ICIs was the most active
combinatorial therapy. Vinorelbine activated antigen presenting cells
and C140 generated new T cell clones including stem cell-like
TCF1+ CD8+ T cells [22]. The fine characterization of almost 50 000
immune cells extracted from the TME of these two mouse models
helped in creating a catalogue of the immune response to several
drugs and aimed to investigate specific cellular subtypes useful for
future therapeutic approaches.

MATERIALS AND METHOD
Cell lines and treatments
As this work focuses on the computational analysis of scRNA-seq
data previously published, in vivo and in vitro experiments were
performed as mentioned in [22]. Briefly the laboratory procedures
included the injection of two TNBC cell lines (4T1 and EMT6) in the
mammary fat pad as in [21]. Tumor-bearing mice were treated
with either vehicle or with different drugs used as single agents or
in combination as described in [22] for a total of eight treatments
and one untreated control for each cell line (Table 1). In almost all
treatments for each cell line, checkpoint inhibitors alone or in
combination with chemotherapeutic drug led to tumor shrinking.
In fact, anti-PD-1 treatment reduced on average tumor mass of
68% and 75% in 4T1 and EMT6 model, respectively [22]. Drug
usages were based on literature data associated with no or
acceptable toxicity [22, 23].

ScRNA-seq library preparation and sequencing
At 28 or 70 days, depending on the efficacy of the treatment and on
the cell line (details in [22]), tumor resection was performed as in [23].
Tumors of three mice were dissociated and pooled together to

generate the single cell suspension. We took care to pool tumors
of similar size and with no sign of necrosis and ulcers [22]. The cell
suspensions were then prepared for cell sorting with FACS Fusion
sorter (BD bioscience). Cd45+ DAPI- (alive immune cells) were

sorted and purity evaluated; as previously showed [22], post
sorting purity was assessed to be higher than 90%. The
percentages of Cd45+ DAPI - was of 28.3 ± 4.3% for 4T1 and
9.3 ± 3.3 % for EMT6 tumor models, respectively. At least 5,000
cells per condition underwent scRNA-seq library preparation
following the 10X Genomic protocol and using two different
chemistries (v2 and v3) (Table 1). The sequencing was performed
with NovaSeqTM 6000 Illumina® sequencer at a sequencing depth
of 50 000 read pairs/cell.

Alignment and quality control
FASTQ files were converted to digital gene-cell count matrices
using a Singularity- dependent Snakemake pipeline [24] employ-
ing the Cell Ranger v4 software. As reference, the Mus musculus
reference genome mm10 (GENCODE vM23/Ensembl98) was used.
Market Exchange Format (MEX) for sparse matrices generated
from the pipeline were loaded, merged, processed and analyzed
using Seurat package v4 [25].
To have a comparable number of cells for each experiment,

we excluded from the analyses all the conditions with a
number of cells lower than 500. Then, in order to include only
cells that are of high quality, we exclude cells with 500 or less
transcript, 50,000 or more transcripts, having fewer than 250
expressed genes, a complexity score (log10 genes per UMI)
lower than 0.80 and more than 15% mitochondrial transcripts
as in [22]. At the gene-level, all genes expressed in less than
five cells were filtered out.
To detect doublets, the scDblFinder() function of scDblFinder

package [26] was used. This package works only with SingleCel-
lExperiment (SCE) objects [27], therefore, a conversion from Seurat
object was performed. Finally, doublets were excluded using the
subset() function of the Seurat package [25].
During the quality control (QC), one condition (C140+ V+

αPD-1), out of the nine reported here for the 4T1 cell line, was
removed from further analyses because its number of cells did
not exceed the minimum filtering threshold (500 cells) used by
us to consider a condition suitable to explore the whole
immune populations. For the EMT6, all conditions passed this
quality control filter. The number of transcripts and number of
genes were evaluated for the remaining conditions. The
majority of the cells had more than 1 000 UMI indicating high
quality cells (Fig. S1). Furthermore, in the 4T1, the C140,
C140+ V and T+ αPD-1 treatments had the highest number of
mitochondrial transcripts; while for the EMT6 it was C140+ V,
C140+ V+ αPD-1 and P+ αPD-1. This might be related to
differences in toxicity of these specific agents in different
microenvironments [28–30] due to the fact that high percen-
tage of mtDNA transcript is usually associated with apoptotic,
stressed and low-quality cells.

Table 1. Condition overview.

Label Type of treatment Chemistry 10X for 4T1 Chemistry 10X for EMT6

ctr control v2 v2

αPD-1 Immunocheckpoint Inhibitor (ICI) v2 v2

C140 (Cyclophosphamide) Alkylating agents v3 v3

C140+ V (Vinorelbine) Alkylating agents + anti-microtubule agents v3 v3

C140+ αPD-1 Alkylating agents + ICI v2 v2

C140+ V+ αPD-1 Alkylating agents + anti-microtubule agents + ICI v3 v2

D (Doxorubicin)+ αPD-1 Antineoplastic agents + ICI v2 v3

P (Cisplatin)+ αPD-1 Antineoplastic agents + ICI v2 v2

T (Paclitaxel)+ αPD-1 Anti-microtubule agents + ICI v3 v2

Schematic view of conditions (samples) with the corresponding treatment for the 4T1 and EMT6 cell line TMEs with the 10 X Genomics chemistry version used
for each condition.
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Proliferation status, normalization and batch effect removing
Cell cycle score variation was evaluated with a Principal
Component Analysis (PCA) on normalized and scaled data using
2000 genes on Seurat v4 package after assigning a cell cycle score
to each cell with the CellCycleScoring() function and the S and G2M
specific gene reference downloaded from the Ensemldb R package
[31]. No large differences were observed among cell cycle phases
between the two cell line TMEs, therefore, we did not regress out
the cell cycle variation in the following normalization step.
A batch effect is an unwanted source of variation resulting in

