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Costimulatory molecules have been proven to enhance antitumor immune responses, but their roles in clear cell renal cell

carcinoma (ccRCC) remain unexplored. In this study, we aimed to explore the gene expression profiles of costimulatory molecule
genes in ccRCC and construct a prognostic signature to improve treatment decision-making and clinical outcomes. We performed
the first comprehensive analysis of costimulatory molecules in patients with ccRCC and identified 13 costimulatory molecule genes
with prognostic values and diagnostic values. Consensus clustering analysis based on these 13 costimulatory molecular genes
showed different distribution patterns and prognostic differences for the two clusters identified. Then, a costimulatory molecule-
related signature was constructed based on these 13 costimulatory molecular genes, and validated in an external dataset, showing
good performance for predicting a patient’s prognosis. The signature was an independent risk factor for ccRCC patients and was
significantly correlated with patients’ clinical factors, which could be used as a complement for clinical factors. In addition, the
signature was associated with the tumor immune microenvironment and the response to immunotherapy. Patients identified as
high-risk based on our signature exhibited a high mutation frequency, a high level of immune cell infiltration, and an
immunosuppressive microenvironment. High-risk patients tended to have high cytolytic activity scores and immunophenoscore of
CTLA4 and PD1/PD-L1/PD-L2 blocker than low-risk patients, suggesting these patients may be more suitable for immunotherapy.

Therefore, our signature could provide clinicians with prognosis predictions and help guide treatment for ccRCC patients.

Cell Death Discovery (2021)7:252; https://doi.org/10.1038/541420-021-00646-2

INTRODUCTION
Renal cell carcinoma (RCC) is one of the most common
malignancies of the urinary system, estimating that 73,750 new
cases and 14,830 deaths will occur in the United States in 2020 [1].
Clear cell renal cell carcinoma (ccRCC), the most common
histological subtype, is the leading cause of death of RCC patients
[2]. A large proportion of patients occurred metastasis at diagnosis
owing to lacking characteristic clinical symptoms [3]. Approxi-
mately 30% of ccRCC patients developed recurrence and
progression despite surgical resection of the primary tumor
[4, 5]. Furthermore, ccRCC is chemo- and radio-resistant neoplasia
and alternative treatment options have been limited [6]. In recent
years, targeted therapies and immunotherapies have further
improved the prognosis of ccRCC. However, only a small
percentage of ccRCC patients can benefit from these therapies
[7, 8]. Therefore, identifications of new biomarkers to predict
patients’ survival and response to targeted therapies and
immunotherapies are urgently needed.

Immune checkpoint inhibition (ICl) has been added to the
armamentarium of metastatic RCC treatment, suggesting that ICl

was an effective strategy in the management of RCC [9]. However,
the objective response rate was low, and a part of patients
experienced drug resistance and disease progression after IC
treatment. Tumor-infiltrating immune cells are thought to be
partially relevant to this. Thus, a deeper understanding of the
tumor immune microenvironment will help us to improve ccRCC
patient outcomes. Previous studies have demonstrated the
therapeutic potential of costimulatory molecules in various cancer
[10]. Costimulatory molecules play vital roles in the regulation of
tumor immunity by affecting the activation and proliferation of
T cells [11, 12]. In addition, the most common ICl targets
programmed cell death protein 1 (PD-1) and programmed cell
death 1 ligand 1 (PD-L1) belong to the B7-CD28 family [13]. These
molecules provided potential therapeutic targets for the devel-
opment of novel ICls and might play important roles in the
regulation of the tumor immune microenvironment [11, 12].
However, the molecular functions of these costimulatory mole-
cules in ccRCC remain unclear.

In the present study, we systematically analyzed the expression
patterns and prognostic values of costimulatory molecules in ccRCC.
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Fig. 1 The flowchart of the present study design. The mRNA expression data of tumor and normal tissues were downloaded from TCGA
database and ArrayExpress database (E-MTAB-3267). Survival-related costimulatory molecules were obtained and the associations with tumor

immune microenvironment were evaluated.

