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Senescence as a dictator of patient outcomes and therapeutic
efficacies in human gastric cancer
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Senescence is believed to be a pivotal player in the onset and progression of tumors as well as cancer therapy. However, the
guiding roles of senescence in clinical outcomes and therapy selection for patients with cancer remain obscure, largely due to the
absence of a feasible senescence signature. Here, by integrative analysis of single cell and bulk transcriptome data from multiple
datasets of gastric cancer patients, we uncovered senescence as a veiled tumor feature characterized by senescence gene signature
enriched, unexpectedly, in the noncancerous cells, and further identified two distinct senescence-associated subtypes based on the
unsupervised clustering. Patients with the senescence subtype had higher tumor mutation loads and better prognosis as compared
with the aggressive subtype. By the machine learning, we constructed a scoring system termed as senescore based on six signature
genes: ADH1B, IL1A, SERPINE1, SPARC, EZH2, and TNFAIP2. Higher senescore demonstrated robustly predictive capability for longer
overall and recurrence-free survival in 2290 gastric cancer samples, which was independently validated by the multiplex staining
analysis of gastric cancer samples on the tissue microarray. Remarkably, the senescore signature served as a reliable predictor of
chemotherapeutic and immunotherapeutic efficacies, with high-senescore patients benefited from immunotherapy, while low-
senescore patients were responsive to chemotherapy. Collectively, we report senescence as a heretofore unrecognized hallmark of
gastric cancer that impacts patient outcomes and therapeutic efficacy.
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INTRODUCTION
Gastric cancer (GC) is the third leading cause of cancer death and
the fifth most common cancer globally [1]. The chemotherapy is
one of the major therapeutic strategies for GC patients. However,
there is considerable heterogeneity in the treatment response and
clinical outcomes among cancer patients despite in similar clinical
or pathologic conditions [2], which underscores the need for novel
predictive markers other than clinical stages and pathohistological
classifications. With the rapid advance in the high-throughput
sequencing technologies, molecular subtypes of GC were
established by The Cancer Genome Atlas (TCGA) including
microsatellite instable (MSI), genomically stable (GS), chromoso-
mal instability (CIN), Epstein-Barr virus (EBV) associated, and
hypermutated-single-nucleotide variants (HM-SNV) [3], as well as
by the Asian Cancer Research Group (ACRG) comprising micro-
satellite stable (MSS)/epithelial–mesenchymal transition (EMT),
MSI, MSS/p53+, and MSS/p53− [4]. However, these defined
classifications face huge obstacles in the clinical translation and
limitations in relevant cancer patients.

Cancer immunotherapy such as immune checkpoint inhibi-
tors (ICIs) elicits durable antitumor responses in multiple solid
cancers. However, only a fraction of patients with cancer
respond to immunotherapy, calling for biomarkers for better
clinical management [5]. Although it was revealed that a wide
spectrum of tumor features, such as genomic instability
described as MSI or tumor mutational burden (TMB) status
and tumor-infiltrating immune cells in tumor microenvironment
(TME), were associated with immunotherapy sensitivity in
preclinical and clinical settings [5–7], it is still a daunting
challenge to predict the treatment responses of chemotherapy
and immunotherapy simultaneously, and to make the appro-
priate therapeutic options.
Cellular senescence, defined as the state of cell-cycle arrest,

can be triggered by severe interior or exterior insults such as
oncogenic activation or chemotherapeutic DNA damage [8, 9].
Cellular senescence was believed to be a failsafe program for
the organism by excluding deleterious cells from further
expansion, and thereby suppresses tumorigenesis in a cell-
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autonomous setting [10–12]. On the other hand, senescent cells
can secrete a plethora of cytokines and growth factors including
interleukin-6 (IL-6) and IL-8, termed as senescence-associated
secretory phenotype (SASP), whereby establish an immunosup-
pressive, inflammatory and catabolic microenvironment to
promote tumor growth and resistance to chemotherapy
[12–15]. Conversely, the SASP factors can also trigger senes-
cence in an autocrine or paracrine fashion to impose an
antitumor effect [16, 17]. Therefore, it is imperative to elaborate
the impacts of the senescence on tumors for better cancer
prevention and therapy. Furthermore, there exist a wide
spectrum of attributes that distinguish senescent cells from
their normal counterparts, such as prominent changes in the
cell size and morphology, increased expression of the CDK
inhibitors CDKN2A, and enhanced DNA damage response (DDR),
but the unique and specific markers for senescent cells are still

absent [8, 18]. In fact, though preclinical studies involving the
cell experiments and animal models have revealed the
extensive effects of senescence on cancer, our knowledge
about the senescent characteristic in tumor samples of patients
is still very rudimentary. In particularly, whether the senescent
feature in patients with cancer could serve as a biomarker to
guide clinical prognosis and treatment remain unknown.
In this study, we performed the comprehensive analysis of

senescent features within TME in multiple GC cohorts, and further
identified the senescence subtypes and dissected its association with
clinical and molecular features, as well as the immune cell infiltration
and signaling pathway activation. Finally, we demonstrated that
senescore, a senescence scoring system of tumor, exhibited robust
predictive powers not only for the patients outcomes but also for the
efficacies of different therapeutic strategies including adjuvant
chemotherapy and immunotherapy (Fig. 1).