different cells having specific profiles, not because of their
biological features but because of technical differences. Our data
presented a strong batch effect due to the two different types of
chemistry used during the single cell library preparations (Fig.
S2A). Recently, Seurat introduced the scRNA-seq integration
workflow, a set of methods to match shared cell populations
across different batches [25]. These methods identify cross-batch
pairs of cells that are in a matched biological state (‘anchors’). In
detail, we applied the integration workflow that included splitting
of the raw transcript count matrix by chemistry, normalization
using the SCTransform() function, selection of the most variable
features (genes) using SelectIntegrationFeature() function, prepara-
tion of the Seurat object for the interrogations with PrepSCTInte-
gration() function, canonical correlation analysis (CCA) with
FindIntegrationAnchors() function and final integration across
conditions with IntegrateData(). These steps corrected the
unwanted source of variations (Fig. S2B) and were applied before
each clustering analysis.

Dimensionality reduction, visualization and clustering
The Uniform Manifold Approximation and Projection (UMAP)
method for visualization was employed on the first 30 principal
components using the RunUMAP() function of the Seurat package.
In order to identify known (previously identified cell populations)
or uncharacterized cell types, the Seurat v4 graph-based clustering
approach, which exploits a K-nearest neighbour (KNN) graph, was
applied. We determined the k-nearest neighbor graph with
FindNeighbors() function and then performed the clustering with
the FindClusters() function from resolution 0.4 to 1 in steps of 0.2.
The resolution 0.8 and 0.6 were evaluated as best for the 4T1 and
EMT6 TMEs respectively, according to the number of cell
populations (clusters) that were possible to detect. The choice of
the best granularity parameters was evaluated by visual inspection
and with the aid of the Clustree package [32].

Cell-type annotation
The SingleR package [33] in combination with the ImmGen()
reference transcriptome dataset [34], containing 253 fine labels
generated from 830 microarray samples of sorted cell populations,
was used for automatic cell type assignment. We inspected the
confidence of the predicted labels using the delta values: the
difference between the score for the assigned label and the median
across all labels for each cell. Using the PruneScores() function, we
marked potentially poor-quality or ambiguous assignments based on
the delta value. Moreover, we uniformed the label name of the
ImmGen() dataset according to the wanted level of resolution by
using the cell ontology label present in the Celldex package [33]. For
example, two of the several Cd4 T cell labels were T.CD4.24H
(CL:0000624) and T.CD4.CTR (CL:0000624), therefore, we searched for
the cell ontology label in Ontology Lookup Service (OLS) repository
(https://www.ebi.ac.uk/ols/ontologies/cl) and established “T cells Cd4”
as a common label. We verified the assignment using two
procedures: (i) exploring the expression of known cell gene markers;
ii) evaluating the top differential expressed genes (DEG) between cell
clusters on PanglaoDB [35].
Differentially expressed genes were retrieved using the

FindAllMarkers() function in the Seurat package with a MAST
test [36]. Only genes expressed on 25% of cells and with a log

fold-change higher than 1.5 were considered. For this analysis,
the normalized data (not integrated) was used as suggested by
the Seurat developers (https://github.com/satijalab/seurat/
issues/2014#issuecomment-629358390).
Beside using Seurat, DEG analysis was also performed using the

SingleCellExperiment R package (SCE) [27] that, differently from
Seurat, allows a block on batch. This block, necessary in our
dataset, would reveal biologically relevant genes to be preserved
within the batch (Tables S1, 4T1; S2, EMT6).
A label name, mirroring the cell composition, was assigned to

each set of cells under the same group (cluster). If multiple cell
populations were present in a cluster the first name refers to the
most abundant type of cell.

Sub-clustering
Cells in the macro-clusters of interest (Cd4 T cells, Cd8 T cells and
NK cells, Macrophages and B cells) were extracted according to
their label name using the subset() function in Seurat package. The
filtered transcript counts were re-normalized as before using the
integration workflow or the classic normalization depending on
the purpose of the analysis.
PCA and UMAP methods were applied as before, with the only

difference being that we evaluated the best number of PCs to use
for the clustering workflow with themaxLikGlobalDimEst() function
of the intrinsicDimension package [37] as used in [38].
Clustering was performed as above and the best resolution was

evaluated with the Clustree package [32]. Also depending on the
results and the expression of known gene markers the granularity
was chosen accordingly (0.2 and 0.3 for Cd4 and Cd8 respectively
in 4T1 cell line, 0.1 and 0.2 for B in the 4T1 and EMT6 cell line
respectively, 0.4 for macrophages in EMT6 cell line). The sub-
clusters cell assignment was performed only with manual curation
by choosing a known set of genes from relevant studies that focus
on the same cell populations [39–42] in similar mouse models and
evaluating their expression in the sub-clusters.

Trajectory analysis
Dynamic changes in gene expression were evaluated by performing a
trajectory analysis using the Slingshot package [43]. To give a finer
definition of cell states and unknown cell populations the trajectory
analyses were performed only on the cluster subsets.
The Slingshot() function was used on the Seurat object

converted into SCE dataset [27], then the embedding of trajectory
in new space was performed with the embedCurves() function and
finally the slingCurves() assessed each curve in each sub-clustering.

