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ECM1 modified HF-MSCs targeting HSC attenuate liver cirrhosis
by inhibiting the TGF-β/Smad signaling pathway
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Hair follicle-derived mesenchymal stem cells (HF-MSCs) show considerable therapeutic potential for liver cirrhosis (LC). To
improve the effectiveness of naïve HF-MSC treatments on LC, we used bioinformatic tools to identify an exogenous gene
targeting HSCs among the differentially expressed genes (DEGs) in LC to modify HF-MSCs. Extracellular matrix protein 1
(ECM1) was identified as a DEG that was significantly downregulated in the cirrhotic liver. Then, ECM1-overexpressing HF-MSCs
(ECM1-HF-MSCs) were transplanted into mice with LC to explore the effectiveness and correlated mechanism of gene-
overexpressing HF-MSCs on LC. The results showed that ECM1-HF-MSCs significantly improved liver function and liver
pathological injury in LC after cell therapy relative to the other treatment groups. Moreover, we found that ECM1-HF-MSCs
homed to the injured liver and expressed the hepatocyte-specific surface markers ALB, CK18, and AFP. In addition, hepatic
stellate cell (HSC) activation was significantly inhibited in the cell treatment groups in vivo and in vitro, especially in the ECM1-
HF-MSC group. Additionally, TGF-β/Smad signal inhibition was the most significant in the ECM1-HF-MSC group in vivo and
in vitro. The findings indicate that the genetic modification of HF-MSCs with bioinformatic tools may provide a broad
perspective for precision treatment of LC.
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INTRODUCTION
Liver cirrhosis (LC) is induced by a variety of causes, including
infectious factors, chemical injury, and metabolic and genetic
factors. There is no effective way to cure LC except for orthotopic
liver transplantation (OLT). However, most patients with cirrhosis
do not have the opportunity to receive OLT due to a lack of
financial resources, immune rejection, or shortage of donor
livers, among other reasons [1–4]. Considering that the excessive
deposition of extracellular matrix (ECM) caused by hepatic
stellate cell (HSC) activation is a critical aspect in the course of
LC development [5–8], more effective strategies targeting HSCs
to treat LC are urgently needed.
The emerging application of mesenchymal stem cells (MSCs)

provides a promising method for treating end-stage hepatic
disease. Hair follicle mesenchymal stem cells (HF-MSCs) are
derived from the bulge of hair follicles [9] and present broad
application prospects considering their characteristics of rich
source materials, easy access, low immunogenicity, and almost
no limitation according to age [10]. In addition, the extraction of
HF-MSCs is not as traumatic as bone marrow-derived mesench-
ymal stem cells (BM-MSCs), and more importantly, HF-MSCs
show greater proliferation than BM-MSCs [11]. HF-MSCs have
been proven to have the ability to differentiate into tissue-
specific cells such as fat, bone, cartilage, smooth muscle cells,
neurogliocytes, melanocytes, and hepatocytes [12–15], which

indicates that HF-MSCs may have extensive prospects for liver
disease treatment. Despite the above advantages, the role of
naïve MSCs in LC treatment remains to be improved [16, 17],
and the overexpression of genes in MSCs has proven to be a
more effective way to treat liver fibrosis/cirrhosis [18–22].
High-throughput sequencing and gene chips provide the ability

to elucidate the changes in genetic information during the
development of liver diseases. Here, we used bioinformatic tools
to identify an HSC-related target gene among the differentially
expressed genes (DEGs) in LC.
Extracellular matrix protein 1 (ECM1) was identified as a DEG

downregulated in LC for the modification of HF-MSCs. ECM1 is a
secreted glycoprotein and is involved in embryonic chondro-
genesis, skin differentiation, angiogenesis, and cell proliferation
[23–27]. ECM1 is mainly secreted by hepatocytes and contributes
to the maintenance of hepatic homeostasis. The amount of
ECM1 produced by hepatocytes is reduced when liver fibrosis
occurs, while exogenous ECM1 supplementation can reverse
hepatofibrosis by blocking HSC activation [28]. Therefore,
increasing the level of ECM1 continuously and steadily in the
damaged liver may become a new strategy to reverse LC.
In our study, we applied ECM1-overexpressing HF-MSCs in LC

