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Radiation-induced liver injury (RILI) is a major complication of radiotherapy during treatment for liver cancer and other upper
abdominal malignant tumors that has poor pharmacological therapeutic options. A series of pathological changes can be induced
by radiation. However, the underlying mechanism of RILI remains unclear. Radiation can induce cell damage via direct energy
deposition or reactive free radical generation. Cellular senescence can be observed due to the DNA damage response (DDR) caused
by radiation. The senescence-associated secretory phenotype (SASP) secreted from senescent cells can cause chronic inflammation
and aggravate liver dysfunction for a long time. Oxidative stress further activates the signaling pathway of the inflammatory
response and affects cellular metabolism. miRNAs clearly have differential expression after radiation treatment and take part in RILI
development. This review aims to systematically profile the overall mechanism of RILI and the effects of radiation on hepatocyte
senescence, laying foundations for the development of new therapies.
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FACTS

● Normal tissue receiving radiation during radiotherapy or
radioscopy will suffer injury and metabolic alterations.

● Reactive oxygen species (ROS) directly and indirectly gener-
ated by radiation play an important role in liver injury
initiation and aggravation.

● Both hepatocytes and nonparenchymal cells are involved in RILI
progression via the activation of several signaling pathways.

QUESTIONS

● Why do ROS-targeted treatments exhibit controversial effects?
Is this result related to the state of the oxidation/reduction
system and timing after radiation?

● RILI is a complex process involving a variety of cells and
signals; can it be phased according to cellular biological
processes to find the best treatment method?

● The DNA damage response contributes to hepatocyte
senescence during RILI, so what are its differences and
common points compared with natural aging?

RADIATION
Radiation is defined as the transmission or emission of energy in the
form of waves or particles. It can immediately generate highly
reactive free radicals, resulting in rapid protein modifications and
damage to DNA, RNA, and cell membranes [1, 2]. The molecular
events after radiation are complicated and span a variety of

biological processes [1], including senescence [3–5], oxidative stress
[6], inflammation, the depletion of injured cells, and fibrosis [7].
The liver is a very important organ that participates in various

physiological functions, such as bile production, lipid metabolism,
glycometabolism, elimination of various waste products, immu-
nity, and plasma protein synthesis. While exposed to radiation due
to a nuclear accident or as an intended treatment for cancer, as a
radiosensitive organ, the liver may suffer from radiation-induced
liver injury (RILI), resulting in hepatitis, fibrosis, cirrhosis, and
cancer. Typical pathological appearances of RILI in humans are
perivenular fibrosis, sinusoidal obstruction, and damage to Kupffer
cells (KCs) and hepatocytes [8]. The severity of RILI depends upon
the nature of the radiation, the total exposure dose, the dose rate,
and the physical area of exposure [3].
RILI occurring in advanced liver cancer during radiotherapy,

particularly for a cirrhotic liver, can be potentially life-threatening.
Clinical practice to modify radiation parameters and prevent RILI
have been well described and applied during medical activities
[9, 10]; however, no pharmacological therapies have demonstrated
adequate effects to alleviate RILI once it has manifested clinically
[11]. Here, we aim to discuss the mechanism of RILI and the effects
of radiation on hepatocyte senescence, laying foundations for the
development of new pharmacological therapies.

RADIATION AND SENESCENCE
Senescence is a multistep, dynamic cellular process. Senescence-
inducing signals, such as oncogene activation, DNA damage, and
telomere shortening (replicative aging), can induce cell cycle
arrest and/or senescence initiation [12]. Senescent cells no longer
proliferate but remain metabolically active for a long time. Cellular
senescence is mainly characterized by a combination of multiple
markers, such as morphological and metabolic changes,
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expression of cell cycle inhibitors, senescence-associated-
β-galactosidase (SA-β-gal) activity, SASP activity, and changes in
the nuclear membrane [13].
Cellular senescence is considered a complication of radiation