RESULTS
Total immune cellular landscape in the tumor
microenvironment of two TNBC mouse cell lines
After the QC, the resulting total number of cells and genes for the
4T1 were 22,403 and 18,124 respectively, while for the EMT6,
26,245 cells and 18,637 genes were obtained (Tables S3 and S4).
The treatments having the highest number of cells after the QC
corresponded to T+ αPD-1, C140 and C140+ αPD-1 for the 4T1;
while the C140+ V, P+ αPD-1 and D+ αPD-1 were the treat-
ments with the highest values in EMT6 cell line. Therefore, the
analyses focused on a total of 48,648 immune cells and 17
conditions in the TMEs of two TNBC mouse cell lines.
The best granularity resolution (see Materials and method) in

the two TMEs identified a total of 20 and 22 groups of cells sharing
similar gene expression, for the 4T1 and EMT6 respectively (Figs. 1
and S3A, B, for details see Materials and method and Supple-
mentary Materials). Subsequently, for both the cell lines, Cd3e,
Cd4, Cd8b1 genes were manually evaluated for T cells, Ncr1 for NK
cells, Cd19 for B cells, Csf3r for neutrophils, Adgre1 and Cd68 for
macrophages and Basp1 for DCs (Fig. S3C, D). The known gene
marker expression in each cluster was in accordance with the
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highest frequencies of cell populations automatically assigned to
that cluster. An additional confirmation was obtained by analyzing
DEG for each cluster compared to all the others (Tables S1 and S2).
These genes were further evaluated on PangloaDB and once
again, the results confirmed the automatic assignment.
Final label assignment resulted in the 20 4T1 clusters being

classified in 5 B, 5 Cd4 T, 3 Cd8 T, 1 NK, 1 T γδ, 2 DC, 2 macrophage
and 1 neutrophil cell clusters (Fig. 1A). On the other hand, the
EMT6 cell line presented 22 clusters labelled as 8 macrophage, 1
monocyte, 1 neutrophil, 3 B, 3 DC, 4 Cd4 T, 1 Cd8 T and 1 NK cell
clusters (Fig. 1B).
At first glance, a strong difference in the immune cell

population composition was found among the two tumoral cell
line TMEs. Specifically, the 4T1 TME recorded a prevalence of cells
belonging to the lymphoid lineage: 15 clusters contained T, NK
and B cells while only 5 were named as macrophages, DCs and
neutrophils. On the other hand, in the EMT6 TMEs, most of the
cells fall into myeloid clusters while only few cells were assigned
to lymphoid lineage. Interestingly, among the lymphoid lineage
the number of cells belonging to B cell and neutrophil clusters
were comparable between the two tumor types.
Since a fine-scale characterization of the immune landscape

wanted to be reached, a filtering and a new sub-clustering for the
major immune components of the lymphoid and myeloid lineages,
where an informative number of cells could be retrieved, was
performed. Due to the differences found in cell population
composition, here will be reported the results of Cd4, regulatory,
γδ, Cd8 T and NK cells sub-clustering for the 4T1 cell line TME; while
of macrophages for the EMT6. Moreover, a comparison of the equally
represented B cell clusters between the two types of tumor is also
presented and discussed.

Cd4 T cell-like sub-clustering in 4T1 TMEs reveals pro-tumoral
activity of mouse specific T cell population
Cells belonging to clusters that mainly contained Cd4, regulatory
and γδ T cells, based on the label assignment, were retrieved and

re-clustered (see Materials and method). The procedure resulted in
7 clusters (Fig. 2A) which can be presented as follows: two
progenitor-like Cd4 T cell clusters (0 and 2), characterized by the
high expression of Sell, Ccr7, Lef1 and Tcf7 genes (Fig. 2B); a Cd8-
like cluster (cluster 3) showing high expression of Cd8a gene,
these cells are likely a subset of cells deriving from a cluster
presenting a mixed cell composition and retrieved because
included Cd4 cell population; a Treg-like cell cluster (cluster 1)
that presented a high level of Foxp3 and Ikzf2 genes; a γδ T cell
cluster (cluster 4) that expressed the Trdc gene; and finally, two
exhausted-like Cd4 T cell clusters (5 and 6) that had a high
expression of Nr4a1 and Tox gene markers. Among them, cluster 5
exhibited a more active profile due the high expression of Cd40Ig
gene but at the same time a higher expression of Il7r gene that
encodes for a receptor whose ligand was related to tumor
progression in γδ T cells [44].
UMAP analyses can be used to project the information related

to multi-branched trajectories in order to facilitate pseudo-time
analysis that measures the relative progression of each of the cells
along a biological process of interest without explicit time-series
data [45–47].
Computationally imputed pseudotime trajectory confirmed and

extended the understanding of this sub-cluster composition (Fig.
2C). As previously reported [48], three distinct trajectories or
cluster differentiations always starting from the same root (cluster
2) were found. The first connects the root (cluster 2) to the γδ T
cell cluster passing by the second progenitor-like cluster (cluster
0). The end of the trajectory in the second trajectory is the Cd8-like
cluster (cluster 3). While in the third, cluster 2 generates
exhausted-like cluster 5 passing through the other exhausted
state (cluster 6) (Fig. 2C).
The percentage of cells for each cluster varied significantly

among the different conditions (Figs. 2D and S4). Among the
most relevant results, a decrease, compared to the control TME,
in the percentage of cells belonging to Treg cluster (cluster 1)
was observed in treatments with high in vivo efficacy such as

Fig. 1 Immune cellular landscape in the two mouse TNBC TMEs. A UMAP of 22,403 immune cells in 4T1 TME grouped in 20 clusters. Each
dot refers to a cell. The colors refer to the label assigned to the clusters. B UMAP of 26,245 immune cells in EMT6 TME grouped in 22 clusters.
Each dot refers to a cell. The colors refer to the label assigned to the clusters.
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C140, C140+ V, C140+ αPD-1 [22] confirming their immuno-
suppressive activity. γδ T cell cluster (cluster 4) followed a
similar pattern, being high in the control and lower than the
control in all the treatments (Fig. 2E). This might be associated
with a recently discovered mouse pro-tumoral activity of these
specific cell populations [44, 49], also confirmed by the high
expression of Il17a, a marker proved to promote the expansion
of pro-tumoral γδ T cells [50]. The two exhausted-like T cell
clusters, related in the pseudotime trajectory analysis, had
opposite trends with the more exhausted (cluster 6) being
more expanded in treatments with high efficacy than cluster 5
(Fig. S4).