Then, a prognostic signature for ccRCC patients was constructed. The
signature was an independent prognostic factor for patients’
prognosis and was characterized by distinct inflammatory profiles
and different tumor mutation frequencies. What's more, we further
evaluated the possible response to immunotherapy for different
ccRCC patients groups, which was classified according to the
costimulatory molecule-based signature.

RESULTS

Identification of costimulatory molecule genes with
prognostic value in ccRCC

The workflow of this study is demonstrated in Fig. 1. The
expression data of 60 costimulatory molecule genes in ccRCC,
including 13 B7-CD28 family genes and 47 TNF family genes, were
extracted from The Cancer Genome Atlas (TCGA) database. A total
of 42 costimulatory molecule genes were significantly associated
with the prognosis of ccRCC with P < 0.05 (Table S1). These genes
were further filtered using the least absolute shrinkage and
selection operator (LASSO) analysis, and 13 costimulatory mole-
cule genes were selected (Fig. S1A, B). Kaplan-Meier curves further
confirmed the prognostic values of each gene (Fig. 2). High
expressions of these genes (TNFSF14, TNFSF4, TNFRSF25,
TNFRSF6B, TNFRSF1A, RELT, and LTBR) were associated with a
poor prognosis, and low expressions of these genes (TNFRSF19,
TNFRSF10A, HHLA2, EDA, CD274, and TNFSF15) were associated
with a poor prognosis in ccRCC.

Cluster classification was associated with the malignancy of
ccRCC

To explore the overall prognostic value of these genes, we
performed a consensus clustering analysis to stratify ccRCC
patients. From the results, we found k=3 seemed to be a more
stable value from k=2 to 10 (Fig. 3A, B). Then, principal
component analysis (PCA) was executed to validate the reliability
of the cluster numbers (Fig. S2). We found that these samples had
high similarity and gathered together when k=4, and k=5. The
number of patients in cluster 2 was small when k = 3. Therefore,
we divided ccRCC patients into 2 clusters (Fig. S2). Kaplan-Meier
curves revealed that patients in cluster 2 showed a worse
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prognosis than that in cluster 1 (Fig. 3C). What's more, gene set
enrichment analysis (GSEA) showed that several immune-related
pathways were significantly enriched in cluster 2 (Fig. 3D).

Evaluation of the expressions and diagnostic values of
costimulatory molecule genes

The expression levels of 13 costimulatory molecule genes in ccRCC
were compared between normal and tumor samples
(Fig. 4). Genes, including RELT, TNFSF14, TNFRSF1A, HHLA2,
TNFRSF25, TNFSF4, TNFRSF6B, LTBR, and TNFRSF10A had high
expression levels, and TNFRSF19 and TNFSF15 had low expression
levels in tumor tissues compared with normal tissues. While, genes
including EDA, and CD274 showed no significant difference. The
diagnostic values of these genes for ccRCC were evaluated (Fig. S3A).
Genes, including TNFSF14, TNFRSF25, TNFRSF6B, TNFRSF1A, RELT,
LTBR, HHLA2, and TNFSF15 showed excellent diagnostic accuracy
with the area under the curve (AUC) > 0.85. Genes, including TNFSF4
and TNFRSF10A, showed well diagnostic accuracy with AUC > 0.70.
In addition, the mutation and copy number alteration of these genes
were evaluated using the cBioPortal online tool (based on TCGA,
Firehose Legacy), 31 samples out of 492 samples were found altered
(Fig. S3B). However, the mutation frequencies of all these genes were
lower than 2%, suggesting the alterations of mutation and copy
number were not the main reason for the expression changes.

