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Concerted BAG3 and SIRPa blockade impairs pancreatic tumor

growth
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The BAG3- and SIRPa- mediated pathways trigger distinct cellular targets and signaling mechanisms in pancreatic cancer
microenvironment. To explore their functional connection, we investigated the effects of their combined blockade on cancer
growth in orthotopic allografts of pancreatic cancer mt4-2D cells in immunocompetent mice. The anti-BAG3 + anti-SIRPa mAbs
treatment inhibited (p = 0.007) tumor growth by about the 70%; also the number of metastatic lesions was decreased, mostly by
the effect of the anti-BAG3 mAb. Fibrosis and the expression of the CAF activation marker a-SMA were reduced by about the 30% in
animals treated with anti-BAG3 mAb compared to untreated animals, and appeared unaffected by treatment with the anti-SIRPa
mADb alone; however, the addition of anti-SIRPa to anti-BAG3 mAb in the combined treatment resulted in a>60% (p < 0.0001)
reduction of the fibrotic area and a 70% (p < 0.0001) inhibition of CAF a-SMA positivity. Dendritic cells (DCs) and CD8+ lymphocytes,
hardly detectable in the tumors of untreated animals, were modestly increased by single treatments, while were much more clearly
observable (p < 0.0001) in the tumors of the animals subjected to the combined treatment. The effects of BAG3 and SIRPa blockade
do not simply reflect the sum of the effects of the single blockades, indicating that the two pathways are connected by regulatory
interactions and suggesting, as a proof of principle, the potential therapeutic efficacy of a combined BAG3 and SIRPa blockade in

pancreatic cancer.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy
with increasing incidence and mortality trends in several countries
[1]. Its responsiveness to therapies, including single-agent immune
modulators, is very poor [2-5]. A major role in PDAC resistance to
therapy is ascribed to the tumor microenvironment, characterized
by extensive desmoplasia, active immunosuppressive pathways,
and the contribution of pro-tumor cytokines secreted by tumor-
associated macrophages (TAMs), other immune cells, and cancer-
associated fibroblasts (CAFs) [6-8]. A combined inhibition of
distinct immunosuppressive and/or pro-tumor pathways could
represent a strategy capable of circumventing the blocks that
affect therapy attempts [2-4, 7].

In the pancreatic cancer microenvironment, two distinct
mechanisms involved in supporting tumor growth and suppres-
sing the anti-tumor immune response are mediated by BAG3/
BAG3R [9-15] and SIRPa/CD47 [16-24] axes. These two pathways
operate in different cell types and through distinct signaling
pathways. BAG (Bcl-2-associated AthanoGene) 3 protein plays a
dual role in cancer biology and in resistance to therapy [15].

Indeed, in neoplastic cell cytosol it regulates autophagy [25] and
interferes with the Hsp70-mediated delivery of IKKy [9] and other
anti-apoptotic proteins [15] to proteasome, sustaining their levels
and cell survival, while, being secreted by pancreatic cancer cells,
it binds to a specific receptor (BAG3R) on TAMs, triggering the
p38- and Akt-dependent release of pro-tumorigenic cytokines and
chemokines [10, 11, 15]. In several pancreatic cancer murine
models, BAG3 blockade by a monoclonal antibody impairs the
activation of TAMs [11, 12] and CAFs [13]. This effect produces a
significant reduction of the tumor growth of both MIA PaCa-2 and
patient-derived pancreatic cancer xenografts in immunodeficient
mice [11]. Notably, in heterotopic allografts of murine pancreatic
cancer cells in immunocompetent syngeneic mice, treatment with
the anti-BAG3 mAb sensitizes the tumors to the effect of an anti-
PD-1 antibody [12]. On the other hand, signal-regulatory protein
(SIRP)a (CD172a or SHPS-1), expressed on myeloid cells, upon its
binding to neoplastic cell surface CD47 antigen (“don’t eat me”
signal) transduces, through its interaction with Src Homology
region 2 domain-containing Phosphatases (SHPs), an inhibitory
signal, that blocks cancer cell phagocytosis by macrophages and
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dendritic cell (DC) activation [16-18, 22]. Due to the roles played
by DCs and macrophages in antigen presentation and in the
release of cytokines that activate cytotoxic cells, the SIRPa/CD47
pathway regulates not only the innate immune activity, but also
the adaptive response. Indeed, the blockade of the SIRPa/CD47
pathway reportedly potentiates T cell recruitment into tumor nest
and antitumor immune activity in some tumor types [19-
21, 23, 24].