Fig. 1 Overview of the work flow in this study. Multiomics data ranging from bulk and single-cell transcriptome, genome to protein
expression derived from more than 2000 gastric cancer patients were included in this pipeline analysis. Multiple bioinformatics algorithms
including GSEA, GSVA, and differential expression analysis were applied to dissect senescent microenvironment and identify the senescence
signature in gastric cancer. Moreover, the senescence subtype was established through the unsupervised clustering, and further was parsed in
clinical and biological relevance. Finally, the senescence scoring system, senescore, was developed and validated for clinical prognosis and
therapy efficacies in wide spectrum of patient cohorts.
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RESULTS
Identification of senescence as a hallmark of GC
To elucidate the senescence character of GC, we comprehen-
sively explored the transcriptomic data in multiple datasets of
GC. In TCGA-STAD cohort, the results of gene set enrichment
analysis (GSEA) showed that those biological pathways indicative
of cellular senescence, including cellular senescence (NES= 1.63,
p < 0.01), DNA damage/telomere stress induced senescence
(NES= 1.98, p < 0.01), and oxidative stress induced senescence

(NES= 1.58, p < 0.01), were significantly enriched in the GC over
normal gastric tissues (Fig. 2A). And Gene Ontology (GO) about
cellular senescence was also significantly enriched in GC
compared with normal tissues (Fig. S1A). Similarly, consistent
results for senescence were observed in the another indepen-
dent cohort (Fig. 2B, Fig. S1B). Moreover, the gene set variation
analysis (GSVA) between GC and their paired adjacent normal
tissues in three datasets showed GC qualified with markedly
activation in multifarious senescence pathways and GO terms

Fig. 2 Identification of the senescence character in gastric cancer. A GSEA plot showed that senescence-associated pathways were
significantly enriched in GC relative to normal tissues in TCGA-STAD cohort. Multiple pathway enrichment results were indicated by
corresponding colors. B GSEA plot exhibited the enriched GO terms associated with senescence based on GC versus normal gastric tissues in
GSE29272 cohort. The different GO terms were displayed by corresponding colors. C GSVA enrichment analysis showing the quite different
senescence features between GC and their paired adjacent normal tissues in multiple datasets. Heatmap displaying the GSVA score of
senescence pathways and GO terms. Dot plots showing the significant enrichment results for senescence-associated genes in GO term (D, top
15) and pathway (E, top 10). The dot size and color represented the gene count and the weighted Fisher’s p value, respectively. F The
interaction network exhibiting the top five enriched pathways and their contained genes. The dot size of the pathways represented the gene
count. The color of genes indicated the fold change of gene expression between GC and normal tissues in TCGA-STAD cohort.
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(Fig. 2C). These results suggested senescence as a prominent
hallmark of GC.
To investigate the genes impacting senescence in GC, we firstly

screened the differently expressed genes (DEGs) between GC and
no-tumor adjacent tissues in TCGA-STAD dataset. It was shown
that 3225 DEGs were identified, including 1455 upregulated and
1770 downregulated genes (Fig. S1C, D), and the upregulated
genes were markedly enriched in the cellular senescence pathway
(Fig. S1E). Then, we acquired senescence genes based on all the
gene sets associated with senescence in Molecular Signatures
Database (MSigDB) [19] (Table S1). Combined the DEGs with
senescence genes, 103 senescence-associated genes in GC were
identified. GO and pathway enrichment analysis of these genes
was conducted, showing significantly enriched biological pro-
cesses comprising aging, cell cycle and cellular senescence
(Fig. 2D, E). As shown in Fig. 2F, the interaction network between
top five enriched pathways and genes encompassed the specific
marker for cellular senescence (CDKN2A) and immune-associated
genes (e.g., CXCL8 and IL-6).

Single-cell profiling of senescence within TME in GC
To further dissect the senescence characteristics within GC tissues
at single-cell level, we investigated the single-cell transcriptome of
19,042 cells from normal and cancerous gastric tissues (Fig. 3A, B,
Fig. S2A). In agreement with the results from the bulk analysis
above, more cells with significant activation of cellular senescence
pathway were identified in GC as compared with those in normal
gastric tissues (Fig. 3C, Fig. S2B). Interestingly, in GC, certain cell
types consisting of endothelial cells, enteroendocrine cells,
proliferative cells, and macrophages as well as fibroblasts, but
not the cancer cells, are highly enriched in various senescence
pathways (Fig. 3D), suggesting these cell types, rather than the
cancer cells, may primarily contribute to the senescence features
in GC.
To identify the key genes associated with senescence in GC, we

integrated significantly DEGs, the survival-associated genes and
senescence genes derived from senescence gene sets, and finally
established the core senescence genes (CSGs) of GC (Fig. 3E, F). At
single-cell level, CSGs were expressed with higher proportions in
cells of TME such as endothelial cells, fibroblasts, and macro-
phages (Fig. 3G), which is in line with above pathway analysis.
Furthermore, we assessed the incidence of copy number

variations (CNV) and somatic mutations of 17 CSGs in GC using
genomic data. It was indicated that COL1A2 gene exhibited the
highest mutation frequency followed by ABCA8, while the
investigation of CNV alteration frequency showed that a prevalent
CNV amplification occurred in COL1A2, C7, ABCA8, as well as
SERPINE1 gene (Fig. 3H, Fig. S2C, D). Although the gene-expression
changes were associated with the genomic transformation,
especially the alteration of CNV (Fig. S2C, E), the complexity of
genomics and heterogeneity of tumor led to the incomplete
consistency in the landscape of genomic and expressional
alterations, highlighting that expression characteristics of CSGs
played a considerably pivotal role in GC.

The identification of senescence subtypes based on the CSGs
In order to decipher the underlying biological characteristics of
the senescence phenotype, the unsupervised hierarchical cluster-
ing analysis was performed firstly in the discovery cohort of TCGA-
STAD based on the expression of CSGs. Two senescence-
associated clusters were identified (Fig. 4A), and principal
component analysis (PCA) indicated the significant distinction
existed on the transcriptional profile between the two subtypes
(Fig. 4B, Fig. S3A). Except for EZH2, TNFAIP2, and IL1A, the
remaining genes exhibited higher expression in cluster 1 than
those in cluster 2 (Fig. S3B). Furthermore, functional enrichment
analysis showed that cluster 2 displays significantly higher
activation in senescence pathways, suggesting cluster 2 was

associated with senescence subtype (Fig. 4C). Survival analysis
showed that cluster 2 was associated with longer overall survival
(OS) (Fig. 4D), which was independently validated in a pooled
cohort of 1484 patients (Fig. S3C, D). Interestingly, the higher
mutation density was observed in cluster 2 in comparison with
cluster 1 in TCGA dataset (Fig. 4E).
Moreover, the senescence subtypes were parsed in the clinical