Construction and validation of the prognostic signature based
on 13 costimulatory molecule genes

The risk score of a prognostic signature for ccRCC patients was
calculated using the expression profiles of 13 costimulatory
molecule genes multiplied by the coefficients from multivariate
Cox proportional hazards. The detailed formula was showed as
follows:

Risk score = (0.24649*RELT) + (0.07762*TNFSF14) +
—0.06576*EDA) + (0.23024*TNFRSF1A) + (—0.14268*HHLA2) +
0.05969*TNFRSF25) 4 (—0.05832*TNFRSF19) + (0.30355*TNFSF4) +
0.05369*TNFRSF6B) + (0.13797*LTBR) + (—0.02679*TNFSF15) +
—0.06274*TNFRSF10A) + (—0.08476*CD274)

Patients were divided into high-risk and low-risk groups
using the median risk score. Results showed high-risk patients
had a poor prognosis compared with low-risk patients (Fig. 5A).

—_— o~ —~
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Fig. 2 Survival analysis for thirteen costimulatory molecule genes. The Kaplan-Meier curves for the thirteen costimulatory molecule genes
in clear cell renal cell carcinoma from The Cancer Genome Atlas dataset, including TNFSF14, TNFSF4, TNFRSF25, TNFRSF6B, TNFRSF1A, RELT,

LTBR,TNFRSF19, TNFRSF10A, HHLA2, EDA, CD274, and TNFSF15.

A time-dependent receiver operating characteristic (ROC) curve
was used to evaluate the performance of the prognostic
signature (Fig. 5B). The AUCs of the ROC curves were 0.781 at
1 year, 0.729 at 2 years, 0.744 at 3 years, and 0.771 at 5 years,
showing the prognostic signature had moderate sensitivity and
specificity. PCA showed different distribution patterns for high-
risk and low-risk patients (Fig. 5C). Furthermore, the prognostic
signature was further validated in the E-MTAB-3267 dataset.
The risk score was calculated using the same formula, and
patients were divided into high-risk and low-risk with the
median value of the risk score. Kaplan-Meier curve showed
high-risk patients had poor prognoses compared with low-risk
patients (Fig. 5D). The AUCs of the ROC curves were 0.653 at 1
year, 0.811 at 2 years, and 0.797 at 3 years showing the
prognostic signature had moderate sensitivity and specificity
(Fig. 5E). PCA analysis showed different distribution patterns for
high-risk and low-risk patients in the E-MTAB-3267 dataset
(Fig. 5F). These results showed the reliability and stability of the
prognostic signature.

Associations between the prognostic signature and
clinicopathological factors of ccRCC

The heat map intuitively showed the expressions of 13
costimulatory molecule genes and the distributions of different
clinicopathological factors for ccRCC patients in the high-risk and
low-risk groups (Fig. 6A). The associations between the prognostic
signature and patients' clinical characteristics were calculated and
were shown in Table 1. Univariate Cox regression analysis revealed
that age, pathological stage, grade, T stage, N stage, M stage, and
risk score were risk factors for patients’ prognosis (Fig. 6B).
Multivariate Cox regression analysis showed that the risk score
was an independent risk factor for patients’ prognosis (Fig. 6C).
Patients were divided into different subgroups according to
clinical variables, and we found that ccRCC patients with high
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stage, high pathological T stage, advanced grade, node metas-
tasis, and dead status tended to have a high-risk score (Fig. 6D).
These results demonstrated that our prognostic signature was
closely correlated with the clinical factors of ccRCC.

Identification of the prognostic signature-related biological
pathways

To explore potential biological pathways for the prognostic
signature, genes that strongly correlated with the risk score of
the prognostic signature were selected. A total of 670 positively
correlated genes and 276 negatively correlated genes were
selected, and the results were shown in Fig. S4A. The results of
functional-enrichment analysis for Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways were
shown in Fig. S4B-E. The most enriched terms for biological
process, cellular components, and molecular function were
“mitotic nuclear division”, “cytosol” and “protein binding”,
respectively (Fig. S4B-D). According to the KEGG analysis, the
most significantly enriched term was “Valine, leucine, and
isoleucine degradation” (Fig. S4E).