following the activation of the DDR. This response provides cells
with the ability to sense and signal damage in its DNA, arrest cell
cycle progression (cell cycle checkpoints) and activate appropriate
DNA repair mechanisms, or eliminate cells with unrepairable
genomes [14]. When DNA damage is not successfully repaired, it
can result in senescence induction as a functional alternative to
apoptosis. DNA double-strand breaks (DSBs) are considered to be
the most serious type of DNA damage induced by radiation
[15, 16]. Key drivers of the DDR include ataxia telangiectasia
mutated (ATM), ataxia telangiectasia and Rad3-related (ATR), and
the DNA-dependent protein kinase catalytic subunit (DNA-PKcs)
[16]. Among them, ATM and DNA-PKcs are mainly activated by
DSBs [17]. Their phosphorylated substrates have important roles in
the functions of cell cycle checkpoints and cell death, as well as in
DSB repair [18]. For example, it has been reported that ATM can be
activated by radiation through intermolecular autophosphoryla-
tion and dimer dissociation [19]. Activated ATM kinase can
phosphorylate several proteins, such as p53, MDM2 and CHK2 in
the G1 checkpoint; NBS1, BRCA1, FANCD2 and SMC1 in transient
radiation-induced S-phase arrest; and Brca1 and hRad17 in the G2/
M checkpoint [19]. These substrates participate in radiation-
induced cell cycle arrest.
Le et al. [4] confirmed that after exposure to a sublethal dose of

radiation, the liver senescence markers P53-binding protein 1
(53BP1) and p16 peaked after a short period of time, then
gradually decreased, persisting for as long as 45 weeks. Damaged
cells were preferentially eliminated; however, a high level of
senescent markers remained compared with normal tissue.
Furthermore, experiments in p53 −/− mice and Rag2 −/− γC
−/− mice verified that the accumulation of senescent cells was
independent of p53 and an intact immune system.
The study by Serra et al. [20] showed that similar to 40% liver

mass hepatectomy, a single dose of 25 Gy radiation could induce
hepatocyte senescence in rats. Several markers of cell senescence
were upregulated in hepatocytes receiving radiation, including
the expression of SA-β-gal, an increase in cell size, upregulation of
p16 and p21, and activation of SASPs, such as IL6 and IL1α.
SASP secreted from senescent hepatocytes is regarded as the

main medium leading to changes in tissue homeostasis
and microenvironment. The expression and secretion of many
proinflammatory cytokines, chemokines, growth factors, and
proteases in senescent cells are termed the SASP. SASP can
reinforce senescence growth arrest in an autocrine manner or
promote the conversion of nonsenescent cells to senescent cells
in a paracrine manner [12, 13]. It may also directly or indirectly
promote chronic inflammation linked to metabolic dysregulation,
stem cell dysfunction, chronic diseases, and tumors [21].
In two different fibroblast cell strains, Marthandan et al. [22]

compared the corresponding transcriptional differences between
replicative and radiation-induced senescence. Despite the different
senescence-inducing signals, there was a high degree of similarity in
the differential gene expression, mainly involved in cell cycle
regulation. Additionally, compared to replicative senescence, they
found that the pathways associated with “DNA repair” and
“replication” were less stringently regulated in radiation-induced
senescence. Similarly, Aliper et al. [23] demonstrated a significant
concordance between radiation-induced and replicative-induced
senescence signals in fibroblasts. Additionally, they found that the
transcriptome of replicative senescent fibroblasts was more similar
to the transcriptome of cells receiving 2 Gy of radiation than those
receiving 5 cGy. In addition, the study by Casella et al. [24] confirmed
that senescence profiles were more dependent on the cell of origin
than on the method of induction. Accordingly, we supposed that for
a particular type of cell exposed to radiation, cell fate depends on

the radiation dose, while the senescent signal activated by radiation
is highly conserved compared with natural aging.
In general, radiation can induce cellular senescence via