and molecular features in TCGA cohort. The results showed that
majority of patients with early clinical stage (stage I) were in
cluster 2 (Fig. S4A). And no significant distribution difference was
found between groups stratified by the age of patients (Fig. S4B),
which was probably resulted from the little age gap among
patients (Table S2). We also found that tumors in cluster 1
presented poorer differentiation and were enriched in the diffuse
and signet-ring histological classification (Fig. S4C), suggesting
cluster 1 was associated with the more aggressive subtype. With
regard to the molecular subtypes of TCGA project [3], the GS
subtype was mainly concentrated in the cluster 1, while the
subtypes of MSI and EBV-positive substantially appeared in the
cluster 2 (Fig. S4D). In consistent with the molecular subtype,
cluster 2 was higher in the proportion of MSI tumors by the MSI
status analysis and the clonal deletion score for quantificational
CIN than those in cluster 1 (Fig. S4E, F).
In addition, we analyzed the canonical biological processes

associated with TME, indicating that the cluster 2 displayed
activation of DDR, antigen processing and presentation (APM),
which may result from the higher mutation load (Fig. 4F) [20].
Furthermore, we then explored the characteristics of the immune
cell infiltration in 1484 GC patients in the validation cohort 1. The
results showed that cluster 1 showed significant increases in the
infiltration of antitumor immune cells such as the activated CD8+

T cells and central memory CD4+ T cells, as well as protumor
immune cells such as the regulatory T cells, and myeloid-derived
suppressor cells. By contrast, cluster 2 appeared high infiltration of
activated CD4+ T cells, CD56 bright natural killer cells (NK), and
memory B cells (Fig. 4G). These results indicated that the
senescence subtypes were associated with distinct features
of TME.

Construction of a senescence scoring model
The senescence phenotype acted nonnegligible roles in shaping
the TME and markedly affected the clinical prognosis. However,
these analyses were only based on the patient population and
could not accurately predict the senescence character in
individual patients. Therefore, we sought to construct a scoring
system to quantify the senescence level in tumor tissues for
individual patient with GC. In the TCGA-STAD cohort, we
constructed a senescence scoring model, termed “senescore,” by
using six senescence signature genes (ADH1B, IL1A, SERPINE1,
SPARC, EZH2, and TNFAIP2) identified with the least absolute
shrinkage and selection operator (LASSO) Cox regression algo-
rithm (Fig. S5A, B). The survival analysis demonstrated patients
with high senescore were correlated with better outcomes in
TCGA-STAD cohort (log-rank test, p < 0.0001; median OS
19.6 months versus 56.2 months, Fig. 5A and Table S3).
Furthermore, when the senescore was evaluated as a continuous
variable with the multivariate Cox regression model, the senescore
was determined to be an independent and robust prognostic
factor (HR, 0.14; 95% CI, 0.065–0.32; p < 0.001; Fig. 5B). More
importantly, when patients were stratified with TNM clinical
stages, the senescore successfully separated patients with distinct
clinical prognosis at the same disease stage (Fig. 5C). These
findings suggested that the senescore reserved its prognostic
relevance even after classic clinicopathologic prognostic features
have been taken into accounts. Therefore, for better clinical utility,
we integrated senescore with the age and clinical stages, two
independent prognostic factors identified above, to generate a
comprehensive nomogram (Fig. 5D). The prognostic capacity of
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the nomogram was also demonstrated by the area under the
curve (AUC) of the time-dependent receiver operating character-
istic (ROC) curve with a value of 0.794 at 5 years (Fig. S5C).
Furthermore, the calibration curves of the model for the possibility
of OS at 3 years and 5 years closely approximated the observed
estimates, manifesting the accurate predictive ability (Fig. S5D, E).

To better illustrate the feature of senescore, the overview of the
connection among the senescence subtypes, molecular subtypes,
immune subtypes, and the senescore of individual patients in
TCGA cohort was depicted by the alluvial diagram (Fig. 5E). And
the correlations between the senescore and varying biological
processes suggested that senescore was positively associated with
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the activation of DDR, senescence, and DNA damage repair
pathway (Fig. 5F). The senescore was significantly higher in cluster
2 subtype than that in cluster 1 (Fig. 5G). Whereas for the
established molecular subtypes, the GS subtype had the lowest
median senescore, while the EBV subtype and the MSI subtype
showed significantly correlated with higher senescore (Fig. 5H).
Similarly, the senescore was also associated with the MSI status,
corresponding MSI-high (MSI-H) to the highest senescore (Fig.
S5F). Furthermore, the senescore was positively correlated with
the mutation density (Fig. 5I). In addition, senescore signature was
associated with histological classification, showing patients with
intestinal GC had highest senescore (Fig. S5G). These findings
suggested that the senescore was closely associated with clinical
characteristics of GC patients and may serve as a prognostic
biomarker.

Validation of senescore to effectively predict patient
outcomes
To confirm the robustness of the senescore in different popula-
tions, we further explored ACRG cohort that was provided with the
comprehensive clinical information. Similar with the TCGA cohort,
the survival analysis revealed that the high senescore was
associated with the longer OS as well as the recurrence-free
survival (RFS) (p < 0.001; hazard ratio, 0.12 [95% CI, 0.04–0.33])
(Fig. 6A). And the prognostic nomogram demonstrated an
impressive predicting ability for OS (1-year AUC= 0.81, 3-year
AUC= 0.77, 5-year AUC= 0.75) as indicated by the time-
dependent ROC curve analysis (Fig. 6B). Moreover, the significant
differences of the senescore were also observed among molecular
subtypes in ACRG cohort. Rather, the MSI subtype showed the
highest senescore, while the MSS/EMT subtype had the lowest
senscore (Fig. 6C). In addition, the histological classification also
displayed the obvious differences of the senescore values (Fig.
S6A), which was in consistent with the results in TCGA-STAD
cohort. Additional validation of the senescore model was further
confirmed in the validation cohort 1 (n= 1484) for OS and in the
validation cohort 2 (n= 999) for RFS, as well as all GC patients in
our study (Fig. 6D, E, Fig. S6B). Next, the prognostic power of
senescore was examined in a wide spectrum of gastrointestinal
tumors, and significantly validated in colorectal cancer and
esophageal cancer, respectively, suggesting senescore signature
may be conserved in other types of cancer (Fig. S6C–G).