The associations with the tumor immune microenvironment
The heat map showed significant differences in the immune cell
infiltrations between high-risk and low-risk patients (Fig. 7A). The
detailed differences for 28 immune cells were shown in the box
plots (Fig. 7B). Results showed high-risk patients had a high
percentage of various immune cells. Moreover, higher immune
scores and stromal scores were found in high-risk patients than
that in low-risk patients (Fig. 7C, D).

Differences in genomic alterations between high-risk and low-
risk patients

Results showed that high-risk patients had relatively higher
cytolytic activity (CYT) scores (Fig. 7E). However, tumor mutation
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Fig.3 Consensus clustering based on the 13 costimulatory molecule genes. A Consensus clustering cumulative distribution function (CDF)
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Fig. 5 Construction and validation of a costimulatory molecule-based prognostic signature. Kaplan—Meier curves for prognosis evaluation
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burden (TMB) and NeoAgs showed no significant difference
between high-risk and low-risk patients (Fig. 7F-G). What's more,
the top 20 mutated genes for high-risk (Fig. 7H) and low-risk (Fig.
71) patients were compared. The mutation frequencies of genes,
including KDM5C, TRIOBP, RYR3, ABCC6, PXDN, NF2, NDST4,
LRRIQ1, FN1, FAM135A, PTEN, MUC4, PRKDC, and BAP1 were
higher, and the mutation frequencies of MLLT4 and CNOT1 genes
were lower in a high-risk group (Fig. 7J). The immunophenoscore
(IPS) was used to evaluate the response to ICl therapy [14]. We
found IPS-CTLA4 and PD1/PD-L1/PD-L2 blockers were slightly
higher in the high-risk group compared with the low-risk group.
While, the IPS, IPS-PD1/PD-L1/PD-L2 blocker, IPS-CTLA4 blocker
showed no difference (Fig. 7K).

DISCUSSION

CcRCC has shown durable responses to ICI therapies, and
nivolumab has been approved as a second-line treatment for
metastatic RCC [15]. However, a large part of ccRCC patients does
not respond to ICl therapies. Thus, identification of biomarkers for
predicting response to ICl therapies and selection of the most
sensitive patients are key to increase response rates. Costimula-
tory molecules have been revealed to play an important role in
the progression of various tumors [16-18]. The roles of
costimulatory molecules in ccRCC remain to be explored. In the
present study, we systematically evaluated the roles of costimu-
latory molecules in ccRCC and selected 13 genes with prognostic
values to further study. Moreover, we constructed and validated a
new prognostic signature for ccRCC patients. To our knowledge,
the present study provides the first prognostic signature of
costimulatory molecules in patients with ccRCC. We found that
the prognostic signature was an independent risk factor for
ccRCC patients and was significantly correlated with patients’
clinical factors. Additionally, we found that our prognostic

Cell Death Discovery (2021)7:252

signature was associated with the tumor immune microenviron-
ment and the response to immunotherapy, which might provide
valuable clues for predicting patients’ prognosis and selections of
patients for immunotherapy.

