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metastatic pancreatic ductal adenocarcinoma
Qianhui Xu1,2,3, Shaohuai Chen1,3, Yuanbo Hu 1,3 and Wen Huang 1✉

© The Author(s) 2021

Pancreatic ductal adenocarcinoma (PDAC) is the most frequent and aggressive pancreatic tumor characterized by high metastatic
risk and special tumor microenvironment. To comprehensively delineate the complex intra-tumoral heterogeneity and the
underlying mechanism during metastatic lesions malignant progression, single-cell RNA sequencing (scRNA-seq) was employed.
PCA and TSNE were used for dimensionality reduction analysis and cell clustering. Find All Markers function was used to calculate
differential genes in each cluster, and Do Heatmap function was used to plot the distribution of differential genes in each cluster.
GSVA was employed to assign pathway activity estimates to individual cells. Lineage trajectory progression was inferred by
monocle. CNV status was inferred to compare the heterogeneity among patients and subtypes by infercnv. Ligand-receptor
interactions were identified by CellPhoneDB, and regulons network of cells was analyzed by SCENIC. Through RNA-sequencing of
6236 individual cells from 5 liver metastatic PDAC lesions, 10 major cell clusters are identified by using unbiased clustering analysis
of expression profiling and well-known cell markers. Cells with high CNV level were considered as malignant cells and pathway
analyses were carried out to highlight intratumor heterogeneity in PDAC. Pseudotime trajectory analysis revealed that components
of multiple tumor-related pathways and transcription factors (TFs) were differentially expressed along PDAC progression. The
complex cellular communication suggested potential immunotherapeutic targets in PDAC. Regulon network identified multiple
candidates for promising cell-specific transcriptional factors. Finally, metastatic-related genes expression levels and signaling
pathways were validated in bulk RNA Sequencing data. This study contributed a comprehensive single-cell transcriptome atlas and
contributed into novel insight of intratumor heterogeneity and molecular mechanism in metastatic PDAC.

Cell Death Discovery           (2021) 7:331 ; https://doi.org/10.1038/s41420-021-00663-1

INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is one of the most
malignant tumors with a 5-year survival rate of 8% according to
annual cancer statistical reports [1, 2]. This plight is mainly attributed
to the lack of reliable markers for early diagnosis, low radical excision
rate, and chemoradiotherapy resistance of PDAC, and only 15–20% of
newly diagnosed patients are eligible for surgical resection [3, 4].
The intrinsic transcriptomic characteristics and dynamic immu-

nological heterogeneity significantly contributed to the tumor
progression and sensitivity toward treatment. Mounting genomic
research have revealed crucial gene mutations, such as KRAS
driver mutation and frequent inactivation of TP53 tumor
suppressors, were the main drivers of tumorigenicity of PDAC
[5]. Mutations of these genes participated in specific biological
processes, including Wnt/TGF-β pathways, DNA repair processes,
and chromatin remodeling mechanisms [6]. It was well estab-
lished that PDAC is one of the malignant cancers characterized by
diverse immune microenvironment comprised of abundant
subpopulations of immune cells. A primary reason for the high
mortality rate of PDAC is the abundant extracellular matrixes,
which challenged against drugs delivery leading to the

therapeutic resistance [7]. Thus, it is highly desirable to reveal
the mechanisms underlying the tumorigenesis and metastasis of
PDAC, and to determine robust and promising molecular targets
for individualised therapeutic strategy.
In our work, singe cell RNA-sequencing analysis was employed

to present a comprehensive landscape of the transcriptomic
profiles of 6236 qualified single cells from 5 liver metastatic PDAC
lesions, further dissecting intra-tumoral heterogeneity and iden-
tify crucial factors during PDAC metastatic progression. A total of
ten major cell subpopulations were determined and the molecular
properties of malignant cells were characterized. In addition,
PDAC metastatic lesion constituted of diverse malignant cell
subtypes was characterized by highly heterogeneous. We further
identified a list of novel gene expression changes that affected
several known cancerous pathways. With trajectory analysis of
tumor progression, the distant dissemination function becomes
increased. The comprehensive atlas of the multicellular ecosystem
of TME were delineated and potential transcriptional regulators
network underlying tumor progression was established. In
addition, metastasis-related genes expression and signaling
pathways were further confirmed in bulk RNA Sequencing data.
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Thus, this single-cell study will contribute novel insight into
cellular landscape for deciphering intra-tumoral heterogeneity
and understanding the molecular mechanism in tumor metas-
tasis, with valuable significance for therapeutic management
of PDAC.