Senescore predicts the efficacies of chemotherapy and
immunotherapy
Considering that cellular senescence could be induced by DNA
damage drug, we explored whether senescore, the senescence
scoring model, could predict the treatment efficiency of che-
motherapy. In ACRG cohorts with available adjuvant chemother-
apy information, patients were divided into high- and low-
senescore group and the difference in OS and RFS was
independently assessed. Adjuvant chemotherapy was found to
markedly improve the OS rate and RFS rate in patients with low
senescore (p= 0.00037), while patients with the high senescore
showed only a moderate benefit from adjuvant chemotherapy

(p= 0.08, Figs. 6F, Fig. S7A). Furthermore, patients with GC in
another three cohorts of adjuvant chemotherapy were categor-
ized into high- and low-senescore group. And significant survival
difference was observed in the low-senescore group, but not in
the high-senescore group (Figs. 6G, Fig. S7B), which was
consistent with the results in ACRG cohort. This result suggests
that the patients with low-senescore were more inclined to gain
benefits from the chemotherapy.
However, in contrast to chemotherapy, patients with high

senescore, especially the highest quartile senescore, exhibited
significantly prolonged OS in an independent anti-PD-L1 therapy
cohort (n= 348) (Fig. S7C, D) [21]. In addition, patients responsive
to anti-PD-L1 therapy displayed higher senescore (Fig. S7E) and
senescore in this immunotherapy cohort was positively related
with tumor mutation load (Fig. S7F), suggesting patients with
high senescore was associated with better immunotherapy
efficiency. Similarly, patients with high senescore in a small
anti-PD1/PD-L1 cohort (n= 27) [22] displayed longer progress-
free survival (PFS) (Fig. 6H), as well as higher overall response
(50% versus 21%) compared with low senescore group (Fig. 6I).
Similar findings were independently confirmed in a cohort of
large size (n= 399), in which the patients of urothelial tumors [21]
and melanoma [23] receiving anti-PD1/PD-L1 therapy were
combined, where the high-senescore group displayed a signifi-
cantly longer OS (Fig. 6J), and a higher proportion of overall
response (31% versus 19%) (Fig. 6K). These results indicated that
senescore might serve as a potential biomarker helping the
clinicians to select appropriate patients for either chemotherapy
or immunotherapy.

Validation of senescore at translational level
To further validate our model at translational level for the purpose
of clinical pathology, a sophisticated method of multiplex
immunofluorescence histochemistry, which allows simultaneous
detection of multiple target proteins, was employed to analyze the
protein expression of the six senescence signature genes
identified above on a GC tissue microarray (TMA, Fig. 7A). Among
these senescence signatures, four molecules, each by their own,
were associated with clinical prognosis (Fig. S8A–F). Consistent
with transcriptional analysis above, higher senescore in TMA
cohort was significantly associated with longer OS (HR= 0.28, 95%
CI: 0.17–0.45; p < 0.0001) (Fig. 7B). Furthermore, the ROC curve was
conducted to evaluate the sensitivity and specificity of the
senescore, and it illustrated that the AUC values was 0.882,
0.854, and 0.878 for 1, 3, and 5 years, respectively (Fig. 7C). In
addition, ROC curve analysis also demonstrated the forceful
predictive ability of the prognostic nomogram integrating sene-
score with clinical stage and age (Fig. 7D). More importantly, the
senescore displayed stronger predictive value for OS in compar-
ison with TNM stages, while the nomogram model combining the
clinical stage and age with senescore only slightly elevated the
predictive accuracy of the patients’ prognosis as compared with
senescore alone (Fig. 7E). Collectively, senescore is promising in
predicting clinical prognosis by feat of the immunofluorescence
histochemistry strategy.

Fig. 3 Single-cell profiling of the senescent microenvironment in gastric cancer. A UMAP plot showed single-cell transcriptomic profiling of
the cell types from gastric normal tissues and GC. B Dot plot represented the expression of canonical marker genes of each cell type in gastric
normal tissues and GC. C Cell senescence signature enrichment displayed in different cells from normal and tumor gastric tissues. D Cell
senescence signatures analyses of GSVA scores for different cell types in GC. E Venn diagram showed that the senescence core genes were
established by overlapping among the DEGs, senescence genes and survival genes. F The interaction among CSGs in GC. The risk genes and
protective genes were marked with red and green, respectively. The circle size represented p value of univariate Cox regression analysis. The
lines connecting genes showed their interactions based on correlation. Positive correlation was marked with red and negative correlation with
gray. G Dot plot showed the expression of CSGs of each cell type in GC. H The mutation landscape of CSGs in patients from TCGA-STAD
cohort. Each column represented individual patients. The upper barplot showed TMB, and the number on the right presented the mutation
frequency in each gene. The barplot in right showed the proportion of each variant type. The stacked barplot below showed fraction of
conversions in each sample. PMC pit mucous cells, GMC gland mucous cells, SMC smooth muscle cells, DEGs differently expressed genes.
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DISCUSSION
In this study, we identified senescence as a hallmark of GC that is
associated with distinctive TME and genomic alterations.
Therefore, the identification of the senescence subtypes
provides an insightful perspective on tumors from another
angle. For example, The senescence subtype (cluster 2) showed