The costimulatory molecules play an important role in the
regulation of tumor immunity [19, 20]. Monoclonal antibodies
targeted PD-1/PD-L1 (B7-H1) or B7-2/CTLA-4 pathways have
shown promise to induce durable tumor regressions in various
tumors [21, 22]. All these therapeutic targets belong to
costimulatory molecules. To explore the expression levels and
prognostic values of costimulatory molecules in ccRCC, we
acquired 13 members of the B7-CD28 family and 47 members
of the TNF family for ccRCC patients [23, 24]. Thirteen
costimulatory molecular genes (TNFSF14, TNFSF4, TNFRSF25,
TNFRSF6B, TNFRSF1A, RELT, LTBR, TNFRSF19, TNFRSF10A, HHLA2,
EDA, CD274, and TNFSF15) with prognostic values were selected.
TNFRSF6B was overexpressed in ccRCC and could promote
adhesion, migration, and invasiveness of tumor cells of ccRCC
[25]. TNFRSF1A was upregulated in ccRCC patients with tyrosine
kinase inhibitor resistance and was an independent predictive
factor for unfavorable response to tyrosine kinase inhibitor and
shorter survivals [26]. HHLA2 was highly expressed in ccRCC
tissues, which could function as a T-cell co-inhibitory factor to play
an immunosuppressive effect, promoting tumor migration and
invasion [27, 28]. CD274, namely PD-L1, is an effective therapeutic
target for ccRCC [29]. The expression of TNFSF15 in ccRCC was
markedly decreased and was more likely to be a tumor-
suppressive factor [30]. The functions of other costimulatory
molecules in ccRCC remain unclear. However, the roles of these
genes have been reported in other tumors. TNFSF14, also known
as LIGHT, has been used to treat multiple tumors in combination
with other immunotherapy modalities [31]. TNFSF4, also known as
OX40L, is a co-stimulatory checkpoint protein that could enhance
the anti-neoplastic activity of T cells [32]. TNFRSF25, also known as
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Table 1. Association between the risk score of costimulatory
molecules signature and patients' clinical characteristics.

Variables TCGA set Risk score P value
(n =522), n(%)
Low risk  High risk
(n=261) (n=261)
Age (mean * 60.4+12.0 59.7 £ 61.1+ 0.173
SD, years) 124 11.6
Stage <0.001
| 260 (49.8) 165 (63.5) 95 (36.5)
1l 55 (10.5) 30 (54.5) 25 (45.5)
1l 121 (23.2) 46 (38.0) 75 (62.0)
\% 83 (15.9) 19 (22.9) 64 (77.1)
Unknown 3 (0.6) 1(33.3) 2 (66.7)
Grade <0.001
G1 12 (2.3) 10 (83.3) 2 (16.7)
G2 225 (43.1) 148 (65.8) 77 (34.2)
G3 203 (38.9) 87 (42.9) 116 (57.1)
G4 74 (14.2) 11 (14.9) 63 (85.1)
Unknown 8 (1.5) 5 (62.5) 3 (37.5)
T stage <0.001
T1 266 (51.0) 167 (62.8) 99 (37.2)
T2 67 (12.8) 33 (49.3) 34 (50.7)
T3 178 (34.1) 60 (33.7) 118 (66.3)
T4 11 (2.1) 1(9.1) 10 (90.9)
N stage 0.019
NO/Nx 506 (96.9) 258 (51.0) 248 (49.0)
N1 16 (3.1) 3 (18.8) 13 (81.2)
M stage <0.001
MO/Mx 443 (84.9) 243 (54.9) 200 (45.1)
M1 79 (15.1) 18 (22.8) 61 (77.2)

DR3, plays essential roles in protective inflammation, autoimmune
diseases, and tumor immunotherapy [33]. RELT is significantly
upregulated in glioma and is associated with a poor prognosis
[34]. LTBR functions as a potential anti-tumor role by triggering
apoptosis of tumor cells or by eliciting anti-tumor immune
response [35]. TNFRSF19, also known as TROY, was inversely
correlated with patient survival and could stimulate glioblastoma
cell migration and invasion [36]. TNFRSF10A, also known as DR4,
has been reported to be involved in the pathogenesis of various
tumors [37]. These costimulatory molecular genes were new and
were needed to be investigated in ccRCC.