to evaluate the effectiveness and mechanism of gene-
transfected HF-MSCs, which may provide a relevant theoretical
basis for the application of ECM1-HF-MSCs in LC treatment.
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MATERIALS AND METHODS
Identification of DEGs from microarray data
The whole experimental design is shown in Fig. 1. The gene expression
profile GSE103580 dataset was downloaded from the GEO database
(http://www.ncbi.nlm.nih.gov/geo). The GSE103580 dataset contains
86 samples, including 67 cirrhotic samples and 19 noncirrhotic samples.
The online analysis software GEO2R (http://www.ncbi.nlm.nih.gov/geo/
geo2r) was used to analyze the DEGs between the cirrhotic group and the
noncirrhotic group, according to a screening threshold of P < 0.05 and a
fold change ≥1.5. Volcano plots and heat maps generated by the R
language packages ggpubr and pheatmap were used to display the
screened DEGs.

Gene ontology (GO) and kyoto encyclopedia of genes and
genomes (KEGG) pathway enrichment analysis of DEGs
To analyze the function of DEGs in LC, GO analysis and KEGG pathway
enrichment analysis of DEGs were performed using the online Database for
Annotation, Visualization, and Integrated Discovery (DAVID, version 6.8;
david.ncifcrf.gov) tool, and the enrichment difference was regarded as
significant when p < 0.05. The analysis results are shown in bubble charts
using the R language package ggplot.

Protein–protein interaction network of DEGs encoding
proteins
To visualize the proteins encoded by DEGs, the STRING database (http://string-
db.org; version 10.0) was used to construct a PPI network with a confidence of
0.40. Then, the filtered PPI results were imported into Cytoscape 3.7.2 software
to construct a visual molecular interaction network.

Experimental animals
C57BL/6J (specific pathogen-free) male mice were used in this experiment.
Seven- to nine-day-old mice were chosen to extract primary HF-MSCs, and six-
to seven-week-old mice weighing 18–22 g were selected for the subsequent
experiments. The mice were all from the scientific research center of the
Second Affiliated Hospital of Harbin Medical University. The mice could obtain
feed without intervention at the scientific research center. All animal
experimental protocols were conducted in accordance with the principles
of medical ethics and approved by the Ethics Committee of the Second
Affiliated Hospital of Harbin Medical University (NO. SYDW2019-240).
Our pre-experimental results show that the difference was statistically

significant when the minimum sample size was 6. Mice that died during
the experiment were excluded from the experiment, and the surviving
mice were used in subsequent experiments. No blinding was done due to
the obvious grouping basis by experimenter.

Isolation and culture of primary HF-MSCs
Healthy mice were anesthetized, and the skin around their beard was
disinfected with medical alcohol. Then, the skin around the beard was
resected and minced into soybean-sized pieces. Type I collagenase (0.1%,

Sigma–Aldrich, St Louis, MO, USA) was used to hydrolyze the collagen
components of connective tissue at 4 °C. After 13 h, the digestion reaction
was stopped by the addition of fetal bovine serum (FBS, ScienCell, USA),
and the collagenase attached to the tissues was removed with PBS. The
hair follicles were peeled off with microtweezers under a binocular
microscope within one hour. Then, one hair follicle was inoculated in a cell
culture plate containing DMEM/F12 (Gibco, Gaithersburg, MD, USA), 15%
FBS (ScienCell), and 1% penicillin-streptomycin (Gibco). Cells were
passaged when they reached 70–80% confluence approximately
12–14 days later. Second- or third-generation HF-MSCs with a good
growth status were used for subsequent experiments. All operations were
performed in a sterile environment.

Identification of HF-MSCs
Third-generation HF-MSCs were used for phenotyping analysis. The cells
(1 × 106 cells per specimen) were incubated with FITC-, PE-, PerCP-, and
APC-labeled monoclonal antibodies against CD29, CD90, CD43, and CD31
for half an hour at 4 °C without light. The antibodies were then washed off
with PBS. The phenotypes were analyzed by a FACSCanto II flow cytometer
(BD Biosciences, USA).
The multi-differentiation potential of the HF-MSCs was determined by

assessing their ability to differentiate into adipocytes and osteocytes.
Alizarin red (Sigma–Aldrich) staining was used to detect mineralized
nodules in osteogenic differentiated cells, and the lipid droplets in the
differentiated cells were detected by Oil red O (Sigma-Aldrich) staining
after adipogenic induction according to the instructions.