The regulatory connections between the BAG3/BAG3R and the
SIRPa/CD47 pathways have not yet been explored. We aimed to
verify the possible functional interaction between the two
mechanisms in regulating pancreatic carcinoma interplay with
its microenvironment, by investigating whether their concerted
blockade could produce enhanced reductive effects on pancreatic
tumor growth and metastatic diffusion.

For this purpose, we studied the effects of an anti-BAG3 [12]
and an anti-SIRPa [26] antibody, separately or in combination, in a
murine model of pancreatic cancer orthotopic allografts in
syngeneic immunocompetent animals.

MATERIALS AND METHODS

Animal experiments

The research protocol of the animal study was approved by the Ethics
Committee in accordance with the institutional guidelines of the Italian
Ministry of Health, protocol n. 407/2019-PR. Female C57BL/6J (6 weeks old;
Charles River, Italy) mice were housed five per cage with food and water
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available ad libitum and maintained on a 12h light/dark cycle under
standard and specific pathogen-free conditions. A total of 48 mice were
used and maintained in a barrier facility on HEPA-filtered racks. The
number of mice was calculated with the G*power 3 software to obtain a
power of 85%, with an a error of 0.05. Suffering mice and those in which
the tumor was undetectable were excluded from the experiment. All
experiments were conducted in a biological laminar flow hood, and all
surgical procedures were conducted with strict adherence to aseptic
techniques. The mice were anesthetized using isoflurane. For injecting
cancer cells, mice were prepped with 10% povidone-iodine; a longitudinal
median laparotomy with a xipho-pubic incision was made, and the tail of
the pancreas exteriorized gently. mt4-2D murine pancreatic cancer cells
[12, 271 were suspended in 40 pl of PBS 1x in a 1 ml syringe; using a 25G
needle, cells were injected into the tail of the pancreas and the injection
point dubbed with sterile cotton. Once hemostasis was confirmed, the tail
of the pancreas was returned into the abdomen and the wound was closed
as a single layer using interrupted 5.0 silk sutures and skin staples. Two
weeks after cell injection, tumor area was assessed using Vevo 2100
(Visualsonics, Canada) under anesthesia. Mice randomization into four
arms consisting of 12 mice each, was carried out to homogenize the
average area (approximately 4 mm?) of tumors in each group. Three times
per week, one group of animals received i.p. injection of anti-BAG3 [12]
(20mg kg”); another group received i.p. injection of anti-SIRPa (MY1
mlgG1 clone) [26] (10mgkg™") twice a week; a third group received
treatment with both anti-BAG3 and anti-SIRPa antibodies; the control
group received i.p. injection of an unrelated IgG (Bioxcell Clone: MOPC-21
Catalog#: BEO083, 20 mg kg~ "). After two weeks of treatment, the animals
were sacrificed, and tumors excised for analysis. The lot of anti-BAG3 mAb
produced in CHO were tested for TGFB1 content [28] and showed a
concentration of cytokine level of 452pg per pg of antibodies,
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Fig. 1

Effect of treatment with anti-SIRPa and anti-BAG3 antibodies on pancreatic cancer growth A mt4-2D cells were injected into the

pancreata of 6-week-old C57BL/6J mice. After 15 days tumor area was measured by ultrasound imaging and mice were randomized into four
arms con5|st|ng of 12 mice each, in which tumor area average was approximately 4 mm One group received i.p. injection of anti-BAG37 (20
mg kg~") times a week; another group received i.p. injection of anti-SIRP« (10 mg kg™") twice a week; a third group received treatment with
both anti-BAG3 and anti-SIRPa antibodies; the control group received i.p. injection of an unrelated 1gG (Bioxcell Clone: MOPC 21 Catalog#:
BE0083, 20 mg kg~ ') 3 times a week. Animals were sacrificed when the tumor area measured by ultrasound reached 60 mm?. B Comparison of
representative tumors from the four different groups. C Weights of tumors excised from animals treated with control IgG anti-BAG3 mAb,
anti- SIRPa mADb, or both mAbs for two weeks, as described in the “Materials and Methods” section. The mean and individual values in each
group are shown (control IgG: n = 10; anti-BAG3 mAb: n = 7; anti-SIRPa mAb: n = 9; anti-BAG3 + anti-SIRPa mAbs: n = 8). Two-way ANOVA
followed by Tukey-Kramer’s post hoc test was used for data analysis.
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corresponding to a calculated amount of 18.1 ng of TGF31 co-injected per
i.p. administration, per mouse.