The Cd8 T cell-like composition in the TME of 4T1 TNBC
We carried out a sub-clustering of Cd8-like T cells like as we did for
the Cd4; this led to the identification of 7 clusters (Fig. 3A) that can
be associated, also in this case, to different cell types on the basis
of a series of gene markers (Fig. 3B). Two progenitor-like Cd8
clusters (0 and 1) were identified as confirmed by the expression
of Sell, Lef1, Tcf7 and Ccr7 genes. Three clusters (clusters 3, 4 and 6)
had terminally differentiated profiles. Specifically, cells belonging
to cluster 3 showed high expression of genes associated with
proliferation of phase 2 cell cycle such as Ccnb2, Cdk1, Mki67 and
Top2a. Cluster 4 was the most active cluster since it presented
high levels of Gzmb, Gzmk, Ifng and Ly6c1 genes, markers

Fig. 2 Cd4-like T cell sub-clustering analysis in 4T1. A UMAP of Cd4-like T cell sub-clustering in 4T1 cell line TMEs. Each dot refers to a cell.
The colors refer to the sub-clusters. B Gene signature: the violin plot shows the gene on the x-axis, while the clusters on the y-axis. The colors
indicate the corresponding cluster. C Pseudotime trajectory: each dot represents a cell color-coded for pseudotime. D, E Proportions of cells in
Cd4 T cell sub-cluster among different conditions. Bar graph shows on the x-axis the conditions, while the percentage of cells per cluster is
plotted on the y-axis.

Fig. 3 Cd8-like T cell sub-clustering analysis in 4T1. A UMAP of Cd8 T cell sub-clustering in 4T1 cell line. Each dot refers to a cell. The colors
refer to the sub-clusters. B Gene signature: the violin plot shows the genes on the x-axis, while the clusters on the y-axis. The colors indicate
the corresponding cluster. C Pseudotime trajectory: each dot represents a cell color-coded for pseudotime. D–F Proportions of cells in each
4T1 Cd8-like T cell sub-cluster among different conditions. Bar graph shows on the x-axis the conditions, while the percentage of cells per
cluster is plotted on the y-axis.
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characteristic of effector cells. Furthermore, cluster 6 was defined
as exhausted-like Cd8 cluster since it had high levels of Pdcd1,
Lag3, Ctla4, Havcr2 gene expression. Finally, cluster 5 was
associated with NKs as the high level of Ncr1 gene expression
suggested (Fig. 3B).
Looking at the sub-cluster cell proportions along the conditions

(Fig. S5), one of the most relevant results was that the highly
proliferative Cd8 T cells belonging to cluster 3 increased in TMEs
treated with C140 and almost doubled their percentage, compared
to the control, in C140 alone and C140+ V treated TMEs,
underlining a possible anti-tumoral effect. An opposite trend was
recorded for the exhausted-like Cd8 T cluster (cluster 6): their cells
decreased or were not found in treatments that involved
cyclophosphamide while they were present in high percentage
in the untreated TME. Similarly, cluster 4 was found enriched in the
untreated control while its percentage of cells dropped down in
C140, C140+ V and C140+ αPD-1 treatments (Fig. 3D–F).
Additionally, phenotypic heterogeneity along the Cd8 T cell-like

sub-clusters, as for that of the Cd4 cells, was visualized using trajectory
analyses. As for the Cd4 sub-clustering, the trajectory of Cd8 sub-
clusters (Fig. 3C) revealed three distinct lineages that share a common
cluster as root. This cluster was the progenitor-like cell cluster 1. The
first trajectory linked the root with the most-exhausted Cd8 cluster
(cluster 6). The second related cluster 1 with the cluster referred to
NKs; while the third showed a connection with the most-active Cd8
cluster (cluster 4) passing through cluster 2 as for the second
trajectory. This analysis confirms both the assignment done previously
and the gene expression signature for each cluster.

M1- and M2 -like tumor associated macrophages populations
in the EMT6 TMEs
Abundance in macrophages found in EMT6 TMEs allowed a sub-
clustering of these cells. This led to the identification of 9 clusters

of cells sharing similar transcriptional profiles (Fig. 4A); of which
clusters 2, 5 and 6 were associated to a M2-macrophage subtype
because of the expression of Cx3cr1 gene and the negative
expression of Ly6c1 gene [51] (Fig. 4B). Specifically, cluster 6
presented moderate expression of the Arg2 gene and less extent of
Ptgs2 gene that results in immune suppression [52]. Instead, cells
belonging to cluster 5, highly expressed gene markers associated
with proliferation such as Ccnb2, Mki67 and Top2a genes defining
this cluster as M2-like proliferative. While cluster 2 highly expressed
C1qa/C1qc genes that were found upregulated in a previously
reported M2-like tumor associated macrophage cluster [42].
On the other hand, cluster 1 resulted in being associated with a

M1-like macrophagic population due to the expression of Ly6c1/
Ly6c2 gene [51, 53]. The remaining clusters, due to the continuous
expression of most gene markers along multiple cell populations,
were of uncertain classification as also observed in [54] and [55].
Observing the proportion of cells for each cluster among the

different conditions, the most relevant results were shown when
observing the M2-like clusters 2, 5 and 6 (Fig. 4C–E, Fig. S6). They
exhibited a similar trend; indeed, their number of cells had high
frequencies in the untreated condition and decreased in all the
treatments involving cyclophosphamide. On the other hand,
M1-like cluster 1 exhibited a remarkable increase only with
cyclophosphamide combined with vinorelbine (C140+ V) treat-
ment (Fig. 4F).