Lentivirus transfection of HF-MSCs
Lentiviral vectors (LVs) were used to carry the target gene ECM1 to infect
HF-MSCs to achieve lasting expression of ECM1. LVs (GOSL0219611) were
purchased from Shanghai Gene Chemical Company, including one blank
LV encoding only green fluorescent protein (GFP) (GFP-LV) and one ECM1-
overexpressing LV encoding both GFP and the ECM1 protein (ECM1-LV).
The blank LV was used for the preliminary experiment to achieve the
optimal multiplicity of infection (MOI). Third-generation HF-MSCs were
inoculated into 96-well plates for 24 h until the cells filled 30% of each well.
The HF-MSCs were then infected with GFP-LV (LV-HF-MSCs) at different
MOIs (20, 40, 60, 80, and 100). After 48 h, the fluorescence intensity and
transfection efficiency were detected to obtain the optimal MOI. Then, the
HF-MSCs were transfected with ECM1-LV at the optimal MOI for 72 h for
subsequent experiments.

Animal model of LC and experimental design
To induce the mouse LC model, 10% carbon tetrachloride (CCl4, diluted in oil)
was injected into the abdominal cavity every Monday and Thursday, 1ml/kg
each time. After 12 weeks, the LC model was verified according to liver
biochemical indices and liver pathology. Then, the model mice were divided
into 4 groups at random (based random order generator), and administered
different treatments via the tail vein: (1) the HF-MSC group was injected with
1 × 106 HF-MSCs (n= 6); (2) the LV-HF-MSC group was injected with 1 × 106

Fig. 1 Overview of the experimental design. The DEGs related to LC were analyzed using bioinformatic tools. ECM1 was selected from the
DEGs and was then used to modify HF-MSCs. The cells were injected into mice with CCl4-induced LC through the tail vein. Four weeks after
cell transplantation, serum and liver tissue were collected for HE and Masson staining and Western blotting and immunofluorescence
detection.
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LV-HF-MSCs (n= 6); (3) the ECM1-HF-MSC group was injected with 1 × 106

ECM1-HF-MSCs (n= 6); and (4) the model group was injected with an
equivalent amount of saline (n= 6). Healthy mice (n= 6) were intraperito-
neally injected with the same volume of saline. Four weeks after cell therapy,
the liver tissue and serum of the sacrificed mice were collected for the
subsequent analysis. Immunofluorescence was used to estimate the homing
and differentiation of the transplanted cells in host liver tissues. Serum analysis
was used to evaluate the recovery of liver function. Histological and molecular
biological analyses were used to evaluate pathological recovery and the
changes in pathway-related proteins.

Activation of hepatic stellate cells and transwell assays
The murine HSC cell line JS1 was purchased from Otwo Biotech (ShenZhen,
China) and stimulated with TGF-β1 [29] (Cat 100-21, 5 ng/ml, Peprotech,
USA) for 48 h. Transwell chambers with an aperture of 0.4 µm (Corning,
USA) placed on a 6‐well plate were used to coculture HF-MSCs with
activated JS1 cells. The cell concentration of the two kinds of cells was
2.5 × 105 cells/ml after resuspension. Next, 1.5 ml of an HF-MSC suspension
was added to the upper chamber, and 2.6 ml of a JS1 cell suspension was
added to the lower chamber. After coculture with HF-MSCs for 48 h,
JS1 cells were collected for protein analysis.