NanoString transcriptional technology analysis

RNA from mouse tumor tissues was extracted by a Trizol-chloroform
gradient and isolation with RNeasy Mini kit (Qiagen). Gene expression was
quantified by the NanoString nCounter platform, using 50 ng of total RNA
for tumor tissue and the Mouse PanCancer Immune Profiling (PCIP) Panel
(NanoString Technologies). The code set was hybridized with the RNA
overnight at 65 °C; then RNA transcripts were immobilized and counted
using the NanoString nCounter Sprint. Normalized expression data were
analyzed by using the nSolver software. Lists of genes extracted from
heatmaps were tested for their protein interactions using the STRING
online software (https:/string-db.org/).

Immunofluorescence

For paraffin-embedded sections, immunofluorescence protocol included
deparaffination in Clear-Rite™ 3 (ThermoScientific, Waltham, MA),
rehydration through descending degrees of alcohol up to water, non-
enzymatic antigen retrieval in sodium citrate buffer 10 mM, 0.05% Tween,
pH 6.0, for 40 min in pressure cooker at 95 °C. After washing, non-specific
binding was blocked with 10% normal goat serum (NGS) in PBS 1x 1h,
RT. Sections were then incubated with anti-CD8 monoclonal antibody
(C8/144B, Thermo Fisher 1:25), anti-CD11c monoclonal antibody
(ab33483, Abcam, at 1:25), anti-CD103 monoclonal antibody (DM3536P,
OriGene Technologies, at 1:25), anti-a-SMA antibody (A2547, Sigma-
Aldrich, at 1:350) overnight at 4 °C in a humidified chamber. After another
washing step, sections were incubated with the secondary antibodies
(used at 1:200 dilution). Nuclei were counterstained with 1 pug/ml Hoechst
33342 (Molecular Probes, Oregon). Negative controls were performed
using all reagents except the primary antibody. Slides were then
coverslipped using an aqueous mounting medium and analyzed using
a confocal laser scanning microscope (Leica SP5, Leica Microsystems,
Wetzlar, Germany). Images were acquired in sequential scan mode by
using the same acquisitions parameters (laser intensities, gain photo-
multipliers, pinhole aperture, x40 objective) when comparing experi-
mental and control material. For figures preparation, brightness and
contrast of images were adjusted by taking care to leave a light cellular
fluorescence background, for visual appreciation of the lowest fluores-
cence intensity features and to help comparison among the different
experimental groups. Leica Confocal Software and ImageJ were used for
data analysis.

Picrosirius red staining

Tumors were embedded into paraffin and sections (5 um), mounted on
glass slides, processed, and stained with Picrosirius red (cat. 24901,
Polysciences, Inc.) according to the manufacturer’s instructions. At least
three different image fields were acquired at 20x magnification. The areas
of collagen staining were quantitatively evaluated with ImageJ) software
and expressed as percentages of the total corresponding area.

Statistical analysis

Results are shown as standard error of the means (SEM). All statistical
analyses were performed with MATLAB R2020b (Mathworks) and
GraphPad Prism 8.0.1 (GraphPad Software). A p value <0.05 was considered
statistically significant and the confidence interval was calculated at 95%.
Lilliefors’ composite goodness-of-fit test for normality was used to test the
null hypothesis that data came from a normally distributed population. To
evaluate the effects of two treatments (anti-BAG3 and anti-SIRPa) on tumor
weight and number of metastases, two factor analysis was performed
using two-way ANOVA (unbalanced Type Il sum of squares). To complete
the two-factor analysis, a post hoc comparison (HSD Tukey-Kramer) was
conducted and the differences between means of each group with their
respective 95% confidence intervals were reported, to estimate the effect
size. To assess whether there was a statistically significant effect of
treatment on the number of subjects with metastases, a Fisher's exact test
was conducted. Groups were formed for homogeneity of treatment and
compared to assess whether and which of the factors had an effect. The
effect size was estimated by calculating the Risk Ratio with its confidence
intervals in the presence of either or both treatments. For all the other data
analyzed, D'Agostino-Pearson test was performed to verify the normal
distribution of linear variables. For variables normally distributed, we used
one-way ANOVA followed by Bonferroni multiple comparisons test; for