activation of the DDR. Hepatic senescent cells accumulate after
radiation. The enlarged proportion of senescent cells results in the
loss of the regenerative and homeostatic capacities of the liver.
Furthermore, this creates a persistent proinflammatory micro-
environment, which plays an important role in the process of
fibrosis and tumorigenesis and aggravates the development of
RILI. Senolytic agent small molecules can selectively kill senescent
cells. The use of senolytic agents has been approved to improve
organ function after radiation-induced organ injury. ABT-737, a
small molecule inhibitor targeting the BCL-2, BCL-W and BCL-XL
proteins, can eliminate radiation-induced senescent cells in the
lung mediated by an increase in apoptosis [25]. In addition,
another senolytic agent, ABT-263, can selectively kill radiation-
induced senescent hematopoietic stem cells, promote the
expansion of normal hematopoietic stem cells, and abrogate
radiation-induced SASP secretion [26]. Treatment of radiated
mice with ABT-263 reduced senescent cell numbers and restored
a regenerative phenotype in the kidneys with increased tubular
proliferation and improved function [27]. Although there are
currently no relevant studies on RILI, senolytic agents are
beneficial in part by their ability to rejuvenate injured organs
and may represent a new method to ameliorate RILI.

OXIDATIVE STRESS
Radiation energy can result in radiolysis of water in cells and
tissues, which induces the immediate production of ROS and
reactive nitrogen species (RNS) [15, 28]. A few hours after
exposure, the oxidation/reduction system begins to produce free
radicals after the direct cellular damage that is caused by radiation
energy [6]. Eventually, cell and tissue damage occurs secondary to
the activation of a series of biological pathways (Fig. 1).
After exposure to radiation in the whole body or liver region,

cellular components such as proteins [3, 29], lipids [30, 31], and
nucleic acids [32, 33] undergo oxidative stress.
Protein carbonylation [3] and nitration [29, 34] are commonly

used markers of oxidative stress in liver proteins. As described by
Barshishat-Kupper et al. [3], total carbonylation increased after
radiation, reaching a peak 48 h after radiation. In addition, they
discovered that the carbonylation level of carbonic anhydrase 1, a-
enolase, and regucalcin specifically increased, which is associated
with metabolic alterations in hepatic functions [3]. Cumulative
protein carbonylation has been demonstrated to impair protein
structure and function [35] due to the inability to degrade these
extensively oxidized proteins, as well as protein nitration [36].
The lipid peroxidation level is estimated by measuring the levels

of lipid peroxidation (LPO) [37], methylenedioxyamphetamine
(MDA), 4-hydroxynonenal (4-HNE) [30], and thiobarbituric acid
reactive substance (TBARS) [31]. Membrane lipid peroxidation can
enhance the rigidity of membranes, decrease the activity of
membrane-bound enzymes, change membrane receptor activity,
and alter membrane permeability [15].
Numerous lesions can occur in DNA following radiation

exposure, including oxidized bases, the loss of bases, DNA-DNA
intrastrand adducts, DNA–DNA and DNA-protein crosslinks, single-
strand breaks (SSBs) and DSBs [15]. 53BP1 and γ-H2AX, which are
produced after DDR activation, are usually used as DNA damage
markers [4]. The common marker of DNA oxidation is 8-hydroxy-
deoxyguanosine (8-OHdG) [32].
Additionally, the activities of superoxide dismutase (SOD) [38],

catalase (CAT) and GSH transferase (GSH-T), the content of
reduced glutathione (GSH), and the ferric reducing antioxidant
power (FRAP) are diminished upon radiation exposure compared
with controls, while the activity of the detoxification enzyme
cytochrome P450 (CYP450) increases [31, 32].
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The increased expression of the markers mentioned above can
be observed hours after radiation and last for several weeks or
even months (Table 1).
Numerous studies have revealed that antioxidants can alleviate

the progression of RILI in both the short term and long term by

downregulating inflammatory reactions and apoptosis (Table 2)
[29–32, 37].
The study by Coleman et al. [29] confirmed that GC44401, a

highly specific superoxide dismutase mimic, could prevent super-
oxide anion (•O2−)-mediated acute liver injury in SIRT3 −/− mice

Table 1. RILI markers observed after radiation exposure.