Western blot analysis
Proteins that had been extracted from cells and liver tissue on ice with lysis
solution were centrifuged. The supernatant was collected for concentration
measurements and boiled for preservation or for subsequent experiments.
The same amount of protein from each group was added to an SDS-PAGE gel
and subjected to electrophoresis. The protein in the SDS-PAGE gel was
transferred to a polyvinylidene fluoride (PVDF) membrane (Millipore, USA).
Then, the membrane was blocked with 5% skimmed milk for 1.5 h at room
temperature and incubated with primary antibodies (anti-ECM1 antibody,
11521-1-AP, 1:1000, Proteintech; anti-TGF-β1, #3711, 1:1500, Cell Signaling
Technology; anti-α-SMA, sc-53142, 1:2000, Santa Cruz Biotechnology; anti-p-
Smad2/3, AF3367, 1:1000, Affinity; β-actin, ab8226, 1:1000, Abcam) at 4 °C
overnight. Thereafter, the membrane was further incubated with the
corresponding secondary antibody (ab205718, 1:10000, Abcam) at 37 °C for
50min. Enhanced chemiluminescence (ECL) solution was used to visualize
protein bands, and the relative protein level was calculated based on the
housekeeping gene content with ImageJ.

Immunofluorescence staining
OCT-embedded liver sections held in an ultralow-temperature refrigerator
were cut to a thickness of 6 µm each and were left at room temperature for
half an hour, rinsed with TBST to remove OTC on the surface and then fixed
with cold acetone (−20 °C). An appropriate amount of goat blocking serum
was used to block the liver sections for an hour. Primary antibodies (anti-CK18,
ab181597, 1:200, Abcam; anti-ALB, ab207327, 1:500, Abcam; anti-AFP,
ab213328, 1:200, Abcam) were used to bind specific proteins on the sections
at 4 °C overnight. The liver slices were then subsequently incubated with the
secondary antibody (SA00013-4, 1:500, Proteintech) for an hour at 37 °C. The
nuclei were stained with DAPI for 4min. After adding antifade mounting
medium (Beyotime, China), the staining of the liver slices was observed under
a fluorescence microscope (Olympus, Japan).

Pathological analysis
The tissue sections were successively transferred to different concentra-
tions of xylene and ethanol for dewaxing and dyed in hematoxylin. Then
the sections were rinsed with flowing water until they turned blue and
dyed in eosin solution for 2 min. Thereafter, the stained sections were
dehydrated with ethanol and treated with xylene. The transparent sections
were dripped with neutral gum and sealed with a cover glass.
The paraffin sections were dewaxed and then successively washed with tap

water and distilled water. The sections were subsequently stained with
Weigert’s iron hematoxylin staining solution for 5min. After differentiation
with an acidic ethanol solution, Masson blue solution was used to restore the
blue coloration. Then the sections were stained with Lichun red magenta
staining solution for 5min, and the slices were sealed with neutral gum.
Images of the slices were obtained with a BX51 microscope (Olympus, Japan).

Analysis of liver biochemical indices in serum
Blood samples of all groups were taken from the left ventricle for
serological analysis when the mice were sacrificed. The obtained blood

was placed in an EP tube and centrifuged. The supernatant was stored in
an ultralow temperature freezer or used for subsequent experiments
directly. The levels of alanine aminotransferase (ALT) (Cusabio, China),
aspartate aminotransferase (AST) (Abcam), and alkaline phosphatase (ALP)
(Cloud-Clone Corp, Wuhan, China) were measured according to the
instructions to evaluate the liver function of each group.

Statistical analyses
At least three independent replicates were performed for each experiment.
All the data are presented as the means ± SD, and charts were generated
using GraphPad Prism 8.0 (GraphPad Prism Software, San Diego, CA, USA).
Data from more than two groups were analyzed using one-way analysis of
variance (ANOVA), followed by Tukey’s test, and two-tailed Student’s t test
was used for comparisons between two groups. F test was used to
determine whether two population variances are equal. Non-parametric
test was used for data that does not satisfy the normal distribution. P < 0.05
was considered statistically significant.

RESULTS
DEGs identification
After normalizing the profile GSE103580 dataset, a total of 377
DEGs were obtained, 178 (47.21%) of which were downregulated
in LC, while 199 (52.79%) were upregulated with a cutoff criterion
of P < 0.05 and a fold change ≥1.5. Volcano plots and heat maps
were used to present the screened DEGs (Fig. 2A, B).