RESULTS
Single-cell transcriptome atlas in PDAC metastatic lesions
To investigate the cellular diversity in PDAC metastatic lesions,
scRNA-seq analysis was implemented on metastatic tumor
samples from 5 PDAC patients. After carrying out the initial
quality control assessment described previously (Supplementary
Fig. 1A and B), a total of 6,236 cells were profiled for subsequent
analysis, of which single-cell transcriptomes were obtained.
Following gene expression normalization, principal component
analysis was performed on variably expressed genes (Supple-
mentary Fig. 1C) across all cell samples. By using unbiased
clustering based on t-distributed stochastic neighbor embedding
(t-SNE) analyses, 10 main segregated cell clusters were identified
in parallel (Supplementary Fig. 2A, Supplementary Table 1). Next,
representative genes were developed by employing differential
gene expression analysis to identify of each cell cluster according
to expression profiles and well-known cell markers (Fig. 1A). And
the clustering distribution of single cell from five patients is
presented in Supplementary Fig. 2B and 2C. The top 5
differentially expressed genes (DEGs) for the cellular subclusters
were presented in the heatmap (Fig. 1B), with more details
extended in the following sections.
In particular, these cell lineages were as follows: (1) the

Cancer stem cells characterized with high ALDH1A1 [8] and NES
[9] expression; (2) the Ductal cells specifically expressing
cell markers MMP7, TSPAN8, SOX9, and LCN2; [10, 11] (3) the
Monocyte highly expressing BASP1 [12] and TNF; [13] (4) the
T cells with high expression of CD3D [14] and CD27; [15] (5)
the Macrophage specifically express the markers HLA− DRB5
and NUPR1; [16] (6) the NK cells expressing KLRC1 [17] and
TMIGD2 [12]. The expression patterns of the cluster-specific
marker genes in the cellular populations were demonstrated
(Fig. 1C, Supplementary Fig. 3A). Notably, five distinct types of
ductal cells were identified. Both types of ductal cells showed a
high level of ductal markers: MMP7, TSPAN8, SOX9, and LCN2
[10, 11]. To characterize these ductal clusters, the expression
profiles of subtype-specific marker genes were examined
respectively (Fig. 1D). Results showed that CAPN12 and CA12
were highly expressed in type 1 ductal cells compared with
other subtypes, suggesting suitable markers of CAPN12 and
CAP12 for type 1 ductal cells. Type 2 ductal cells exhibited the
highest expression levels of HMMR and TPX2, indicating that
HMMR and TPX2 may identify these cells. SCGB2A1 and IGFBP3
were uniquely expressed in type 3 ductal cells, prompting
reliable markers of SCGB2A1 and IGFBP3 for type 3 ductal
cells. CTGF and HSPA6 were specifically expressed in type 4
ductal cells, thus, they could be used as specific markers
for the detection of these cells. Type 5 ductal cells experienced
unique expression of REG4 and CEACAM5, supporting specific
markers of REG4 and CEACAM5 for type 5 ductal cells.
Moreover, all ductal cells exhibited significant higher expres-
sion of reported poor prognosis and distant metastasis PDAC
markers, such as CEACAM1/5/6 [18] and KRT19 [19], suggesting
that these ductal subtypes might be malignant ductal cells
(Supplementary Fig. 3B and C).
The dot plots illustrated the proportion of cells expressing

representative markers and their scaled relative expression
values in different cell clusters (Fig. 1E). The proportions of the
cellular subpopulations diverse well among the tumor lesions
(Fig. 1F), suggesting the intertumoral heterogeneity as well as
the consistency among the lesions.

Copy-number alterations in PDACs
To distinguish malignant cells, we calculated and identified large-
scale chromosomal copy number variation (CNV) by inferCNV for
each sample based on transcriptomes [20]. An inferCNV clustered
heatmap was created per sample, which corresponds to the
normalized expression values of immune cells plotted in the top
panel and ductal cells in the bottom panel. In the resultant CNA
heatmap, the regions of gain are depicted in red and regions of
loss in blue. Most non-stromal cells presented relatively low CNV
levels except for monocyte and T cells, which showed moderate
CNV levels. We discovered that these five ductal cell subtypes
experienced remarkable CNV events compared with cells in
control samples (Fig. 2A–E). Notably, type 1 ductal cells presented
significantly higher CNV levels than other types of ductal cells
(Fig. 2F). These results suggested that five subtypes of ductal cells
are all malignant cells in metastatic lesions.

Transcriptional heterogeneity of malignant stromal cells
Through the t-SNE analysis on malignant stromal cells, six cellular
clusters in total, of which five belonged to ductal lineage and 1
was of the cancer stem lineage (Fig. 3A). The distribution of each
cluster of single cells from five different patients was shown
(Fig. 3B). The expression profiling in distinct subclusters of the
malignant ductal and cancer stem cells were presented (Fig. 3C).
As demonstrated in the top DEGs, specifically cancer stem
lineage clusters expressed high levels of stemness feature genes
including ALDH1A1, PROM1, and NES, while ductal lineage
cluster expressed high levels of ductal markers such as MMP7,
TSPAN8, and SOX9 (Fig. 3D).
To further reveal the biological roles of each cellular cluster in

tumorigenicity and progression, competitive gene set variation
analysis (GSVA) was performed (Fig. 3E, F). Type 1 ductal cells
showed heightened activities of heterologous metabolism and
bile acid metabolism processes and adipocytokine signaling
pathway, indicating that type 1 ductal cells were identified as
cells of relatively low malignancy. Most genes with high
expression levels in type 2 ductal cells were enriched in cell cycle
and DNA replication, suggesting that type 2 ductal cells were
associated to tumor proliferation and growth. Upregulated genes
expressed in type 3 ductal cells were mainly mediated in tumor
migration-related processes like Wnt/β-catenin and KRAS signal-
ing pathways, indicating that type 3 ductal cells were identified as
cells of relatively high malignancy. Type 4 ductal cells experienced
high enrichment involved in tumor progressions, such as p53,
KRAS, and apoptosis-related signaling pathways, highlighting that
type 3 ductal cells were also malignant cells. Notably, type 5 ductal
cells mainly enriched with IL6/JAK/STAT3, PI3K/AKT/MTOR and
TGF-β signaling pathways and Epithelial-Mesenchymal Transfor-
mation, supporting that type 5 ductal cells were the major factor
of malignant cells in metastatic lesions.