Common B cell sub-cluster proportions on both the cell line
TMEs
Thanks to the comparable number of cells classified as B cells in the
two TNBC cell line TMEs, we explored similarities and differences of
the sub-clustering of these cell populations (Fig. 5). The TMEs of the
4T1 cell line displayed five clusters, while eight were the clusters
observed in the TMEs of EMT6. Strikingly, the EMT6 model had a

Fig. 4 Macrophage-like cell sub-clustering analysis in EMT6. A UMAP of macrophages sub-clustering in EMT6 cell line. Each dot refers to a
cell and the colors refer to the sub-clusters. B Gene signature: the violin plot shows the genes on the x-axis, while the clusters on the y-axis.
The colors indicate the corresponding cluster. C–F Proportions of cells in each EMT6 macrophages sub-cluster among different conditions. Bar
graph shows on the x-axis the conditions, while the percentage of cells per cluster is plotted on the y-axis.
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more structured sub-clustering revealing more sub-populations.
Among these, EMT6 cluster 4 resembled a interferon-induced naive
B cell (expression of Ifit3) and clusters 1 and 2, as part of cells
belonging to cluster 1 in the 4T1, were classified as an intermediated
state between proliferative and naive-like B cells as clear by the
expression of Pim1 (Fig. 5C, D) [56]. On the other hand, clusters 2 and
3, in 4T1 and EMT6 respectively, had a similar transcriptional profile
attributable to a proliferative B cell population, as confirmed by the
expression of Mki67 and Mcm5 genes [39, 57]. Similarly, cluster 4 and
cluster 7, in 4T1 and EMT6 respectively, highly expressed Cd38 gene
but not Mki67 (Fig. 5C, D). These genes have been associated with
germinal B cells. Notably, one cluster on the 4T1 (cluster 3) displayed
a gene signature typical of plasma B cells (high expression of Cd27,
Cd38, Xbp1) [39, 40] that was not observed in the EMT6 counterpart
despite the higher number of subpopulations retrieved. As reported
from the scRNA-seq analysis of human nasopharyngeal carcinoma
TMEs [25], a large number of less differentiated B cell subpopulations
identified as naive-like cells were found on both the cell line TMEs.
This was the case of cluster 0 for both 4T1 and EMT6, characterized
by the expression of Ighm, Ighd but not Cd27 [25, 40].
Strikingly, the proportions of cells sharing the same transcrip-

tional profile were generally comparable between the treated and
untreated TMEs of the two cell lines. Indeed, the germinal B cells
(cluster 4 and 7, in 4T1 and EMT6 respectively) in the untreated
sample were few while in the C140+ αPD-1 treatments increased
in both the murine models (Fig. 5F–H). In addition, similarities on
the proportions of the proliferative B cell clusters were found.

Specifically, cluster 2, for 4T1, decreased only in correspondence of
cyclophosphamide alone or in combination with the immunother-
apy compared to the control; while the percentage of cells in
cluster 3 in EMT6 decreased in all the treatments but the cisplatin
in combination with anti-PD-1 (Fig. 5E, G). Interestingly, Cispl+
αPD-1 condition presented the highest percentage of proliferative
B cells for both the clusters, suggesting a common behavior of the
two tumors in response to this specific combination of treatment
(Figs. 5C and S7).

DISCUSSION
Here we report a fine characterization of the immune transcrip-
tional profiles of almost 50,000 single cells in two TNBC murine cell
line TMEs. Major differences included a major macrophagic
component in the EMT6 TME versus a great number of Cd4- and
Cd8- T cells into 4T1 TME. A comparable percentage of B cells and
neutrophils were observed in both models. This is in agreement
with flow cytometry (FC) results [21]; however, scRNA-seq analyses
include less cells versus FC; moreover, comparing populations
previously characterized by FC with surface protein markers, and
for which a gene expression profile is unknown, with cell
populations finely characterized by gene expression profiles using
scRNA-seq technique is challenging.
Sub-clustering of T cells in the TMEs of the 4T1 cell line revealed

previously uncharacterized sub-populations with unique transcrip-
tional profiles. Trajectory analyses highlighted some of these

Fig. 5 B-like cell sub-clustering analysis in 4T1 and EMT6. UMAP of B cell sub-clustering in 4T1 A and EMT6 B. Gene signature of B cell sub-
clustering in 4T1 C and EMT6 D. Proportions of cells in relevant 4T1 E and EMT6 F B cell sub-clusters among different conditions.
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populations as intermediate states and identified a tripartite
differentiation for both Cd4- and Cd8- like T cells as also reported
in human TNBC TMEs [48]. Subsets associated with regulatory and γδ
T cells (expressing high level of Il17a) decreased in conditions with a
higher pre-clinical efficacy in in vivo experiments [22]. Although the
association of regulatory T cells and poor prognosis in multiple cancer
types has been widely characterized, the pro-tumoral activity of γδ
T cells in murine TNBC was poorly or never observed at scRNA-seq
level [58], therefore, here we helped in validating their function along
with the expression of Il17a [44, 50]. These data will help to better
understand the role of this specific subset. We also confirmed the
increase of exhausted-like Cd8 T cell subpopulation in pre-clinical
treatments with low in vivo efficacy and in the untreated samples
[22]. This is in line with tumor escape by expression of checkpoint
inhibitors [15]. On the other hand, a proliferative Cd8-like T cell sub-
cluster (expressing high levels of Mki67) was found to increase in
correspondence of the treatments with cyclophosphamide alone or
in combination with other chemotherapy/immunotherapy. This is in
accordance with the association of proliferative Cd8 T cells and better
outcome in cancer [59].
Macrophage-like cells on the TMEs of EMT6 TNBC revealed