RILI markers Response Observed time Type of
radiation

Dose Rf

ALT Increase 1d, 7d, 10d, 14d, 15d X-ray, γ-ray 5 Gy,6 Gy,6.5 Gy,7 Gy,9 Gy,10 Gy,15 Gy,30 Gy [30, 32, 33, 37–
39, 55, 100, 101]

AST Increase 1d, 7d, 10d, 14d, 15d X-ray, γ-ray 5 Gy,6 Gy,6.5 Gy,7 Gy,9 Gy,10 Gy,15 Gy,30 Gy [30, 32, 33, 37–
39, 55, 100, 101]

ALP Increase 1d, 3d, 5d, 10d, 15d X-ray,γ-ray 6 Gy,9 Gy,15 Gy,30 Gy [30, 32, 39, 100]

GGT Increase 1d, 14d, 15d γ-ray 6 Gy,9 Gy,10 Gy [32, 38, 100]

ROS Increase 10d X-ray 15 Gy [38, 55, 100, 101]

CAT Decrease 6 h, 1d, 2d, 7d, 15d X-ray, γ-ray 5 Gy,6 Gy,6.5 Gy,7 Gy,9 Gy [31, 32, 37, 55, 100–102]

CYP 450 Increase 1d, 7d γ-ray 5 Gy,7 Gy,9 Gy [32, 54, 101]

GSH Decrease 6 h, 1d, 2d, 7d, 15d γ-ray 5 Gy,6 Gy,6.5 Gy,7 Gy,9 Gy [31, 32, 37, 55, 100–102]

GSH-T Decrease 1d, 7d γ-ray 7 Gy,9 Gy [32, 101]

SOD Decrease 1d,7d, 14d, 15d γ-ray 5 Gy,6 Gy,7 Gy,10 Gy [30]

FRAP Decrease 6 h γ-ray 5 Gy [31]

Protein
carbonylation

Increase 1d X-ray, γ-ray 4 Gy,7 Gy,9 Gy [32, 103]

LPO Increase 7d γ-ray 6.5 Gy [37]

4-HNE Increase 10d X-ray 15 Gy [30]

MDA Increase 1d, 2d,7d, 10d,
14d, 15d

X-ray, γ-ray 4 Gy,6 Gy,7 Gy,9 Gy,10 Gy,15 Gy [30, 32, 38, 100–103]

TBARS Increase 6 h, 1d γ-ray 5 Gy [31, 55]

8-OHdG Increase 1–7d X-ray,γ-ray 9 Gy,30 Gy [32, 33]

53BP1 Increase 1d, 1w, 4w, 12w,
21w, 45w

X-ray 8 Gy [4]

ALT alanine transaminase, AST aspartate transaminase, ALP alkaline phosphatase, GGT gamma-glutamyltransferase, ROS reactive oxygen species, CAT catalase,
CYP 450 cytochrome P450, GSH reduced glutathione, GSH-T GSH transferase, SOD superoxide dismutase, FRAP ferric reducing antioxidant power, LPO lipid
peroxidation, 4-HNE 4-hydroxynonenal, MDA methylenedioxyamphetamine, TBRAS thiobarbituric acid reactive substance, 8-OHdG 8-hydroxy-deoxyguanosine,
53BP1 p53-binding protein 1

Fig. 1 Various biological processes are involved in RILI. After radiation exposure, excessive production of ROS in cells leads to oxidative
stress and inflammation, resulting in cell damage. DNA damage in the nucleus and mitochondria can aggravate cell damage by activating
cGAS-STING signal pathway. Cellular DNA damage response can participate in the occurrence and development of RILI by regulating the
expression of specific miRNA and inducing cell senescence. DDR: DNA damage response; ROS: Reactive oxygen species; SASP: senescence-
associated secretory phenotype; EVs: extracellular vesicles.
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exposed to whole-body γ-radiation. Another study pointed out that
in SIRT3 −/− mice, the activation of hydrogen peroxide- and
hydroperoxide-sensitive signaling cascades was involved in long-
term RILI [34]. However, Liu et al. [39] revealed that glibenclamide
elevated the cell membrane potential to upregulate intracellular ROS,
which subsequently activated the active (Akt)-nuclear factor kappa-B
(NF-κB) pathway to promote the survival of radiated hepatocytes.
The application of N-acetylcysteine (NAC), a specific ROS scavenger,
eliminated the protective effects of glibenclamide [39].
It seems that ROS is a double-edged sword in the development