Identification of ECM1 as a target gene for HF-MSC
transfection
GO and KEGG analyses were used to enrich the biological
processes and functions of DEGs. The DEGs were primarily
enriched in pathways such as ECM-receptor interaction, focal
adhesion, and chemical carcinogenesis (Fig. 2C, D). From what GO
analysis represented (Fig. 2E, F), we observed that the DEGs were
mainly related to the upregulation of extracellular structure
organization and ECM organization. Considering that ECM plays
a crucial role in LC, we took this as the starting point to identify
foreign genes and aim to reduce ECM deposition.
Next, for the visualization of all DEG-encoded proteins, the

online tools STRING and Cytoscape software were used to
perform PPI network analysis of the DEGs. A total of 280 nodes
and 847 edges in the aggregate were obtained in Cytoscape. In
this network, we found the ECM1 gene, which is abundantly
expressed in the ECM, was one of the DEGs downregulated in
LC (Fig. 2G, H). Afterwards, we verified that ECM1 expression
was decreased in LC mice relative to the healthy mice in vivo
(Fig. 2I). Study also have shown that ECM1 can inhibit HSC
activation [28]. Based on the above evidence, we choose ECM1
as the target gene for transfecting HF-MSCs.

Identification of HF-MSCs and target gene expression in
ECM1-HF-MSCs
Primary HF-MSCs migrated across the culture plate and
aggregated around the hair follicle bulge on the fourth day
(Fig. 3A, B). As the cells proliferated, the third-generation HF-
MSCs fused into a monolayer and grew in a spindle shape
(Fig. 3C). Oil red O staining and alizarin red staining confirmed
that the HF-MSCs had the potential to differentiate into
adipocytes and osteocytes (Fig. 3D, E). FACS analysis showed
that the cell surface CD90 and CD29 (antigen phenotype of
MSCs) expression was highest, while <2% of HF-MSCs
expressed CD43 (hematopoietic stem cell marker) and CD31
(endothelial cell surface marker) (Fig. 3F–J). The above results
indicated that most of the cells that we extracted were HF-
MSCs, with high purity. The preliminary results showed that the
transfection efficiency of HF-MSCs was highest when the MOI
was 40 (Fig. 3K). HF-MSCs that were GFP labeled and DAPI
stained after infection at an optimal MOI of 40 are shown in
Fig. 3L. A schematic diagram of the constructed lentiviral
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vector containing GFP, the target gene ECM1, and the
puromycin resistance gene is shown in Fig. 3M. ECM1 was
shown to be overexpressed in ECM1-HF-MSCs relative to HF-
MSCs and LV-HF-MSCs in qualitative and semiquantitative
analyses (Fig. 3N, O).

Verification of the LC model in mice
In the 12th week after the injection of CCl4, liver pathology and
liver biochemical indices were used to evaluate the model
establishment. The staining of the pathological section shows

that there was no obvious abnormality detected in the heathy
mice, while in the LC group, there was a degeneration and
necrosis of hepatocytes, with a large area exhibiting pseudolobule
structure. Additionally, large amounts of fibrous tissues prolifer-
ated and were connected with each other, and these tissues
separated and wrapped the liver tissue to form pseudolobules
(Fig. 4A, B). In addition, after induction by CCl4, AST, ALT and ALP
levels were several times higher than those in healthy mice
(Fig. 4C–E). These results indicated that a 12-week modeling cycle
can lead to LC in mice.
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ECM1-HF-MSCs inhibit the activation of HSCs by blocking the
TGF-β/Smad pathway in vitro
The unactivated JS1 cells were polygonal under an inverted
phase-contrast microscope (Fig. 5A). After 48 h of TGF-
β1 stimulation [29], the activated JS1 cells showed a long
fusiform shape (Fig. 5B) and were used for subsequent experi-
ments. To detect the activation of JS1 cells and changes in
pathway proteins, JS1 cells were collected after coculture with
HF-MSCs, LV-HF-MSCs, and ECM1-HF-MSCs for 48 h. The a-SMA
expression was suppressed in cell therapy groups in contrast to
the JS1 group, while the expression in the ECM1-HF-MSC group
was the lowest. Significantly decreased TGF-β1 and p-Smad2/3
levels were observed in the treatment groups, and the expression

level was the lowest in the ECM1-HF-MSC group (Fig. 5C–G).
These results indicated that ECM1-HF-MSCs have a greater ability
than naïve HF-MSCs to inhibit the activation of JS1 cells through
the TGF-β/Smad pathway.