Gene expression patterns in ductal cells during PDAC
progression
There is not a consensus yet regarding which pancreatic cell type
being responsible for the point of origin of tumor cells. To further
elucidate the origins of neoplastic cells in the carcinogenesis of
PDAC, pseudotime trajectory analysis was performed using cancer
stem cells and five types of ductal cells. R package monocle was
then used to sort individual cells by these genes and construct the
tree-like structure of the entire lineage differentiation trajectory
(Fig. 4A). Along with trajectory progression, cells experienced
three states: starting point of branching (pre-branch) and the two
other branches (Fate1 and Fate2; Fig. 4B). Cancer stem cells and
type 3 ductal cells were mainly shown in the beginning of the
trajectory. Type 1 and 4 ductal cells predominately appeared at
the end of the trajectory branch 1 and type 5 ductal cells were
mostly at the end of the trajectory branch 2 (Fig. 4C, D). Notably,
type 2 ductal cells were appeared at the ends of different
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Fig. 1 Single-cell transcriptomic analysis of metastatic PDAC lesions. A The t-distributed stochastic neighbor embedding (t-SNE) plot of the
10 identified main cell types in metastatic PDAC lesions. B Heatmap of top 5 DEGs among the myeloid cell subtypes, where the colors from
red to blue represented alterations from high expression to low expression. C Violin plots showing the normalized expression levels of 14
representative canonical marker genes across the 10 clusters. D Violin plots showing the expression level of representative novel identified
markers across the main cell types. E Dot plots showing the 20 signature gene expressions across the 10 cellular clusters. The size of dots
represents the proportion of cells expressing the particular marker, and the spectrum of color indicates the mean expression levels of the
markers (log1p transformed). F Relative proportion of each cell cluster across 5 metastatic PDAC lesions as indicated.

Q. Xu et al.

3

Cell Death Discovery           (2021) 7:331 



Fig. 2 Copy-number variation analysis of PDAC cells. A The hierarchical heatmap showing large-scale CNVs in tumor lesions form one
metastatic PDAC sample (MET1). B The hierarchical heatmap showing large-scale CNVs in tumor lesions form one metastatic PDAC sample
(MET2). C The hierarchical heatmap showing large-scale CNVs in tumor lesions form one metastatic PDAC sample (MET3). D The hierarchical
heatmap showing large-scale CNVs in tumor lesions form one metastatic PDAC sample (MET4). E The hierarchical heatmap showing large-
scale CNVs in tumor lesions form one metastatic PDAC sample (MET5). F Violin plots showing distributions of CNV scores among different
cell types.
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Fig. 3 Distinct clusters of malignant cells in metastatic PDAC lesions. A t-SNE plot showing the 6 malignant cell subclusters from 5 PDAC
samples. B Six malignant PDAC cell subclusters were identified by t-SNE analysis. C Violin plots for marker genes of cancer stem cells
(ALDH1A1, PROM1, and NES) and ductal cells (MMP7, TSPAN8, and SOX9). D Feature plots for marker genes of cancer stem cells (ALDH1A1,
PROM1, and NES) and ductal cells (MMP7, TSPAN8, and SOX9). The color legend shows the log1p normalized expression levels of the genes.
E Heatmap showing the representative pathway terms of Hallmark enriched in each cellular subgroup. F Heatmap showing the representative
pathway terms of KEGG enriched in each cellular subgroup.
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branches, suggesting transitional form of type 2 ductal cells for
tumor progression. Our findings indicated the possibility that both
cancer stem cells and type 3 ductal cells could be the origin of
malignant cells and may transform to two distinct types of
neoplastic ductal cells during the PDAC progression. Along with
the trajectory, epithelial cell marker EPCAM and ductal marker
KRT19 exhibited sustained high expression levels during PDAC
progression, while genes previously reported to be involved in
tumor progression, such as MUC1 and CEACAM6, gradually
upregulated along with the transition (Fig. 4E).
Moreover, the gene expression patterns mediated in the cell

state transition along with progression trajectory were dissected
and 7603 dynamical genes with significant expression changes
were determined (Supplementary Table 2). Particularly, the
alteration of multiple crucial drivers participated in the PDACs
cacogenesis (Fig. 4F), including several regulators potentially
mediated in progression of PDAC, such as VEGF/VEGFR, HIF2,
and P53 signaling pathway. Meanwhile, the transcriptional
factors involved in immune cell differentiation and proliferation,
such as MEF2C, HMGB1, HMGB2, CREM, LITAF, ID1, and ID3, etc.
(Fig. 4G), were remarkably dysregulated with the trajectory
transition process.
Subsequently, these genes were further subclustered into

initial expression patterns and terminal patterns with specific
expression patterns (Fig. 5A). In addition, the potential key genes
associated with distant metastasis of PDAC, such as MMP7,
TSPAN8, MSLN, LAMC2, KLK6, and LY6D (Fig. 5B), were discovered
to significantly change along with progression trajectory. Next,
branched heatmap was employed to present the gene pattern of
distinct cell fate branches, genes are assigned into two different
clusters based on the expression dynamics (Fig. 5C; Supplemen-
tary Table 3). Genes most significantly diverted between two
branches were recognized: Alpha-enolase (ENO1), Interferon-α
inducible protein 6 (IFI6), Interferon-stimulated gene product 15
(ISG15), receptor activity modifying protein 1 (RAMP1), Retino-
blastoma binding protein-1 (RBP1), and specific glucose trans-
porter GLUT1 (SLC2A1; Fig. 5D).