the features of MSI as well as CIN. It is explained that tumors
with genomic instability have more somatic mutations, which
can induce cellular senescence by the pathway of DDR [24].
Finally, it was revealed that cluster 2 presented significant
survival advantage, highlighting the activation of cellular
senescence pathway may play a beneficial role in the clinical
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prognosis of patients with GC, and likely other types of cancers
as well [25].
Furthermore, we established the senescence scoring algorithm to

evaluate the senescence level of tumor tissues, termed as senescore.
Our results demonstrated that the senescore is of importance in
clinical relevance. Integrated analysis revealed that the senescore is
a robust prognostic biomarker in a vast number of cancer patients.
More importantly, the senescore is able to serve as an independent
prognostic factor. Furthermore, the senescore is associated with
different established molecular subtypes, histological subtypes, and
genomic alterations. For example, high senescore is related with the
MSI-H status, EBV infection, and higher TMB. Several studies have
demonstrated that patients with MSI-H and EBV-positive tumors as
well as high TMB are more inclined to dramatic responses to
immunotherapy such as ICIs [26–28]. Consistent with our analysis
above, it was indicated that high senescore is more likely to gain
benefit from the immunotherapy. Moreover, the technology of
multiplex immunofluorescence histochemistry demonstrated a
good validation of senescore in robustly predicting patient out-
comes, which is promising in bridging the senescence scoring
system to the clinical practice in near future.
More importantly, subset analysis of patients with available

chemotherapy data strongly suggested that GC patients with low
senescore were more cline to gain benefit from the chemother-
apy. Previous studies have demonstrated that cellular senescence
could increase the drug resistance and side effects of the
chemotherapy [29–31], suggesting high senescore associated
with the activation of the senescence program that might blunt
the desirable effects of the chemotherapy.
In conclusion, this is the first comprehensive senescent analysis

of GC, leading to the identification of senescence subtypes that
are associated with significantly different TME and survival
outcomes. Our analysis demonstrated that the senescore can be
used to identify not only patients at different risk levels for the OS
as well as RFS but also patients who would benefit from adjuvant
chemotherapy or immunotherapy. Impressively, the association
between the senescore and immunotherapy effects, though being
relatively weak due to the limit of available patient samples, was
significant, which encourages further evaluation in a larger size of
patients taking immunotherapy. Nevertheless, the validation of
our findings in a wide spectrum of patient cohorts, and the
findings that the senescence features reflect biological and clinical
characteristics associated with sensitivity or resistance to the
therapy, would pave a way for developing more rational therapy
recommendations and promoting personalized cancer therapy.

MATERIALS AND METHODS
Data collection and processing
We retrospectively acquired the sample information of 2290 patients of GC
from 12 eligible GC datasets from TCGA and Gene Expression Omnibus
(GEO) database. In addition, transcriptomic and clinical data of 1324

patients with other digestive system tumors including colorectal cancer,
esophageal cancer, liver cancer, and pancreatic cancer were obtained from
TCGA database. And an independent dataset of 579 patients with colon
cancer was downloaded from GEO database. Overall, the information of all
the datasets enrolled in this study was summarized in Table S4.
For TCGA dataset, the raw count expression data and the normalized

RNA sequencing data (FPKM value) were downloaded from TCGA Data
Portal using the TCGAbiolinks R package [32]. Then, FPKM values of the
normalized RNA sequencing data were transformed into transcripts per
kilobase million (TPM) values for analysis. Moreover, the microarray gene-
expression data from GEO database were obtained and processed through
two strategies. For microarray data of Affymetrix platform, we downloaded
the raw “CEL” files and adopted the robust multiarray average algorithm
for background adjustment and quantile normalization, and the median
polish algorithm for final summarization of oligonucleotides per transcript
in the affy R package. For microarray data from other platforms, the
processed normalized matrix data were directly downloaded by the
GEOquery R package [33]. Batch effects from technological biases were
corrected using the ComBat algorithm of sva package when necessary [34].
All the R packages in this study were performed in the R software (version
3.6.1, https://www.r-project.org).

Patient population and clinical information
In this study, we retrospectively collected 2290 patients of GC from the
curated public databases for survival analysis. The TCGA-STAD cohort as
the exploratory cohort included 374 patients with detailed clinical
information (Tables S2 and S3). The validation cohorts embodied an
independent ACRG cohort (GSE66229) and two large pooled cohorts
(validation cohort 1 and validation cohort 2). The validation cohort 1 (n=
1484) used as OS analysis was integrated with identifiers GSE26899,
GSE26901, GSE28541, GSE13861, GSE66229, GSE15459, GSE34942,
GSE84437, GSE57303, and GSE29272. And the validation cohort 2 (n=
999) as RFS analysis was comprised of identifiers GSE26253, GSE26899,
GSE26901, GSE13861, and GSE66229. OS was established as the time from
surgery to death or to the last follow-up time, and RFS was defined as the
date from surgery to the first verified recurrence. Clinical data of patients in
these cohorts was summarized in Table S2.
Furthermore, adjuvant chemotherapy data were available for the patients

in the ACRG cohort including 80 patients receiving postoperative adjuvant
chemotherapy [4]. With regard to another validation cohort of the adjuvant
chemotherapy, 267 patients who underwent gastrectomy as primary
treatment at three cohorts (KUGH cohort under GSE26899, KUCM cohort
under GSE26901 and YUSH cohort under GSE13861 datasets) were enrolled,
including 155 patients who had received standard adjuvant chemotherapy
(either single-agent 5-fluorouracil or a combination of 5-fluorouracil and
cisplatin/oxaliplatin, doxorubicin, or paclitaxel) (Table S5) [35]. We collected
three independent datasets of patients treated with immunotherapies with
available transcriptomics data (Table S6). For the Mariathasan et al.’s anti-PD-
L1 therapy cohort, the data of 348 patients with metastatic urothelial tumors
treated with the anti-PD-L1 agent were obtained from IMvigor210CoreBiol-
ogies R package (http://research-pub.gene.com/IMvigor210CoreBiologies/)
[21]. The raw count data were normalized by implementing trimmed mean
of M values method and transformed with the “voom” function in the limma
package [36]. For another anti-PD1/PD-L1 therapy cohort of lung cancer (n
= 27), transcriptomic data were downloaded from GEO database under
GSE135222 and only the clinical information of PFS was available [22]. In
addition, in nivolumab treatment cohort, pre/on therapy biopsies of 68