With the development of immunotherapy, identification of
biomarkers and selection of the most sensitive patients are urgently
needed to increase the response rates of immunotherapy. In the
present study, 13 costimulatory molecular genes were selected, and
consensus clustering analysis was performed to explore the overall
prognostic values. Kaplan-Meier curves showed a worse prognosis
of these patients in cluster 2. In addition, several immune-related
pathways were enriched in cluster 2, suggesting that these selected
genes were highly associated with the tumor immune microenvir-
onment. The worse prognosis in patients of cluster 2 might be
owing to the deficiency of immune system or immune defense
restricted. Moreover, a risk signature based on costimulatory
molecular genes may provide new insights for the clinical practice
of ccRCC patients. The risk signatures of costimulatory molecular
genes have been constructed in colorectal cancer [38], and lung
adenocarcinoma [39]. All these prognostic signatures were reliable
and showed good performance. As we know, we were the first to
construct the risk signature based on costimulatory molecular genes
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for ccRCC patients. The performance of our prognostic signature was
validated in TCGA and E-MTAB-3267 datasets, and all showed good
performance. We further found that the prognostic signature is
closely correlated with clinical factors, which could be applied as a
supplement for guiding treatment. We also selected genes highly
correlated with the risk score of our prognostic signature, and
functional enrichment analysis for these genes showed T cell
homeostasis and NF-kB signaling were enriched.

To further explore the associations between our signature and
tumor immune microenvironment, the immune cell infiltration
and tumor mutation profiles were compared between high-risk
and low-risk patients. Results showed that high-risk patients had
significantly greater infiltration of immune cells. In addition, the
infiltration of various immunosuppressive cells, including gamma
delta T cells, immature dendritic cells, macrophages, monocyte,
MDSCs, plasmacytoid dendritic cells, regulatory T cells (Treg), and
T follicular helper cells were also greater in high-risk patients,
suggesting the presence of an immunosuppressive microenviron-
ment in high-risk patients. The immunosuppressive microenviron-
ment is an important mechanism for tumor cells to escape
immune attacks and promote disease progression. MDSCs play
vital roles in suppressing the immune responses of T and NK cells
and stimulating Treg, propelling tumor immune escape and tumor
progression. MDSC can contribute to patient resistance to ICI [40],
and can be used to predict the response to sunitinib therapy or
cytokine therapy in ccRCC [41, 42]. Understanding the immune
microenvironment of each ccRCC patient can help us identify
patients who are more likely to benefit from immunotherapy, and
combine novel treatment strategies to improve treatment
response rates. TMB and the neoantigen load were tumor-
intrinsic factors for tumor immunogenicity and could be used as
biomarkers for evaluating the response to immunotherapy
[43, 44]. The IPS was a superior predictor of response to CTLA-4
and anti-PD-1 antibodies and was validated in two independent
cohorts [14]. In the present study, we found high-risk patients
tended to have high CYT scores and IPS-CTLA4 and PD1/PDL1/PD-
L2 blockers than low-risk patients. The TMB was tended to be
higher in the high-risk group compared with the low-risk group
despite the P value larger than 0.05. These results suggested high-
risk patients tended to have a “hot” immune microenvironment
and high mutational burden, which might increase immunogeni-
city, leading to a relatively higher response rate to immunother-
apy. However, the clinical study in the real world was needed to
confirm the above-speculated results.

Inevitably, there are several limitations in this study. The present
study mainly derived from public databases and was retro-
spective. The amount of available datasets with prognostic
information for ccRCC patients is limited so that the clinical
parameters analyzed in the present study are not comprehensive.
CcRCC patients with prognostic information in the real world are
needed to determine the values of the prognostic signature.
Secondly, genes enrolled in the present study were restricted to
the costimulatory molecules and the immune tumor microenvir-
onment has high spatial heterogeneity. Thus, the power of the
prognostic signature was limited. Moreover, the expression data of
costimulatory molecular genes in ccRCC patients with immu-
notherapy was not available. Therefore, the risk signature for
evaluating the response to immunotherapy was indirect. Future
prospective studies for ccRCC patients with immunotherapy were
needed to confirm the clinical application value of our signature.