Cell Death Discovery (2022)8:94
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Fig. 2 Effect of treatment with anti-SIRPa and anti-BAG3
antibodies on metastatic spreading. A Number of metastatic
lesions per animal in the four different groups. B Considering the
major effect of BAG3 single treatment on metastasis (A), the
histogram represents the overall reduction of metastatic lesions in
animal treated with anti-BAG3 mAb. A Fisher's exact test was
conducted to estimate the effect size of combo treatment by
calculating the risk ratio with its confidence intervals in the presence
or absence of the anti-BAG3 antibody.

variables non-normally distributed, p values were evaluated by a non-
parametric Kruskal-Wallis matched pairs test with Dunn’s comparison.

RESULTS

The combined blockade of BAG3/BAG3R and SIRPa/CD47
pathways decreases tumor growth and the metastatic process
To verify the potential cooperation of BAG3/BAG3R- and SIRPa/
CD47-blockades in impairing pancreatic tumor growth, we
produced murine orthotopic pancreatic cancer allografts by
injecting murine pancreatic cancer cells (mt4-2D) [12, 27] into
the pancreata of syngeneic C57BL6 mice (Fig. 1A) and analyzed
the effects of a treatment with anti-BAG3 [12] and anti-SIRPa [26]
murine monoclonal antibodies on tumor growth. Mice were
sacrificed and tumors excised after two weeks of treatment
(Fig. 1B).

In the ex vivo analysis, we found that the treatment with either
anti-BAG3 or anti-SIRPa mAb resulted in a reduction of tumor
weight, which was more impressive when the two antibodies
were used in combination (Fig. 1C). Furthermore, the combined
treatment resulted also in a decrease of the number of metastases
per animal; in this respect, the effect of the anti-BAG3 antibody
appeared to predominate over that of the anti-SIRPa antibody
(Fig. 2A, B).

Expression of genes associated with immunity in treated
tumors

To investigate the effects of the treatments with the antibodies on
the anti-tumor immune response, we analyzed the expression of

SPRINGER NATURE
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Fig. 3 Differential gene expression analysis in tumors from the four treatment groups. A Heatmap of the expression of selected genes in
tumors excised from animals treated with control IgG, anti-BAG3 mAb, anti- SIRPa mAb, or both mAbs. The heatmap represents median-
centered and colorized expression values. B STRING protein-protein network analysis of the upregulated gene cluster surrounded by the solid
line rectangle in (A). C Immune cell signature enrichment scores using NanoString transcriptional analysis of excised tumors. One-way ANOVA
followed by Bonferroni’s post hoc test was used for data analysis.
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Fig. 4 CD11c+ dendritic cells in mice tumors after antibodies treatments. A CD11c" dendritic cells in excised tumors were revealed by
confocal immunofluorescence microscopy with an anti-CD11c monoclonal antibody. Nuclei were counterstained with DAPI. Three to five
fields, according to their size, of four tumors per group were examined. B Representative images of CD11c positivity. Images were acquired in
sequential scan mode using the same acquisitions parameters (laser intensities, gain photomultipliers, pinhole aperture, objectivex40,
zoom 1) to compare treated samples and controls. Non-parametric Kruskal-Wallis test with Dunn’s correction was used for data analysis.

C Expression of CD103 antigen (red) in CD11c (green)-positive cells.

genes involved in immune functions in tumor tissues, by using a
digital multiplexed gene expression platform. As shown in Fig. 3A,
slight differences in the expression of these genes were
detectable in the anti-SIRPa- or anti-BAG3- treated groups
compared to the controls. On the other hand, the tumors from
mice treated with both antibodies showed a very different pattern
(Fig. 3A). Indeed, in this group, the expression of genes for
cytokines or chemokines, and of other genes associated with
immune activation, was significantly increased and involved
almost entirely the gene family clusters (Fig. 3B). Particularly, we
observed an enhanced expression of genes associated with
adaptive immunity, such as genes expressed in tumor-infiltrating
lymphocytes (TILs), DCs, and T helper (Th) 1 cells, and a consistent
down-modulation of exhausted lymphocytes signature (Fig. 3C).