subtypes expressing genes related to M2-like macrophages enriched
in untreated condition and in treatments with poor efficacy in in vivo
experiments [22]. This confirms their known pro-tumoral activity [60].
Contrarily, clusters expressing genes related to M1-like macrophages
were increased after efficient preclinical treatments.
Finally, we noted a common behavior along some conditions

(C140+ αPD-1, C140+ V and Cispl+αPD-1) of two B cell sub-
clusters presenting similar gene signatures in both the murine
tumor cell lines. These clusters were associated with proliferative B
and germinal B cells and followed opposite trends for some of the
high efficacy treatments. The alkylating agent cisplatin in
combination with the immunotherapy αPD-1 favored the expan-
sion of germinal B cells. Plasma B cells, only identified in 4T1 TME,
increased after most efficient treatments (Fig. S7), confirming their
association with improved survival [61, 62].
Our fine-scale characterization of the immune TME could be

used as a resource to novel studies with the aim to improve the
choice of treatment in TNBC patients.

Future perspectives and limitations of the study
In this context a detailed extension and validation of the analyses
is required due to some limitations related to scRNA-seq. The
number of cells in some sub-clusters were really low and therefore
a more detailed analyses either using classic FC or a scRNA-seq
only on sorted cells belonging to those specific sub-clusters is
required. In addition, more replications of each condition reported
in this work and the transcriptional investigation of Cd45− cells
populating the two TMEs with the aim to investigate also the
release of specific chemokines and cytokines of the tumor cell
could strengthen the results obtained here.

DATA AVAILABILITY
Raw count matrices generated with the scRNA-seq Sankemake CellRanger v4
alignment pipeline and pre-QC Seurat objects are available with the accession
number GSE191246 at the GEO (http://www.ncbi.nlm.nih.gov/geo/).

CODE AVAILABILITY
The Snakemake CellRanger v4 pipeline is available at this link https://github.com/
raveancic/scRNAaltas_TNBC_mm/tree/master/cl_crt_FASTQ2countmat

REFERENCES
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global

cancer statistics 2020: GLOBOCAN estimates of incidence and mortality world-
wide for 36 cancers in 185 countries. CA: A Cancer J Clin. 2021;71:209–49.

2. Kalimutho M, Parsons K, Mittal D, López JA, Srihari S, Khanna KK. Targeted
therapies for triple-negative breast cancer: combating a stubborn disease. Trends
Pharmacol. Sci. 2015;36:822–46.

3. Korkmaz A, Topal T, Oter S. Pathophysiological aspects of cyclophosphamide and
ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and
nitrogen species as well as PARP activation. Cell Biol Toxicol. 2007;23:303–12.

4. Rosenberg B, Vancamp L, Trosko JE, Mansour VH. Platinum compounds: a new
class of potent antitumour agents. Nature. 1969;222:385–6.

5. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev
Cancer. 2004;4:253–65.

6. Gewirtz D. A critical evaluation of the mechanisms of action proposed for the
antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin.
Biochem. Pharmacol. 1999;57:727–41.

7. Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in cancer:
mechanisms of action, efficacy, and limitations. Front Oncol.2018;8:86

8. Heimes A-S, Schmidt M. Atezolizumab for the treatment of triple-negative breast
cancer. Expert Opin Investig Drugs. 2019;28:1–5.

9. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al.
Improved survival with ipilimumab in patients with metastatic melanoma. N Engl
J Med. 2010;363:711–23.

10. Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi
A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial
carcinoma who have progressed following treatment with platinum-based che-
motherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909–20.

11. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al.
Engagement of the Pd-1 immunoinhibitory receptor by a novel B7 family
member leads to negative regulation of lymphocyte activation. J Exp Med.
2000;192:1027–34.

12. Yearley JH, Gibson C, Yu N, Moon C, Murphy E, Juco J, et al. PD-L2 expression in
human tumors: relevance to anti-PD-1 therapy in cancer. Clin Cancer Res.
2017;23:3158–67.

13. Seliger B. Basis of PD1/PD-L1 therapies. J Clin Med. 2019;8:2168.
14. Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer

Res. 2020;10:727–42.
15. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat

Rev Cancer. 2012;12:252–64.
16. Yi JS, Cox MA, Zajac AJ. T-cell exhaustion: characteristics, causes and conversion.

Immunology. 2010;129:474–81.
17. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, et al.

PD-L1 regulates the development, maintenance, and function of induced reg-
ulatory T cells. J Exp Med. 2009;206:3015–29.

18. Zhu Y, Zhu X, Tang C, Guan X, Zhang W. Progress and challenges of immu-
notherapy in triple-negative breast cancer. Biochim Biophys Acta (BBA) - Rev
Cancer. 2021;1876:188593.

19. Chen H, Ye F, Guo G. Revolutionizing immunology with single-cell RNA
sequencing. Cell Mol Immunol. 2019;16:242–9.

20. Haque A, Engel J, Teichmann SA, Lönnberg T. A practical guide to single-cell RNA-
sequencing for biomedical research and clinical applications. Genome Med.
2017;9:75.