Complex cell–cell communication networks in the TME
To characterize the tumor microenvironment of PDAC metastatic
lesion, CellPhoneDB was applied to detected the intercellular
communication among malignant cell types and immune cells. In
the output of the results of the ligand receptor, the heatmap plot
function is used to analyze the interaction between immune cells.
The results showed that macrophages and monocytes were
significantly active and interacted with a variety of cells
(Supplementary Fig. 4A and B). Broadcast ligand–receptor pairs
were identified demonstrated extensive molecular interactions
among the major cell types (Fig. 6A, B).
Previous results suggested that type 5 ductal cells may be the

main source of malignant cells, thus, the ligand-receptor
complex among type 5 ductal cells and other major cell types
were investigated. Notably, inhibitory receptor–ligand pairs
between type 5 ductal cells and immune cells were widely
identified. In addition to CD47-SIRPG and CD47-SIRB1 complex,
other cell–cell interactions that have rarely been reported in
PDAC (e.g., PVR-TIGIT, PDCD1-FAM3C, and LGALS9-CD47) were
also observed (Fig. 6C). Interestingly, costimulatory interactions
between type 5 ductal cells and immune cells were also widely
discovered (Fig. 6D), from which specific ligand–receptor
complexes (e.g., TNFRSF1A-GRN, MIF-TNFRSF14 and LGALS9-
CD44) were identified. Of note, macrophage expressed relatively
high levels of SPP1, and the ligands of SPP1 (CD44) were
overexpressed by type 5 ductal cells, indicating the presence of
functional interactions between macrophage and type 5 ductal
cells. Macrophage participated in the pancreatic cancer metas-
tasis, which was demonstrated by previous reports [21].
In addition, chemokines were relatively higher expressed in

immune cells (e.g., CCL4, and CXCL2), while the type 5 ductal
cells commonly expressed high levels of the corresponding
receptors, indicating that these chemokines served as critical
players in regulating diverse types of immune cells infiltration in
PDAC tumor microenvironment (Fig. 6E). The previously reported
T helper (Th) 1 immune response could be used as a biological
marker for immunotherapy in metastatic lymph nodes of PDAC
[22]. Specifically, the interactions of Th1-mediated responses
between immune cells and type 5 ductal cells (Fig. 6F) suggested
that LTBR and its ligands may be the crucial drivers in
aggressiveness of PDAC. Moreover, the putative ligands for
which cognate receptors of Th17-mediated responses were also
identified, such as the intercellular communications produced by
CCR6-CCL20 (Fig. 6G). corresponding to the recent study
supporting pathogenic TH17 responses are be demonstrated to
be responsible for neoantigen-induced tumor progression in
PDAC [7].

Mapping malignancy-specific regulon networks by SCENIC
In addition, single-cell regulatory network inference and clustering
(SCENIC) was employed to further explore the difference of
potential regulons (i.e., transcriptional factors (TFs) and their target
genes) activity of between type 5 ductal cell-specific and other
cellular clusters.
Based on 337 regulons activity with 35,684 filtered genes with

default filter parameters (Supplementary Fig. 5A), the regulon
activity could also distinguish subclones of the different ductal
subtypes (Fig. 7A). Accordingly, type 5 ductal cell-specific regulon
activity was binarized and matched with cellular clusters (Fig. 7B).
Next, TFAP2A, GATA6, ZBTB7A, and HOXB9 were identified as
candidate TFs with specifically regulated expressions in type 5
ductal cell clusters, in addition, corresponding motifs were listed
(Fig. 7C). The expression patterns of the representative TFs in the
cellular populations were demonstrated (Fig. 7D and Supplemen-
tary Fig. 5B–E).

Validation of metastatic-related hub genes and signaling
pathways in bulk RNA-sequencing data
To validate the metastasis-associated genes and signaling path-
ways discovered in the aforementioned results, PDAC cohort
(ICGC-PACA-AC) were used in the subsequent analyses. Firstly,
expression distribution of metastasis-related genes in primary and
metastatic tumor samples was plotted (Fig. 8A). Then, expression
levels of metastasis-related genes were compared between
primary tumors and metastatic lesions. As shown in Fig. 8B, most
metastasis-related genes experienced significantly dysregulation
in metastatic tumors, consistent with previous findings. The HPA
database was used to explore protein expression levels in PDAC
samples. The results showed that relative to normal samples,
proteins (LAMC2, HMGA1, CSTB) were significantly upregulated in
tumor tissues (Fig. 9A–F). In addition, their mRNA expression levels
were also investigated in pancreatic cancer cell lines (Fig. 9G, H
and I). Our results indicated that LAMC2, HMGA1, and CSTB
showed significantly higher trends in CFPAC-1 cell lines.
Moreover, representative hub genes expression levels were

significantly elevated in metastatic lesions than primary samples
(Fig. 9J). Moreover, GSVA analysis between primary and metastatic
tumors was performed (Fig. 9K). The results of GSVA showed that
enrichment pathways of metastatic lesions prominently asso-
ciated with tumorigenesis-relevant processes, including VEGF/
VEGFR, HIF2, E2F, FOXM1, and P53 regulation pathways, which
was in accordance with the previous results (Fig. 4F).