Grafted HF-MSCs exist in the liver and express hepatocyte-
specific surface markers
In the 4th week after ECM1-HF-MSC transplantation, we detected the
distribution of GFP-stained HF-MSCs in the liver, intestine, kidney,
lung and spleen by immunofluorescence. As shown in Fig. 6A, E, I,
HF-MSCs were detected in the injured liver but were barely
observable in the intestine, kidney, lung, and spleen (Fig. 6Q–T). In
addition, we found that the transplanted GFP-labeled ECM1-HF-MSCs

Fig. 3 Identification and transfection of HF-MSCs. Primary (A, B) and P3 (C) HF-MSCs. D, E Adipogenic and osteogenic differentiation of HF-
MSCs. F–J Identification of specific antigenic markers in HF-MSCs by flow cytometry. K The transfected HF-MSCs show green fluorescence
under a 4X microscope. L HF-MSCs expressing GFP were costained for nuclear detection and observed under a 10X microscope.
M The constructed lentiviral vector containing ECM1 and GFP. N, O Immunoblotting analysis and semiquantitative analysis of ECM1 in the HF-
MSC group, the LV-HF-MSC group, and the ECM1-HF-MSC group. Data are shown as the means ± SDs (*p < 0.05, **p < 0.01, ***p < 0.001).
Scale bar= 50 μm.
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were costained with CK18, ALB, and AFP, which are hepatocyte-
specific surface markers (Fig. 6B, F, J). It indicated that ECM1-HF-MSCs
differentiated into hepatocyte-like cells (HLCs) (Fig. 6D, H, L).
Pearson’s correlation, overlap coefficient and scatter plot, which
reflect the degree of the colocalization of GFP and hepatocyte-
specific surface markers, are shown in Fig. 6M–P.

Transplantation of ECM1-HF-MSCs show a better effect on
promoting injured liver repair and improving liver function
HE and Masson staining were used to evaluate liver pathological
changes after cell treatments. It showed that the lobules and
portal areas were normal in the control group, while large areas of
proliferative fibrous tissue divided and wrapped the hepatocyte
regeneration nodules into pseudolobules of different sizes in the
model group. However, the typical pathological features of
cirrhosis were significantly improved after cell therapy, of which
the most significant improvement was achieved by the adminis-
tration of ECM1-HF-MSCs (Fig. 7A, B). In addition, the area of
collagen fibers was reduced by cell treatment compared with that
in the LC mice, while that in the ECM1-HF-MSC group was smallest
(Fig. 7C). The Ishak score was used to detect damage to liver tissue
in each group. The model group showed the most serious
damage, and the ECM1-HF-MSC group showed the most obvious
remission (Fig. 7D).
A serological assay was used to detect liver function in each group.

The high levels of AST, ALT and ALP in the LC mice were reversed by

cell treatment and showed different downward trends. It is worth
mentioning that the serological indices in the ECM1-HF-MSC group
tended to be normal (Fig. 7E–G). The above results showed that
ECM1-HF-MSCs can improve CCl4-induced LC more effectively than
other treatments in terms of both pathology and liver function.

ECM1-transfected HF-MSCs inhibit the activation of HSCs via
the TGF-β/Smad pathway in vivo
We detected HSC activation at the protein level in vivo. The α-SMA
level was remarkably inhibited by cell treatment in comparison
with the model group, and the inhibition was most significant in
the ECM1-HF-MSC group (Fig. 7H, I).
The remarkable tendency of high TGF-β and p-Smad2/3

expression observed in the LC model was reversed by cell
transplantation treatment. The TGF-β and p-smad2/3 levels in liver
tissue among the treatment groups showed marked differences,
and the protein levels in the ECM1-HF MSC group presented a
more downward trend than other treatment groups (Fig. 7H, J, K).
This finding indicated that the overexpression of ECM1 in HF-MSCs
resulted in greater inhibition of HSC activation via the TGF-β/Smad
pathway than naïve HF-MSCs.