In conclusion, we performed the first comprehensive analysis
of costimulatory molecules in ccRCC patients and identified 13
genes with prognostic and diagnostic values. We constructed
and validated a new prognostic signature for ccRCC patients
based on costimulatory molecules, and explored its potential
molecular mechanisms. Our prognostic signature could stratify
patients into two subgroups with different prognoses and
showed high associations with the clinical features. Moreover,
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patients identified as high risk based on our prognostic signature
exhibited a high mutation frequency, a high level of immune cell
infiltration, and an immunosuppressive microenvironment. Thus,
we believed that our signature could provide clinicians with
prognosis predictions and treatment guidance for ccRCC
patients.

SPRINGER NATURE

MATERIALS AND METHODS

Data collection and preprocessing

The RNA-sequencing data and the corresponding clinical dataset in the
TCGA database for ccRCC patients were obtained from UCSC Xena (https://
xenabrowser.net/). In addition, a total of 53 ccRCC patients in the E-MTAB-
3267 dataset from the ArrayExpress database (https://www.ebi.ac.uk/
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arrayexpress/) were used to validate our results. The detailed information
for data preprocessing is provided in the Supplementary materials and
methods.

Identification of costimulatory molecules with prognostic
significance in ccRCC

Univariate Cox regression analysis, Kaplan-Meier curves, and LASSO
analysis were conducted to select genes with prognostic values. The
detailed information is provided in the Supplementary materials and
methods.

Consensus clustering of survival-related costimulatory
molecule genes

To further explore the functions and prognostic values of the costimulatory
molecules in ccRCC, consensus clustering was performed with the
“ConsensusClusterPlus” R package [45]. The detailed information is
provided in the Supplementary materials and methods.

Construction and validation of a costimulatory molecule-
related prognostic signature

The costimulatory molecule-related prognostic signature was constructed,
and the detailed formula was shown as follows: Risk score = f3;*Exp; +
B2*Exp, + B*Exp;. B and Exp represent the coefficients from the multi-
variate Cox proportional hazards regression analysis and the expression
levels of selected genes, respectively. The detailed information is provided
in the Supplementary materials and methods.

Functional and pathway enrichment analysis

To explore signature-related biological pathways, genes that were strongly
correlated with the risk score (correlation coefficient |R|>0.5) were
obtained. A total of 670 positively correlated genes and 276 negatively
correlated genes were selected. The Database for Annotation, Visualization,
and Integrated Discovery (https://david.ncifcrc.gov/) was used to perform
GO and KEGG pathway enrichment analysis for these genes [46]. P < 0.05
was regarded as the cutoff value.

Estimation of the immune microenvironment composition
Single-sample gene set enrichment analysis (ssGSEA) was performed to
quantify the 28 types of immune cells [14]. The immune and stromal scores
for the total TCGA cohorts, reflecting the infiltration levels of non-tumor
cells, were calculated using the “ESTIMATE" package [47]. Differences in the
immune microenvironment composition were compared for the low-risk
and high-risk groups. The detailed information is provided in the
Supplementary materials and methods.

Comparison of significantly mutated genes and response to
ICls

TMB, the CYT score, the somatic mutation status data, and IPS for each
ccRCC patient were collected and compared between high-risk and low-
risk patients. The detailed information is provided in the Supplementary
materials and methods.

Statistical analyses

We performed a t-test or Wilcoxon test for comparisons of two variables.
Kaplan-Meier curves and log-rank tests were used to evaluate survival
differences. Univariate and multivariate Cox regression analyses were
performed to evaluate the prognostic values of costimulatory molecule
genes. Pearson’s chi-square test was used to evaluate differences in the
distribution of clinical factors for ccRCC patients. All these procedures
involved in the present study were conducted on R software. P < 0.05 was
considered to be statistically significant.

DATA AVAILABILITY

The data could be download at (https://portal.gdc.cancer.gov/, https://xenabrowser.
net/ and https://www.ebi.ac.uk/arrayexpress/; E-MTAB-3267) and the code used
during the current study are available from the corresponding author on reasonable
request.
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