DISCUSSION
PDAC was considered as malignant tumor with high intra-tumoral
heterogeneity and aggressive features which brings great
challenges to both early precision diagnosis and effective
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Fig. 4 Simulation of the development trajectory of malignant cells and the analysis of gene expression pattern inferred by Monocle2.
Simulation of the differentiation trajectory of malignant cells group from PDAC, A pseudo-trajectory of malignant cells, B cell type transition,
C cell source transition. D Pseudotime trajectory of malignant cells from different cells. Each point corresponds to a single cell. E Expression of
representative genes (EPCAM, KRT19, MUC1, and CEACAM6) are mapped to the single-cell trajectory plot. Color key from gray to red indicates
relative expression levels from low to high. F Heatmap showing expression of representative known PDAC associated genes across single
cells. Corresponding pathways for each gene were also shown. Color key from blue to red indicates relative expression levels from low to high.
G Heatmap showing expression of representative identified TFs across single cells. Color key from blue to red indicates relative expression
levels from low to high.
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Fig. 5 Differential gene expression profiles along malignant progression. A Heatmap hierarchical clustering showing differentially
expressed transcription factor genes along with the pseudotime curve. Color key from blue to red indicates relative expression levels from low
to high. B Expression patterns of representative differentially expressed genes in the progression process. C The pseudotime heatmap
displayed the differentially expressed genes between the branches according to the BEAM analysis. Color key from blue to red indicates
relative expression levels from low to high. D Expression patterns of representative differentially expressed genes between different branches
in the progression process.
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personalized treatment. Therefore, there was an urgent need to
reveal the underlying molecular mechanism of intra-tumoral
heterogeneity and tumor metastasis characteristics with high
cellular resolution in the TME of metastatic PDAC.
Herein, 10 predominant populations of cells with t-SNE

clustering were identified in the metastatic PDAC biopsies that
included 6 stromal cellular types and 4 immune cell clusters.

Their molecular and cellular features were also characterized
with regard to their role in the tumorigenesis of PDAC. Notably,
five types of ductal cells with distinct transcriptomic patterns,
were recognized. According to subsequent CNV level analysis, all
five types ductal cells presented in metastatic lesions were
demonstrated to be malignant cells and type 1 ductal cells
experienced the highest CNV scores. GSVA on each subgroup of
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malignant cells demonstrated the heterogeneity of underlying
biological mechanism in distinct types of cells. Interestingly, the
unique functions of type 5 ductal cells were significantly related
to Epithelial-Mesenchymal Transformation (EMT), which contrib-
uted into the capability to invade surrounding tissues and travel
through the peripheral circulation. Since EMT+ cancer cell
subpopulations were correlated with poorer patient prognosis
and more aggressive disease [23], our findings suggested pivotal
roles of type 5 ductal cells for distant metastasis in PDAC.
In addition, the activation EMT- and TGF-β-related pathways

participated in the formation of peritumoral stroma [24].
Targetable TGF-β molecular blockaders have been demonstrated
to reprogram the contexture of TME and reshape the anti-cancer
immunology [25, 26]. Thus, it recommended that the type 5 ductal
cellular populations might be suitable for the administration of
TGF-β inhibitors.
It is well-established that cancer stem cells as the main drivers

of tumorigenicity were the origins of neoplastic cells in PDAC [27].
However, mounting studies demonstrated the origin of malignant
cells derived from ductal cells [28, 29]. Herein, pseudotime
trajectory analysis using Monocle also indicated that tumor cells
may derive from both cancer stem cells and type 3 ductal cells
transdifferentiation.
Notably, various canonical oncogenic pathways, such as VEGF/

VEGFR [30], HIF2 [31], E2F [32], FOXM1 [33], and P53 regulation
pathways [34], were activated during trajectory progression.
Moreover, these results were validated between primary and
metastatic cancer samples in bulk RNA sequencing data. Our
findings offer novel insight to support that these signaling
pathways could potentially serve as underlying molecular
mechanism of metastasis in PDAC. Nonetheless, our findings
should be confirmed in future studies. In addition, LAMC2, HMGA1
and CSTB were discovered to be upregulated significantly along
with trajectory transition and elevated in the metastatic tumor
lesions, which was consistent with published researches focusing
on biological roles of LAMC2/ HMGA1 [35, 36]. However, it was
little to known the CSTB-mediated underlying mechanism in
invasiveness of PDAC and CSTB-targeting precision interventions
might represent promising therapeutic strategies, which required
further investigation in future studies. Notably, the expression
level of MET was increased during tumor progression. This finding
is consistent with metastasis theory in which EMT-tumor cells
regained its epithelial ability to form metastatic sites, suggesting
the metastatic lesions were originated from cancer cells that have
undergone EMT [37]. We also discovered some unidentified
regulators such as TM9SF3, LYZ, and ARL4C, which are potentially
engaged in the cellular transition from the cancer stem cells into
metastatic malignant cells. The above results indicate that both
cancer stem cell as well as type 3 ductal cells might be the origin
of pancreatic neoplastic cells lineages, which facilitated enhancing
our understanding of PDAC carcinogenesis.
Moreover, the intimate cell–cell communication among type5

ductal cell and major cell types were identified in the TME. High
expression of inhibitory receptor–ligand complex, like CD47-
SIRPG, may be crucial role of immunotherapeutic resistance in