21. Orecchioni S, Talarico G, Labanca V, Calleri A, Mancuso P, Bertolini F. Vinorelbine,
cyclophosphamide and 5-FU effects on the circulating and intratumoural land-
scape of immune cells improve anti-PD-L1 efficacy in preclinical models of breast
cancer and lymphoma. Br J Cancer. 2018;118:1329–36.

22. Falvo P, Orecchioni S, Hillje R, Raveane A, Mancuso P, Camisaschi C, et al.
Cyclophosphamide and vinorelbine activate stem-like CD8+ T cells and improve
anti-PD-1 efficacy in triple-negative breast cancer. Cancer Res. 2021;81:685–97.

23. Reggiani F, Labanca V, Mancuso P, Rabascio C, Talarico G, Orecchioni S, et al.
Adipose progenitor cell secretion of GM-CSF and MMP9 promotes a stromal and
immunological microenvironment that supports breast cancer progression.
Cancer Res. 2017;77:5169–82.

24. Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V, et al.
Sustainable data analysis with Snakemake. F1000Res. 2021;10:33.

25. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated
analysis of multimodal single-cell data. Cell. 2021;184:3573. e29

26. Germain P-L, Lun A, Macnair W, Robinson MD. Doublet identification in single-cell
sequencing data using scDblFinder. F1000Research. 2021;10:979.

27. Amezquita RA, Lun ATL, Becht E, Carey VJ, Carpp LN, Geistlinger L, et al. Orchestrating
single-cell analysis with bioconductor. Nat Methods. 2020;17:137–45.

28. Wu J, Waxman DJ. Metronomic cyclophosphamide eradicates large implanted
GL261 gliomas by activating antitumor Cd8+ T-cell responses and immune
memory. OncoImmunology. 2015;4:e1005521.

29. Pfirschke C, Engblom C, Rickelt S, Cortez-Retamozo V, Garris C, Pucci F, et al.
Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy.
Immunity. 2016;44:343–54.

L. Carpen et al.

8

Cell Death Discovery           (2022) 8:106 

http://www.ncbi.nlm.nih.gov/geo/
https://github.com/raveancic/scRNAaltas_TNBC_mm/tree/master/cl_crt_FASTQ2countmat
https://github.com/raveancic/scRNAaltas_TNBC_mm/tree/master/cl_crt_FASTQ2countmat


30. Trail PA, Willner D, Bianchi AB, Henderson AJ, TrailSmith MD, Girit E, et al.
Enhanced antitumor activity of paclitaxel in combination with the anticarcinoma
immunoconjugate BR96-doxorubicin. Clin Cancer Res. 1999;5:3632–8.

31. Rainer J, Gatto L, Weichenberger CX. ensembldb: an R package to create and use
Ensembl-based annotation resources. Bioinformatics. 2019;35:3151–3.

32. Zappia L, Oshlack A. Clustering trees: a visualization for evaluating clusterings at
multiple resolutions. GigaScience. 2018;7:giy083.

33. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based analysis of
lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat
Immunol. 2019;20:163–72.

34. Frankish A, Diekhans M, Ferreira A-M, Johnson R, Jungreis I, Loveland J, et al.
GENCODE reference annotation for the human and mouse genomes. Nucleic
Acids Res. 2019;47:D766–D773.

35. Franzén O, Gan L-M, Björkegren JLM. PanglaoDB: a web server for exploration of
mouse and human single-cell RNA sequencing data. Database. 2019;2019:baz046.

36. Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible
statistical framework for assessing transcriptional changes and characterizing
heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015;16:278.

37. Johnsson K Intrinsic Dimension and Cluster Analysis. Centre for Mathematical
Sciences, Lund University, 2016. 188 p.

38. Germain P-L, Sonrel A, Robinson MD. pipeComp, a general framework for the
evaluation of computational pipelines, reveals performant single cell RNA-seq
preprocessing tools. Genome Biol. 2020;21:227.

39. Glaros V, Rauschmeier R, Artemov AV, Reinhardt A, Ols S, Emmanouilidi A, et al.
Limited access to antigen drives generation of early B cell memory while
restraining the plasmablast response. Immunity. 2021;54:2005–23. e10

40. Hu Q, Hong Y, Qi P, Lu G, Mai X, Xu S, et al. Atlas of breast cancer infiltrated
B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen
receptor profiling. Nat Commun. 2021;12:2186.

41. Wisdom AJ, Mowery YM, Hong CS, Himes JE, Nabet BY, Qin X, et al. Single cell
analysis reveals distinct immune landscapes in transplant and primary sarcomas
that determine response or resistance to immunotherapy. Nat Commun.
2020;11:6410.

42. Zhang Y, Chen H, Mo H, Hu X, Gao R, Zhao Y, et al. Single-cell analyses reveal key
immune cell subsets associated with response to PD-L1 blockade in triple-
negative breast cancer. Cancer Cell. 2021;39:1578–93.

43. Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, et al. Slingshot: cell lineage
and pseudotime inference for single-cell transcriptomics. BMC Genomics.
2018;19:477.

44. Rei M, Pennington DJ, Silva-Santos B. The emerging protumor role of γδ T lym-
phocytes: implications for cancer immunotherapy. Cancer Res. 2015;75:798–802.

45. Campbell KR, Yau C. Uncovering pseudotemporal trajectories with covariates
from single cell and bulk expression data. Nat Commun. 2018;9:2442.

46. La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, et al. RNA
velocity of single cells. Nature. 2018;560:494–8.

47. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics
and regulators of cell fate decisions are revealed by pseudotemporal ordering of
single cells. Nat Biotechnol. 2014;32:381–6.