Fig. 4 Development of senescence subtypes based on senescence core genes. A Unsupervised clustering of patients derived from the
TCGA-STAD cohort based on CSGs to classify patients into two senescence subtypes. TNM stage, age pathological classification, molecular
subtype, MSI status, and hypermethylation category were shown above the heatmap. B Principal component analysis for the expression
profiles to distinguish two clusters in TCGA-STAD cohort. Cluster 1 was marked with yellow and cluster 2 was marked with blue. C GSVA
analysis for senescence gene sets indicating the significant distinction of senescence features in two subtypes. D Survival analyses for the two
subtypes in TCGA-STAD cohort. Kaplan–Meier curves showed a significant survival difference between two clusters. p value was calculated by
log-rank test. E The significant distinction in total mutation density between senescence subtypes. F Differences in pathway activation
including angiogenesis, APM, DDR, EMT, Pan F-TBRS, and TGFβ pathway between two subtypes. In C, E, and F, the box represents the
interquartile range, the horizontal line in the box is the median, and the whiskers represent 1.5 times the interquartile range. G Violin plot
depicting the abundance of each cell type in different clusters in the validation cohort 1. In C and E–G, the asterisks represented the statistical
p value (Wilcoxon’s rank-sum test, *p < 0.05; **p < 0.01; ***p < 0.001). MSI microsatellite instability, HM-SNV hypermutated-single-nucleotide
variants, CIMP CpG island methylator phenotype, MSS microsatellite stable, SASP senescence-associated secretory phenotype, APM antigen
processing machinery, DDR DNA damage repair response, EMT epithelial–mesenchymal transition, Pan F-TBRS pan-fibroblast TGFβ response
signature, Eff.m effector memory, Cen.m central memory, Treg regulatory T cells, DC dendritic cells, NK natural killer, MDSC myeloid-derived
suppressor cells.
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patients were analyzed by transcriptome sequencing, which was available
on GEO database (GSE91061). We selected only the pretreatment samples
with clinical information for further analysis [23]. Tumor response for all
patients was defined by RECIST v1.1.
The corresponding clinical data from these patients were retrieved and

manually arranged through the following two main methods: (1) utilizing

the GEOquery R package or directly downloading on the GEO website
through the corresponding accession number and (2) from the supple-
mentary materials of the corresponding literature. The related authors
were contacted for further information when necessary. Details of ethical
approval and informed consent for all studies can be found in
corresponding publications.
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Identification of differentially expressed genes and functional
annotation
The DEGs between GC and normal gastric tissues were screened via the
edgeR package [37]. The significant criteria for determining DEGs were set
as the false discovery rate < 0.05 and the |fold change| > 2. Gene
annotation enrichment analysis for GO and reactome pathway using the
clusterProfiler R package [38] was conducted on senescence genes. GSEA
was performed through clusterProfiler R package. And the genes were
ordered according to the fold change of gene expression between the GC
and normal tissue.

Genomic data analysis
The somatic mutation data were acquired from TCGAmutations R package
[39]. Besides, CNV and somatic mutation data in the meta-cohort were
acquired from the cBio Cancer Genomics Portal (cBioPortal, http://www.
cbioportal.org/) [40, 41]. The mutation landscape was depicted using the
functions of maftools R package [42]. Genomic features of TCGA datasets,
including clonal detection score, aneuploidy score, mutation density, etc.,
were obtained from the published research [3]. And data about the molecular
subtypes of TCGA cohorts were also retrieved where available [43] (Table S3).

Single-cell RNA-seq data analysis
In order to further portray senescence microenvironment in GC at single-
cell level, we utilized the single-cell RNA (scRNA) data of gastric tissues
previously published including nonatrophic gastritis, chronic atrophic
gastritis, intestinal metaplasia, and GC [44]. The analytical pipeline of scRNA
data as previously described [45]. Briefly, the raw count matrices of scRNA
data were processed by the Seurat R package in R software [46]. Then,
followed by quality control to filter low-quality cells, cells expressed lower
than 400 genes or higher than 7000 detected genes, and more than 20%
of all gene counts mapped to mitochondrial or ribosomal genes were
removed as mentioned by the corresponding authors [44]. Then, the
single-cell gene-expression data were normalized by using “Normal-
izeData” function with setting normalization method “LogNormalize” in the
R package Seurat. We then utilized “ScaleData” function to regress out
cell–cell variation driven by batch, the gene counts, as well as
mitochondrial and ribosomal gene expression.
Furthermore, the highly variable genes were selected for the dimension

reduction by “FindVariableFeatures” function in the Seurat package. Then,
we used the “RunPCA” function in Seurat to perform the PCA. To establish
the numbers of principle components representing the variance of cells,
the “ElbowPlot” function was implemented, and 20 significant principal
components were identified for further analysis.
We then used the “FindNeighbors” function in Seurat to assemble cells

based on a graph-based clustering approach. Then, the “FindCluster”
function with the resolution parameter 2 was implemented to identify the
number of cell clusters. We utilized the “FindAllMarkers” function to find
differentially expressed genes by comparing each cluster of cells with all
other cells, and annotated cell clusters based on the expression of curated
known cell markers.

Unsupervised clustering for the senescence subtypes
To characterize senescence signature, Unsupervised clustering analysis was
applied to identify distinct clusters based on the expression of CSGs. We
adopted the function of the pheatmap R package based on the Euclidean
distance and Ward’s linkage method to classify patients unsupervisedly.

The number of clusters and their stability were determined by the NbClust
package, which provided 30 indices for determining the number of
clusters and proposed the best clustering scheme [47].