PDAC. Moreover, upregulated activity of chemokine, such as CCL4,
and CXCL2, between tumor cancer and immune might be the hub
driver of recruitment of infiltrating immune cells. Macrophage
with high expression of costimulatory ligands exhibited the most
complex interaction with other cell types, indicating potential anti-
cancer effect of these macrophages in PDAC.
Meanwhile, a network of regulons was established using the

SCENIC analysis, that can be identified as potential candidates for
type 5 ductal cell-specific TF programs. By employing this
algorithm, several specific TFs in type 5 ductal cells were
determined, such as TFAP2A, GATA6, HOXB9, and ZBTB7A.
Overexpression of TFAP2C was demonstrated to resensitize tumor
cells to gemcitabine in PDAC [38]. The biological function of
GATA6 in PDAC remains controversial yet. A previous study
reported that GATA6 inhibits the epithelial-mesenchymal transi-
tion (EMT) in vitro, however, high GATA6 levels are related with
better prognosis and are found in well-differentiated tumors [39].
Downregulation of HOXB9 mediated by TGF-β1-induced Kindlin-2
expression was correlated with PDAC progression [40]. However,
the potential role of ZBTB7A is still elusive in PDAC, which needs
further exploration.

CONCLUSIONS
In our work, the intratumoral heterogeneity of PDAC cells were
demonstrated with corresponding molecular characteristics and
transcriptome features identified. In addition, the cellular lineage
transition of malignant cells from original cells in metastatic
lesions. Moreover, complex interactions of major cell types were
deciphered in the TIME of PDAC. In addition, regulons networks
were established to determine the candidates of cell type-specific
transcriptional factors (TFs) and their target genes. Moreover,
metastatic-related genes expression and signaling pathways
activity were further confirmed in bulk RNA Sequencing data. In
conclusion, this study lays a new foundation for the identification
of therapeutic targets to enhance precision therapeutic strategy in
metastatic PDAC.

MATERIALS AND METHODS
Sources of datasets
The single-cell RNA sequencing information of GSE154778 were obtained
from Gene Expression Omnibus (GEO) database, which contained 6,236
cell samples from 5 liver metastatic PDAC biopsies. The scRNA-seq gene-
barcode matrix, features data and UMI count tables of barcodes has been
described by Lin et al. [41]. The RNA sequencing profile of the patients
from ICGC-PACA-CA dataset, which contains 195 primary tumor samples
and 13 metastatic cancer lesions, was obtained from ICGC portal (https://
dcc.icgc.org/). There was no necessity to obtain Ethics Committee
approval, owing to all information were publicly available and open-
access. The Human Protein Atlas (http://www.proteinatlas.org) was used to
investigate the protein levels of metastatic-related genes.

Quality control and the dimensionality reduction
The Seurat object with gene expression data was imported into the
Seurat (v2.3.0) R toolkit with the Read10× () function [42]. Gene-cell

Fig. 6 The dense network and multiple regulatory immune responses in the TME. A Capacity for intercellular communication between
malignant cells and immune cells. Each line color indicates the ligands expressed by the cell population represented in the same color
(labeled). The lines connect to the cell types that express the cognate receptors. The line thickness is proportional to the number of ligands
when cognate receptors are present in the recipient cell type. The loops indicate autocrine circuits. The map quantifies potential
communication but does not account for the anatomical locations or boundaries of the cell types. B Detailed view of the ligands expressed by
each major cell type and the cells expressing the cognate receptors primed to receive the signal. Numbers indicate the quantity of
ligand–receptor pairs for each intercellular link. Overview of selected ligand–receptor interactions of type 5 ductal cells under inhibitory
interaction (C), stimulatory interaction (D), chemokines interaction (E), Th1-mediated interaction (F), and Th17-mediated interaction (G).
P values are indicated by circle size, with the scale to the right (permutation test). The means of the average expression levels of interacting
molecule 1 in cluster 1 and interacting molecule 2 in cluster 2 are indicated by color. Assays were carried out at the mRNA level but were used
to extrapolate protein interactions.
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Fig. 7 Specific transcription factors involved in malignant progression. A The heatmap exhibits the average regulon activities of
transcription factors in different cellular types, color key from blue to red indicates relative expression levels from low to high. B Heatmap of
regulon activity analyzed by SCENIC with default thresholds for binarization. The “regulon” refers to regulatory network of TFs and their target
genes. “On” indicates active regulons; “Off” indicates inactive regulons. C The t-SNE plot shows the top four highly expressed transcription
factors in type 5 ductal cells, and part of their motifs were listed in the right panel. D Violin plots showing distributions of representative TFs
expression among different cell types.
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Fig. 8 Expression profiling of metastatic-related genes in primary/metastatic tumor samples. A Heatmap of metastatic-related genes was
drawn to reveal different distribution of expression states, where the colors of red to blue represented alterations from high expression to low
expression. B Comparison of the expression level of metastatic-related genes between primary and metastatic cancer samples.
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matrixes were filtered to exclude cells (<500 transcripts/cell, >5%
mitochondrial genes) and genes (<1000 cells/gene and >200,00 cells/
gene). For each sample, the gene expression was represented as the
fraction of the gene and multiplied by 10,000, which were converted into
natural logarithm and normalized after adding 1 to avoid taking the log