Cell Death Discovery (2022)8:94

Infiltrating dendritic cells and CD8*' lymphocytes in tumor
tissues

We analyzed the effects of the treatments on the presence of
dendritic cells and CD8" T lymphocytes in tumor tissues. A
modest increase in the number of CD11c™ cells was detected in
allografts treated with each of the two antibodies, but a very
higher increase was evident in mice treated with both antibodies
(Fig. 4A, B). A more accurate analysis showed that CD11c*CD103™
dendritic cells represented a substantial part of the overall
CD11c”" labeled cells (Fig. 4C). In good agreement with DC
increase, also CD8" lymphocytes, hardly detectable in untreated
tumors, were observed in anti-BAG3- or anti-SIRPa- treated
tumors and, at a very higher level, in tumors treated with both
antibodies (Fig. 5A, B).

SPRINGER NATURE
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Fig. 5 Effect of anti-SIRPa and anti-BAG3 antibodies on the recruitment of CD8"cells in tumors. A CD8" lymphocytes were identified in
excised tumors by immunofluorescence with an anti-CD8 monoclonal antibody in confocal microscopy. Nuclei were counterstained with
DAPI. Three to seven fields, according to their size, of four tumors per group were examined and analyzed. Non-parametric Kruskal-Wallis test
with Dunn'’s correction was used for data analysis. B Representative images of CD8 positivity. Images were acquired in sequential scan mode,
by using the same acquisitions parameters (laser intensities, gain photomultipliers, pinhole aperture, objectivex40, zoom 1) to compare

treated samples and controls.

CAFs activation and desmoplasia are abated in tumors of
treated mice

We previously reported that treatment of pancreatic cancer
heterotopic allografts with anti-BAG3 antibody down-modulated
CAF activation and impaired the desmoplastic structure in
pancreatic cancer stroma [13]. In agreement with results in
heterotopic allografts, we observed a reduction of the expression
of the activation marker a-SMA in CAFs. Such reduction was
raised up to >70% (p <0.0001) by co-treatment with the anti-
SIRPa mAb, while treatment with the anti-SIRPa mAb alone did
not result in any appreciable decrease (p>0.999) of a-SMA
positivity (Fig. 6). In parallel, fibrosis was impaired by about the
30% (0.007) and the 64% (p<0.0001) by treatment with,
respectively, anti-BAG3 and anti-BAG3 + anti-SIRPa mAbs, while
the anti-SIRPa mAb did not significantly affect fibrosis when used
alone (Fig. 7). Therefore, the effects of the combined blockade of
the two pathways did not appear to simply reflect the sum of the
effects of the single blockades, but instead SIRPa blockade,
although unable by itself to modulate CAF activation and fibrosis,
effectively contributed to the antifibrotic effect of the anti-BAG3
mAb.

SPRINGER NATURE

DISCUSSION
In line with the currently pursued therapeutic strategies against
pancreatic cancer [2-4, 7], our results support the concept that an
action on more than one regulatory circuit in the tumor
microenvironment can counteract neoplastic growth and meta-
static process. For the design of such strategies, we need an in-
depth knowledge of the interactions between the different tumor-
microenvironment functional connections which, on the one
hand, support tumor growth and, on the other, suppress the
immune response. In this work, we addressed two regulatory
pathways, one of which—BAG3/BAG3R—contributes to support
the growth of pancreatic carcinoma through the pro-tumor
activity of TAMs and CAFs stimulated by BAG3 [2, 3, 10-13], while
the other—SIRPa/CD47—is an immune checkpoint that blocks the
phagocytosis of neoplastic cells and, notably, the activation of
dendritic cells [16-24]. The results indicate that the concerted
blockade of the two pathways can lead to remarkable anti-tumor
effects.