Characterization of TME
To quantify the relative abundance of each cell infiltration in the GC, we used
the single-sample GSEA (ssGSEA) algorithm. The gene sets for analyzing each
immune cell type were obtained from the study of Charoentong et al. [48].
The enrichment scores calculated by ssGSEA analysis were utilized to
represent the relative abundance of each type of immune cell [49, 50].
To investigate the difference of the biological process in different

samples, GSVA analysis was performed using GSVA R packages. GSVA is a
gene set enrichment method to estimate the variation in the pathway and
biological process activity among different samples in a nonparametric
and unsupervised manner [51]. The gene sets about senescence and other
biological processes were downloaded from MSigDB of the Broad Institute
for running GSVA analysis (Table S1) [52]. In addition, the gene sets that
contained genes associated with TME, including the angiogenesis
signature [53], antigen processing machinery (APM), DNA damage repair
response, EMT, pan-fibroblast TGFβ response signature, and TGFβ path-
way, were retrieved from a previous research [21].

Development and validation of the senescence scoring and
the prognostic nomogram
To dissect the senescence signature of individual tumor for better clinical
utility, we developed a senescence score termed as senescore through
LASSO machine learning algorithms. The specific process was as follows.
The CSGs were put into the Cox regression model with LASSO penalty for
analysis using the glmnet R package [54]. Genes of the model were
established by the appropriate value of the penalty parameter λ, which
were determined by tenfold cross-validations in TCGA-STAD cohort. The
senescence risk score model was produced by integrating the expression
level of selected genes and their corresponding coefficients derived from
the prognostic model analyses [55], as follows: senescence risk score=
(0.0394 × ADH1B)+ (0.0515 × IL1A)+ (−0.1386 × TNFAIP2)+ (−0.0473 ×
EZH2)+ (0.0100 × SPARC)+ (0.1513 × SERPINE1). In order to make a
positive consistency of senescence score and senescence features, we
reformulated the senescence risk score as the senescore [56]:

Senescore ¼ e
�
Pn

i¼1

βi�xi

βi represents the regression coefficient of each gene in Lasso regression
model and Xi shows the gene-expression value of each gene.
The prognostic nomogram was generated based on the senescore using

the rms R package and externally validated in the GSE66229 cohort. We
conducted 3- and 5-year OS calibrations to determine the predictive
accuracy of the nomogram model. The concordance index (C-index) and
ROC curve were also used to evaluate the predictive accuracy of the model,
and the time-dependent ROC curve was made using survivalROC R package.

Multiplex immunofluorescence immunohistochemistry and
imaging
A TMA spotted with tumor samples from 90 GC patients (HStmAde180-
Sur05) was purchased from Shanghai Outdo Biotech Co. Ltd. A total of 190

Fig. 5 Construction of the senescence score with clinical utility. A Kaplan–Meier curves indicated the significant survival difference between
high- and low-senescore groups in TCGA-STAD cohort. Log-rank test, p < 0.0001. BMultivariate Cox regression analysis for senescore and other
clinical characteristics with OS in TCGA-STAD cohort shown by the forest plot. C Kaplan–Meier curves showing patients with stage I/II (upper
panel) or stage III/IV (lower panel) was further grouped into different survival by senescore. Log-rank test, p value was indicated. D Nomogram
was developed in the TCGA-STAD cohort based on the senescore, age, and TNM stage to predict 1-year, 3-year, and 5-year outcomes. E Alluvial
diagram showing the mutuality of the senescence subtypes, molecular subtypes, immune subtypes, and senescore in TCGA-STAD cohort.
F Correlations between senescore and myriad biological processes in TCGA-STAD cohort using Spearman analysis. Negative correlation was
marked with red and positive correlation with blue. The size of dots represents the value of correlation coefficient. G Violin plot displaying the
differences of senescore between senescence subtypes in TCGA-STAD cohort. The Wilcoxon rank-sum test was used to compare the statistical
significance between two groups. H The box plot showing the distinctions of the senescore in different molecular subtypes. The asterisks
represented the statistical p value (the Wilcoxon rank-sum test, *p < 0.05; **p < 0.01; ***p < 0.001). The Kruskal–Wallis test was applied to
evaluate significant differences among all five variables. I Scatterplot showing the correlations of the senescore with mutation density. R
coefficient represents of Pearson’s correlation. p value was from the Pearson correlation test. The shaded area represents 95% confident
interval. The blue and yellow colors of the dots respectively represent the cluster 1 and cluster 2.
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cores on the slide consisted of 90 cases of gastric cancer tissue and paired
normal gastric tissue. The detailed clinical information was summarized in
Table S7. All tissues were collected in accordance with the ethical
standards with the donor being informed completely and with their
consent, from National Human Genetic Resources Sharing Service Platform:
2005DKA21300.

For multiplex immunofluorescence staining [57], the Opal 7-color
manual IHC kit (PerkinElmer, cat. No. NEL811001KT) was used according
to the manufacturer’s instructions, and the molecules panel, which
consisted of six antibodies including anti-IL1A (Proteintech, cat.No.16765-
1-AP, 1:250 dilution), anti-ADH1B (Proteintech, cat.No.17165-1-AP, 1:500
dilution), anti-SERPINE1 (ABclonal, cat. No. A14758, 1:200 dilution), anti-
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Fig. 6 Validation of the senescore for clinical prognosis and therapeutic efficacy. A Kaplan–Meier plots showing the differences in OS (left)
and RFS (right) between the high- and low-senescore groups in the ACRG cohort. p value was calculated by log-rank test. B Time‐dependent
ROC curve for the validation of nomogram in the ACRG cohort. C Differences of the senescore among molecular subtypes in the ACRG cohort
(the Wilcoxon rank-sum test, *p < 0.05; **p < 0.01; ***p < 0.001). The Kruskal–Wallis test was applied to evaluate significant differences among
four variables. D Kaplan–Meier plot indicating the distinctions in patients’ OS between high- and low-senescore groups in the validation
cohort 1. E Kaplan–Meier plot displaying the predictive value of the senescore for patients’ RFS in the validation cohort 2. F Kaplan−Meier
plots of GC patients of the high- and low-senescore group in ACRG cohort. The data in each group were analyzed according to whether
patients received adjuvant chemotherapy or not. G Survival analyses for patients in adjuvant chemotherapy cohort were stratified by both the
senescore and treatment with adjuvant chemotherapy using Kaplan–Meier curves. H Survival analyses for low and high-senescore patients in
an independent anti-PD-L1 therapy cohort using Kaplan–Meier curves. I The proportion of patients with response to PD1/PD-L1 blockade
immunotherapy in the patients with high or low senescore. J Kaplan–Meier curves showed survival differences of OS between low and high-
senescore patients in the integrated cohort of anti-PD1/PD-L1 therapy. K The proportion of patients with the therapy response to PD1/PD-L1
blockade immunotherapy in the high or low-senescore groups. In D–H and J, p value was calculated by log-rank test. OS overall survival, RFS
recurrence-free survival, Chemo chemotherapy, PFS progress-free survival, CR complete response, PR partial response, PD progressive disease,
SD stable disease.