of 0. The top 1000 highly variable genes (HVGs) from the normalized
expression matrix were generated to perform the principal component
analysis (PCA) based on these HVGs. Significant principal components
were determined using Jackstraw analysis and visualization of heatmaps
focusing on PCs 1 to 40. PCs 1 to 13 were employed for graph-based
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clustering (at res= 0.5) to identify distinct groups of cells. The following
Seurat functions (FindNeighbors and FindClusters) were used to
calculate the dimension-reduction coordinates. Finally, single-cell
clustering was visualized by t-SNE (t-Distributed Stochastic Neighbor
Embedding).

Cell-clustering and annotation
The cluster-specific marker genes were identified by running the
FindAllMarkers function in the Seurat package using the default non-
parametric Wilcoxon rank sum test with Bonferroni correction. To identify
differentially expressed genes between two clusters, we used the ‘find.
markers’ function. The cell groups were annotated based on the DEGs and
the well-known cellular markers from the literature. Detailed information of
the cell markers was recorded in Supplementary Table 1.

Single-cell copy-number variation (CNV) evaluation
The CNV evaluation of each cell was conducted by infercnv R package
(version 1.4.0; https://github.com/broadinstitute/inferCNV/wiki) [20]. The
CNVs of Epithelial cells were calculated and the immune cells were applied
as the reference. The inferCNV analysis was performed with parameters
including “denoise”, default hidden Markov model (HMM) settings, and a
value of 0.1 for “cutoff”. To reduce the false-positive CNV calls, the default
Bayesian latent mixture model was implemented to identify the posterior
probabilities of the CNV alterations in each cell with the default value of 0.5
as the threshold.

DEGs identification and GSVA
We identified the differentially over-expressed genes in the specific cluster
when compared to other remaining clusters with the Wilcoxon Rank-Sum
Test with the FindMarkers function in Seurat (adjusted P-value < 0.05, only.
pos= TRUE and logfc.threshold= 0.25). Predominantly, pathway analyses
were carried out to evaluate activation of hallmark pathways and
metabolic pathways, which were described in the MSigDB databases
(https://www.gsea-msigdb.org/gsea/msigdb) [43]. Then, we applied GSVA
[44] in the GSVA package (version 1.36.3) to assign pathway activity
estimates to assess the relative pathway activities in the Cancer stem cells
and epithelial cells.

Constructing single-cell trajectories in PDAC
The R package Monocle2 (v2.16.0) was applied to conduct single-cell
trajectory analysis with the assumption that one-dimensional ‘time’ can
describe the high-dimensional expression values to discover the cell-
state transitions [45]. The clusters identified as Cancer stem cell and
Epithelial cells were loaded into R environment. The newCellDataSet
function was applied to create an object with the parameter
expressionFamily= negbinomial.size. In the trajectory analysis, we used
genes meeting the thresholds that mean_expression ≥ 0.1 and disper-
sion_empirical ≥ 1 * dispersion_fit identified by Monocle2 to sort cells in
pseudo-time order. The reduceDimension() function using the para-
meters reduction_method= “DDRTree” and max_components= 2 was
applied to reduce dimensions and the visualization functions ‘plot_-
cell_trajectory’ were used to plot the minimum spanning tree on cells.
Genes that changed along with the pseudotime were calculated (q-val <
10− 5) by the “differentialGeneTest” function and visualized with the
plot_pseudotime_heatmap and the genes were clustered into sub-
groups according to the gene expression patterns. Detailed information
of the cell markers was recorded in Supplementary Table 2. To identify
the genes that separate cells into branches, the branch expression
analysis modeling (BEAM) analysis were performed and genes resulting
from the BEAM analysis with a q-value < 10− 10 were separated into
groups and visualized with the plot_genes_branched_heatmap()

function. Detailed information of the cell markers was recorded in
Supplementary Table 3.

Cell–cell communication analysis
To investigate potential interactions across different cell types in the TME,
cell–cell communication analysis was performed using CellPhoneDB, which
is a publicly available repository of curated receptors and ligands and their
interactions [46]. CellPhoneDB analysis was performed using the CellPho-
neDB Python package (2.1.7). Single-cell transcriptomic data of cells
annotated as Cancer stem cells, ductal cells type 1-5, macrophages, T cells,
NK cells and monocyte were input into CellPhoneDB for cell–cell
interaction analysis. Enriched receptor–ligand interactions between two
cell types were derived based on the expression of a receptor by one cell
type and the expression of the corresponding ligand by another cell type.
Then, we identified the most relevant cell type-specific interactions
between ligands and receptors, and only receptors and ligands expressed
in more than 10% of the cells in the corresponding subclusters were
considered.
Pairwise comparisons were performed between the included cell types.