48. Bassez A, Vos H, Van Dyck L, Floris G, Arijs I, Desmedt C, et al. A single-cell map of
intratumoral changes during anti-PD1 treatment of patients with breast cancer.
Nat Med. 2021;27:820–32.

49. Silva-Santos B, Serre K, Norell H. γδ T cells in cancer. Nat Rev Immunol.
2015;15:683–91.

50. Rei M, Gonçalves-Sousa N, Lança T, Thompson RG, Mensurado S, Balkwill FR, et al.
Murine CD27(−) Vγ6(+) γδ T cells producing IL-17A promote ovarian cancer
growth via mobilization of protumor small peritoneal macrophages. Proc Natl
Acad Sci USA. 2014;111:E3562–E3570.

51. Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, et al. Recruitment
of beneficial M2 macrophages to injured spinal cord is orchestrated by remote
brain choroid plexus. Immunity. 2013;38:555–69.

52. Grzywa TM, Sosnowska A, Matryba P, Rydzynska Z, Jasinski M, Nowis D, et al.
Myeloid cell-derived arginase in cancer immune response. Front Immunol.
2020;11:938.

53. Ni G, Yang X, Li J, Wu X, Liu Y, Li H, et al. Intratumoral injection of caerin 1.1 and
1.9 peptides increases the efficacy of vaccinated TC-1 tumor-bearing mice with
PD-1 blockade by modulating macrophage heterogeneity and the activation of
CD8+ T cells in the tumor microenvironment. Clin Transl Immunol. 2021;10:
e1335.

54. Qu Y, Wen J, Thomas G, Yang W, Prior W, He W, et al. Baseline frequency of
inflammatory Cxcl9-expressing tumor-associated macrophages predicts response
to avelumab treatment. Cell Rep. 2020;32:107873.

55. Samstein RM, Krishna C, Ma X, Pei X, Lee K-W, Makarov V, et al. Mutations in
BRCA1 and BRCA2 differentially affect the tumor microenvironment and
response to checkpoint blockade immunotherapy. Nat Cancer. 2020;1:1188–203.

56. Wu Y, Deng Y, Zhu J, Duan Y, Weng W, Wu X. Pim1 promotes cell proliferation
and regulates glycolysis via interaction with MYC in ovarian cancer. Onco Targets
Ther. 2018;11:6647–56.

57. Gong L, Kwong DL-W, Dai W, Wu P, Li S, Yan Q, et al. Comprehensive single-cell
sequencing reveals the stromal dynamics and tumor-specific characteristics in the
microenvironment of nasopharyngeal carcinoma. Nat Commun. 2021;12:1540.

58. Park JH, Lee HK. Function of γδ T cells in tumor immunology and their application
to cancer therapy. Exp Mol Med. 2021;53:318–27.

59. Kamphorst AO, Pillai RN, Yang S, Nasti TH, Akondy RS, Wieland A, et al. Pro-
liferation of PD-1+ CD8 T cells in peripheral blood after PD-1–targeted therapy in
lung cancer patients. Proc Natl Acad Sci USA. 2017;114:4993–8.

60. Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological
roles and clinical therapeutic applications. J Hematol Oncol. 2019;12:76.

61. Griss J, Bauer W, Wagner C, Simon M, Chen M, Grabmeier-Pfistershammer K, et al.
B cells sustain inflammation and predict response to immune checkpoint
blockade in human melanoma. Nat Commun. 2019;10:4186.

62. GuhaThakurta D, Sheikh NA, Fan L-Q, Kandadi H, Meagher TC, Hall SJ, et al.
Humoral immune response against nontargeted tumor antigens after treatment
with Sipuleucel-T and its association with improved clinical outcome. Clin Cancer
Res. 2015;21:3619–30.

ACKNOWLEDGEMENTS
This research was funded by AIRC (IG20109) and the Italian Ministry of Health (Ricerca
Corrente). LC is a PhD student within the European School of Molecular Medicine
(SEMM). We would like to thank Stefano Cheloni for fruitful suggestions during the
first step of the alignment analyses; Michel Gerard Arnaud Ceol for computational
support; Piero Carninci for helpful comments and advice at the final stages of the
manuscript preparation.

AUTHOR CONTRIBUTIONS
FB directed the study. FB and AR designed the study. LC performed the analyses
under the supervision of AR and FB. SM and RH provided computational support for
the analyses. PF, SO, GM, and PM provided support for the interpretation of
laboratory analyses. LC, AR, and FB wrote the original draft. All the authors discussed
the results and contributed to the final version of the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41420-022-00893-x.

Correspondence and requests for materials should be addressed to Alessandro
Raveane or Francesco Bertolini.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

L. Carpen et al.

9

Cell Death Discovery           (2022) 8:106 

https://doi.org/10.1038/s41420-022-00893-x
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A single-cell transcriptomic landscape of innate and adaptive intratumoral immunity in triple negative breast cancer during chemo- and immunotherapies
	Introduction
	Materials and method
	Cell lines and treatments
	ScRNA-seq library preparation and sequencing
	Alignment and quality control
	Proliferation status, normalization and batch effect removing
	Dimensionality reduction, visualization and clustering
	Cell-type annotation
	Sub-clustering
	Trajectory analysis

	Results
	Total immune cellular landscape in the tumor microenvironment of two TNBC mouse cell lines
	Cd4 T cell-like sub-clustering in 4T1 TMEs reveals pro-tumoral activity of mouse specific T cell population
	The Cd8 T cell-like composition in the TME of 4T1 TNBC
	M1- and M2 -like tumor associated macrophages populations in the EMT6 TMEs
	Common B cell sub-cluster proportions on both the cell line TMEs

	Discussion
	Future perspectives and limitations of the study

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