Fig. 7 Multiplex immunofluorescence immunohistochemistry profiling of the senescore in tissue microarray of GC. A Representative
multiplex immunofluorescence immunohistochemistry images showed the protein expression patterns of ADH1B (green), IL1A (red),
SERPINE1(cyan), SPARC (orange), EZH2 (pink), and TNFAIP2 (yellow) in GC tissues. DAPI: blue; scale bar: 200 μm. B Kaplan–Meier plot showed
the significant difference of OS between high- and low-senescore groups in the tissue microarrays of GC. Log-rank test, p value was indicated.
C ROC curve showed the predictive capability of senescore for overall survival of GC patients. D ROC curves of the senescore combined with
clinical stage and age for predicting 1-year, 3-year, and 5-year survival. E Comparison of AUC of the time-dependent ROC curve among
nomogram containing senescore, clinical stage and age, and only senescore or clinical stages.
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SPARC (ABclonal, cat. No. A14494, 1:200 dilution), anti- EZH2 (ABclonal, cat.
No. A19577, 1:200 dilution), and anti-TNFAIP2 (Signal Antibody, cat.
No.40163, 1:200 dilution), was conducted on the same slide. In brief, the
slides were baked at 65 °C for 1 h. Deparaffinization with xylene for 15min
three times was followed by rehydration in an ethanol series. Antigen
retrieval was performed in the EDTA antigen retrieval buffer (pH 8.0) using
microwave treatment, and the nonspecific binding was blocked with the
blocking buffer for 10min at room temperature. After that, the slide was
stained with antigen-specific primary antibodies for 1 h at room
temperature or overnight at 4 °C, following by Opal Polymer Horseradish
Peroxidase for 10min at room temperature. Then, a specific fluorochrome
from the Opal 7-color manual IHC kit for each primary antibody was used
to visualize the respective antigens. For each consecutive antibody
staining, the antigen retrieval step, based on microwave treatment like
the prior operation, was performed, which allowed for the removal of prior
primary and secondary antibodies while the fluorophore remained
covalently bonded to the tissue antigen.
The stained slides were scanned using the Vectra Polaris Automated

Quantitative Pathology Imaging System (PerkinElmer) by a 20× objective
lens. Inform automated image analysis software (PerkinElmer) was used for
batch analysis of multispectral images based on the specific algorithms as
previously described [58]. Multispectral images were decomposed into
their single component by spectral unmixing using a digital spectral library
consisting of spectral profiles of each of the fluorophores.
Due to the stripping the slides and limitation of scanning technique, 80

tissue samples were involved in final analysis. The IHC images of each
molecular staining results were scored twice by the clinician. The protein
scoring system was based on the intensity and extent of the staining as
previously described [59]. The staining intensity was classified as 0
(negative), 1 (weak), 2 (moderate), or 3 (strong). The staining extent was
dependent on the percentage of positive area: 0 (<5%), 1 (5–25%), 2
(26–50%), 3 (51–75%), or 4 (>75%). Each protein score was based on the
stain intensity and extent scores, and then normalized with a z-score.
Finally, the senescore was calculated on the basis of the protein expression
scores of IL1A, ADH1B, TNFAIP2, SERPINE1, SPARC, and EZH2 (Table S7).

Statistical analysis
The distribution of the variables was tested by the Shapiro–Wilk test. For
the comparison of two groups, statistical significance of variables was
analyzed by the unpaired Student’s t test or the Wilcoxon rank-sum test.
The Kruskal–Wallis test was applied to evaluate significant differences
when comparing more than two groups. Correlations coefficients between
CSGs were computed by Spearman at the transcriptomic level.
The prognosis genes were determined by univariate Cox regression

analysis. The survival curves for the prognostic analysis were generated via
the Kaplan–Meier method and the log-rank test was used to compare the
statistical differences in survival between two groups. To analyze the
significance of senescore to predict clinical prognosis, the cut-off values of
senescore were establish by the median of the data in each separate
dataset. Alternatively, to attenuate the effect of the group method on
prognosis, the cut-off point was also determined using “surv-cutpoint”
function in the survminer R package to divide patients into high- and low-
senescore groups in the immunotherapy and chemotherapy cohort. The
independent prognostic factor was ascertained through a multivariable
Cox regression model. The forest plot was employed to visualize the results
of multivariate prognostic analysis using the survminer R package. All
heatmaps were generated by the function of the pheatmap R package. The
p values were two-sided, with less than 0.05 as statistically significance. All
statistical analyses were conducted in R language software (version 3.6.1).

DATA AVAILABILITY
The data that support findings of this study are available in the GEO (https://www.
ncbi.nlm.nih.gov/geo/) under accession numbers GSE26253, GSE26899, GSE26901,
GSE28541, GSE13861, GSE66229, GSE15459, GSE34942, GSE84437, GSE57303, and
GSE29272, as well as TCGA (https://portal.gdc.cancer.gov) database.
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