We first randomly permuted the cluster labels of all cells 1000 times to
determine the mean of the average receptor and ligand expression levels
of the interacting clusters. This generated a null distribution for each
receptor–ligand pair. By calculating the proportion of the means that were
higher than the actual mean, a P value for the likelihood of the cell-type
specificity of the corresponding receptor–ligand complex was obtained.
We then selected interactions that were biologically relevant.

The regulon activity of TFs with SCENIC
The SCENIC algorithm had been developed to assess the regulatory
network analysis regard to TFs and discover regulons (that is, TFs and their
target genes) in individual cells. Log-normalized expression matrix with
gene names in rows and cells in columns generated using Seurat was input
to SCENIC (version 1.2.4) [47]. Then, motif dataset (hg19-tss-centered-10kb-
7species.mc9nr.feather) was used to construct regulons for each TF in
SCENIC. The co-expressed genes for each TF were constructed with
GENIE3 software, followed by Spearman’s correlation between the TF and
the potential targets, and then the “runSCENIC” procedure assisted to
generate the GRNs (also termed regulons). Finally, regulon activity was
analyzed by AUCell (Area Under the Curve) software, where a default
threshold was applied to binarize the specific regulons (“0” present “off” of
TFs, and “1” refer to “on”). Detailed information of the cell markers was
recorded in Supplementary Table 4.

Experimental validation
CFPAC-1 (metastatic pancreatic cell line) and three primary pancreatic
cancer cell lines (BxPC-3 cells, MiaPaCa-2 cells, and PANC-1 cells) were
purchased from the Cell Bank of the Type Culture Collection of the Chinese
Academy of Sciences, Shanghai Institute of Biochemistry and Cell Biology. All
cells utilized were free of mycoplasma contamination and regularly tested
for mycoplasma and purity of the culture by Short-tandem repeat
polymorphism analysis (STR) profiling. The cell lines were all cultured in
Roswell Park Memorial Institute (RPMI-1640) medium plus 10% fetal bovine
serum (FBS; Invitrogen, Carlsbad, CA, USA). All cell lines were grown without
antibiotics in a humidified atmosphere of 5% CO2 and 99% relative humidity
at 37 °C. Three different cell lines were subjected to quantitative real-time
polymerase chain reaction (qRT-PCR). Quantitative real-time PCR was
analyzed as described previously [48]. All samples were analyzed in
triplicates. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels
were used as the endogenous control and relative expression of LAMC2/
CSTB/HMGA1 was calculated using the 2-ΔΔCt method. The sequences of
primers used for PCR were as follows: LAMC2, 5′- TCGGGATACTCACAGGCT

Fig. 9 Validation of expression patterns of representative metastatic-related genes. Differentially expressed proteins of LAMC2 in normal
(A) and pancreatic cancer tissues (B) in the Human Protein Atlas database. Differentially expressed proteins of HMGA1 in normal (C) and
pancreatic cancer tissues (D) in the Human Protein Atlas database. Differentially expressed proteins of CSTB in normal (E) and pancreatic
cancer tissues (F) in the Human Protein Atlas database. G LAMC2 were overexpressed in metastatic cell lines relative to primary cell lines.
H HMGA1were overexpressed in metastatic cell lines relative to primary cell lines. I CSTB were overexpressed in metastatic cell lines relative to
primary cell lines. Enrichment of metastatic-related signaling pathways in primary/metastatic tumor samples. J Relative expression levels of
hub genes in metastatic-related signaling pathways were upregulated in metastatic lesions compared with primary samples. K GSVA
enrichment analysis showing the activation states of biological pathways in primary/metastatic PDAC samples. The heatmap was used to
visualize these biological processes, and yellow represented activated pathways and blue represented inhibited pathways.
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CATCAC-3′ (forward) and 5′- GTGGTCTGAGGCAGGAATGTTAGTG-3′ (reverse);
CSTB, 5′- GTGAGGTCCCAGCTTGAAGAGAAAG-3′ (forward) and 5′- GCGAC
CACCTGGCTCTTGAATG-3′ (reverse); HMGA1, 5′- CGAAGTGCCAACACCTAA
GAGACC-3′ (forward) and 5′-GATGCCCTCCTCTTCCTCCTTCTC-3′ (reverse);
and GAPDH, 5′- CAGGAGGCATTGCTGATGAT-3′ (forward) and 5′-GAAG
GCTGGGGCTCATTT-3′ (reverse).

Statistical analysis
All statistical analyses were performed using R (http://www.r-project.org).
We do not display each data point in all box and violin plots because a
large number of data points would obscure the overall distribution. A two-
sided paired or unpaired Student’s t-test and unpaired Wilcoxon rank-sum
test was used where indicated. P < 0.05 was considered to indicate
statistical significance.

DATA AVAILABILITY
The datasets generated for this study can be found in the GEO database (https://
www.ncbi.nlm.nih.gov/geo/) and the ICGC dataset (https://dcc.icgc.org/). All the data
generated or analyzed during this study are included in this article and its
supplementary information files or available from the author upon reasonable
request.

CODE AVAILABILITY
R and other custom scripts for analyzing data are available upon request.
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