In the context of the molecules that regulate the interactions
between pancreatic carcinoma and its microenvironment, BAG3
attracts interest for some characteristics: the ability to influence

Cell Death Discovery (2022)8:94
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Fig. 6 Analysis of CAF a-SMA expression in tumors from animals treated with the antibodies. A Relative fluorescence area of a-SMA-
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used for data analysis. B Representative images.

both TAMs and CAFs; its specific presence, as a secreted factor, in
tumor tissues and not in normal ones; the lack of toxicity of anti-
BAG3 antibodies in preclinical treatments, even in the long term
[3, 10-15, 29]. The BAG3-governed pathway appears potentially a
useful candidate in combination therapies. In this sense, it is
noteworthy that an anti-BAG3 antibody is able to sensitize
pancreatic carcinoma to the effect of an anti-PD-1 antibody [12].
The combined effect shown here on tumor growth and
metastasization following the BAG3 and SIRPa blockade provides
further evidence of the versatility of the anti-BAG3 tools in
combination therapies.

A particularly interesting property of BAG3-blocking therapy
is the destructive effect on desmoplasia [13]. Such property is
relevant, given the importance of the desmoplastic arrange-
ment of the stroma in supporting epithelial-mesenchymal
transition, orchestrating the invasion of neoplastic cells,
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upsetting the anti-tumor immune response, and hampering
tumor exposure to drugs [30-33]. Indeed, the development of a
desmoplastic tumor microenvironment is a key element in
pancreatic ductal adenocarcinoma carcinogenesis [30]. In the
light of the importance of the stroma and the consequent role
of CAFs on metastasization [34], it is not surprising the effect of
BAG3 blockade, acting on CAFs [13], on the number of
metastases per animal (Fig. 2A, B). Although BAG3 activity on
CAFs—on which the desmoplastic implant mainly depends—is
documented [13], it is necessary to define the CAF populations
[35-44] involved and the mechanism leading to the impressive
anti-fibrotic effect of BAG3 blockade. This topic is of great
interest for the advancement of knowledge of the biology of
pancreatic cancer and other fibrotic tumors, in which desmo-
plasia and mechanoreciprocity mechanisms play a fundamental
role in resistance to therapies [45-48].
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A remarkable observation that emerges from data analysis is that
the effects of single and combined antibody treatments are distinct.
Indeed, treatment with the anti-SIRPa antibody, while not having a
significant effect per se on CAF activation and fibrosis, in these
respects significantly contributed to the effect of the anti-BAG3
antibody (Figs. 4, 5). On the other hand, although SIRPa is known to
block the activation and survival of dendritic cells, mainly through
sequestration of the PI3K p85 subunit [17, 21], treatment with the
anti-SIRPa antibody did not lead to an appreciable increase of
dendritic cells in pancreatic tumor tissue, if not in combination with
the anti-BAG3 antibody (Fig. 5). The increase in dendritic cells is a
notable effect of the combined treatment, as these cells regulate the
recruitment and activation of cytotoxic lymphocytes (which, in fact,
were also increased in tumor tissue), and are crucial in the response
to immunotherapies [49-52].

The experimental evidence shows that the effects of individual
treatments are not as much impressive as the combo treatment
with both antibodies. In fact, the results clearly point out a
reciprocal influence of BAG3/BAG3R or SIRPa/CD47 blockade on
the activity of the other pathway. This mutual influence is most
likely due to the regulatory role that each pathway plays on the
release of cytokines and chemokines in the tumor microenviron-
ment, where several cellular components like CAFs, TAMs, MDSCs,
and other myeloid cells, are involved in the complex biochemical
crosstalk granting the tumor cells survival and proliferation. As
shown in Fig. 3B, BAG3 and SIRPa blockade produces a noticeable
effect on cytokines and chemokines clusters. The treatment with
mAbs allowed to obtain useful information about the overall
changes in the cytokines/chemokines assets, and a more accurate
data mining could lead to a more precise identification of single
elements of the clusters responsible of cancer fibrosis and of the
recruitment of DCs and CD8* lymphocytes.

SPRINGER NATURE

In conclusion, our findings show that the blockades of BAG3/
BAG3R and SIRPa/CD47 axes converge in eliciting a sound anti-
tumor immune response against pancreatic cancer and in counter-
ing tumor growth and the metastatic process. These results highlight
the functional integration of the two pathways in determining the
global functional setting of the pancreatic cancer microenvironment
and provide a proof of principle of the potential validity of a
combined therapeutic treatment against BAG3 and SIRPa.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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