DISCUSSION
In this study, we used bioinformatic tools to screen the HSC-
related target gene ECM1 from the DEGs identified in LC and then

Fig. 4 Verification of the LC model. A, B HE staining and Masson staining in the control group and the LC group. C, D, E Comparison of the
liver serological indices of ALT, AST, and ALP in the control group and the LC group. Scale bar= 50 μm.
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transfected it into HF-MSCs. We found that ECM1-transfected HF-
MSCs represented a more effective treatment for LC in terms of
restoring pathology and liver function than naïve HF-MSCs, which
may be mediated by multiple mechanisms.
The LC model was established with CCl4, and its characteristics

were very similar to the pathological characteristics of human
drug-induced LC [30]. The method of CCl4 application in our
research was intraperitoneal injection, which results in a high
modeling rate and survival rate, with good reproducibility [31].
Twelve weeks after the intraperitoneal injection of CCl4, the mouse
liver pathological and serological analysis showed that typical
pseudolobules formed, and the serum indices were significantly
increased, which indicated that we successfully established the LC
model in mice.
Cirrhosis often leads to death due to various complications, and

an effective treatment is currently lacking. MSC transplantation
has been shown to improve liver fibrosis, even in the advanced
stages of LC [5, 32]. In addition, MSCs are a good vector that can
be easily transfected with retroviruses and lentiviruses, with
transfection rates of 50–80% [33], and these retroviruses and
lentiviruses are commonly used for the overexpression of foreign
transgenes [34]. We transfected ECM1 into HF-MSCs with lentivirus
to overexpress ECM1. After cell transplantation, we found that liver
function was improved and that the content of collagen fibers was
decreased by cell therapy, especially by ECM1-HF-MSC treatment.
Multiple mechanisms may be involved in the therapeutic effect

of ECM1-HF-MSCs on LC. This effect requires a sufficient number
of MSCs to home to the injured tissue and exert anti-inflammatory
or differentiation effects to repair injured tissues [35]. SDF-1 is a
widely studied chemokine involved in homing. When tissue
damage occurs, SDF-1 expression in damaged cells increases, and

MSCs are then recruited via the chemoattraction imposed by an
SDF-1 concentration gradient and are retained at the injured site,
which exhibits a high SDF concentration [36]. It shows that BM-
MSCs can home to damaged tissues and survive in these tissues
for up to 13 months [37, 38]. Similarly, we found that GFP-labeled
ECM1-HF-MSCs existed in the damaged liver tissue 4 weeks after
cell transplantation. However, we only detected the homing of
ECM1-HF-MSCs in the 4th week after cell transplantation. The
homing efficiency of ECM1-HF-MSCs at different times can be
further investigated in subsequent studies, and more effective
methods for enhancing the chemotaxis of MSCs to the damaged
liver can be explored.
Previous studies suggest that MSCs can differentiate into HLCs

regardless of their origin [39–41], which can restore hepatocyte
vitality when liver injury occurs. In our research, ECM1-HF-MSCs
labeled with GFP in liver tissue expressed the hepatocyte-specific
markers CK18, ALB and AFP, which indicated that ECM1-
transfected HF-MSCs show a tendency to differentiate into HLCs.
It requires strict conditions and the participation of a variety of
cytokines for MSCs to different into hepatocytes. In addition, the
Wnt pathway and epigenetic modifications also contributed to
this process [42, 43]. However, the therapeutic effect of MSCs on
LC is affected by the differentiation efficiency of MSCs [4]. More
strategies to improve the differentiation efficiency of HF-MSCs
need to be studied.
Next, we studied the effect of ECM1-HF-MSCs on the fate of

HSCs. In the case of liver injury, HSCs with a dormant phenotype
become myofibroblasts, which are the main source of ECM
components in pathological fibrous tissue [44]. Yu F et al. [45]
proved that MSCs inhibit HSC activation after coculture with MSCs
in vitro. Here, we also found that HF-MSCs could reverse the

Fig. 5 ECM1-HF-MSCs inhibit the TGF-β/Smad signaling pathway and activation of HSCs in vitro. A The quiescent murine hepatic stellate
cell line JS1. B Activated JS1 cells. Scale bar = 50 μm. C Western blotting analysis of a-SMA, TGF-β, and p-Smad2/3 in all groups.
D–F Semiquantitative analysis of the pathway proteins and a-SMA. Data are shown as the means ± SDs (*p < 0.05, **p < 0.01, ***p < 0.001).
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activation of HSCs, while ECM1-HF-MSCs exerted a stronger
inhibitory effect on HSCs. The effect of MSCs on HSCs could be
realized by direct contact between the two kinds of cells or by
transmitting signals to HSCs through cytokines secreted by MSCs
to change the fate of HSCs. On the other hand, MSCs can exert
indirect effects on HSCs by acting on immune cells, the immune
response was reduced due to the immunosuppressive properties
of MSCs, thereby reducing the pro-fibrotic stimulation of immune
cells to HSCs [46]. It is widely accepted that the MSCs anti-fibrotic
effect is mainly due to the paracrine factors [47, 48], the specific
mechanism of HF-MSCs on HSCs deserves further exploration.
Liver fibrosis and cirrhosis develop under the action of common

signaling pathways, although the etiology of liver disease may be

different. TGF-β1/Smad pathway activation is essential in liver
fibrosis [49, 50]. Research proved that MSCs can alleviate LC by
regulating the TGF-β1/Smad pathway [51], which is in line with
our results. TGF-β exists as a latent complex in the liver, and αv
integrin plays a role in interacting with latent TGF-β to convert it
into activated TGF-β, leading to the development of LC [52, 53]. As
shown in Fig. 8, ECM1 interacts with αv integrin, which disturbs
TGF-β activation to maintain liver homeostasis [54]. When ECM1 is
reduced due to liver injury, TGF-β is activated, and the activation
of HSCs is initiated. The trend is reversed when exogenous ECM1
is administered [28]. In our study, ECM1-HF-MSCs continuously
supplied exogenous ECM1, thereby stably inhibiting the activation
of TGF-β and HSCs. This explains why TGF-β1 and p-Smad2/3

Fig. 6 ECM1-overexpressing HF-MSCs home to the injured liver site and differentiate into hepatocyte-like cells. Colocalization of GFP-
expressing ECM1-HF-MSCs and the hepatic-specific surface markers CK18 A–D, ALB E–H, and AFP I–L. A1–L1Magnification of regions of (A–L).
M–O Scatter plots of GFP-expressing ECM1-HF-MSCs and CK18, ALB, and AFP levels. P Pearson’s correlation and the overlap coefficient of liver
sections costained for CK18, ALB, and AFP in the ECM1-HF-MSC group. Q–T GFP-labeled ECM1-HF-MSCs were rarely observed in the intestine,
kidney, lung, or spleen. Scale bar (A–L), 50 μm; Scale bar (Q–T), 200 μm.
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levels in the ECM1-HF-MSC group were the lowest among all cell
treatment groups.
In summary, this study showed that ECM1 modified HF-MSCs

have the potential to migrate to the injured liver and differentiate
in to HLCs. ECM1-HF-MSCs showed a more significant therapeutic

effect on LC than naïve HF-MSCs, which may be mediated most
likely by the inhibition of HSC pathological activation via the TGF-
β/Smad pathway. Our research may provide evidence for the
combination of bioinformatic technology and genetic engineering
to achieve precise treatment of LC.

Fig. 7 ECM1-HF-MSCs show a better effect in LC treatment through inhibiting the activation of HSCs and the TGF-β/Smad signaling
pathway in vivo. A, B HE and Masson staining in each group. Scale bar= 100 μm. C Area of collagen fibers in each group. D Ishak scores show
the degree of LC in all groups. E–G Changes in the serological indices of ALT, AST and ALP. H–KWestern blotting and semiquantitative analysis
of a-SMA, p-Smad2/3, and TGF-β in all groups. Data are shown as the means ± SDs (*p < 0.05, **p < 0.01, ***p < 0.001).
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