of RILI, and its role is not fully understood.

GLUCOSE AND LIPID METABOLISM DISORDERS
The liver is the main organ and an important place of glucose and
lipid metabolism, including digestion, absorption, transportation,
catabolism, and anabolism, all of which are closely associated with
the liver. Hepatic steatosis and serum triglyceride level increases
are commonly observed after radiation [30, 40, 41].
Bakshi et al. [42] revealed that low-dose radiation could

immediately inhibit the expression of pyruvate kinase isozymes
(PKM), pyruvate dehydrogenase (PDH), dihydrolipoamide
S-acetyltransferase (DLAT), aldolase A (ALDO-A), and carnitine
acetyltransferase (CRAT), all of which are important enzymes for
glucose metabolic regulation. Early on, in the process of lipid
metabolism, peroxisomal acyl-coenzyme A oxidase 1 (ACOX1)
showed radiation-induced downregulation, whereas ACOX2 was
upregulated. In addition, they found late peroxisome proliferation-
activated receptor (PPAR)α-mediated metabolic alterations and
late increases in the levels of cytochrome P450 (CYP450) enzymes.
In mice that received low-dose radiation, damage to the
mitochondrial ultrastructure and lipid deposition in hepatocytes
increased compared with the nonirradiated controls, and much
more severe RILI was identified in ApoE −/− mice [43], indicating
RILI has an apparent association with lipid metabolism disorder.
Another study [44] identified that the contents of several

hepatic pentose cycle metabolites, including glucose-6-phos-
phate, mannose-6-phosphate, and mannose-1-phosphate,
increased after liver radiation. Glucose-6-phosphate is involved
in glycolysis, glycogen metabolism, and the oxidative limb of the
pentose phosphate pathway (PPP). NADPH produced by PPP can
participate in biosynthetic pathways, such as fatty acid synthesis,
and suppress ROS via the reduction of glutathione. Moreover,
hepatic malate and fumarate contents were found to be
significantly decreased, indicating a decrease in TCA cycle
function.

INFLAMMATION, DEPLETION OF INJURED CELLS, AND
FIBROSIS
Inflammatory responses play a significant role in RILI (Fig. 2).
Nuclear and mitochondrial DNA damage resulting from direct
exposure to radiation or ROS leads to cell death via processes such
as mitotic catastrophe, apoptosis, and primary and secondary
necrosis [45] (Fig. 1). Necrosis can initiate the release of
inflammatory cytokines [38], while apoptosis may cause the
release of anti-inflammatory cytokines, including transforming
growth factor (TGF)-β1 [6, 46, 47]. RILI ultimately translates into
liver fibrosis due to the loss of hepatocytes and repair processes.
In a mouse model receiving stereotactic body radiation therapy,

pathological changes, weight loss, and increases in serum hepatic
enzymes were radiation dose-dependent in the range of 20 to
35 Gy [48], while also activating the apoptosis signal [33, 48] and
autophagy signal [33]. Intralobular spotty necrosis and/or neu-
trophil infiltration around the vasculature were observed in the
mouse livers in the 30 or 35 Gy groups [48].
Radiation can upregulate the expression of Toll-like receptor

(TLR)4 in liver parenchymal and nonparenchymal cells (NPCs) and
promote activation of the TLR4 signaling pathway [49, 50]. The
activation of TLR4 signaling contributes to the secretion of
inflammatory factors, such as tumor necrosis factor (TNF)-α,

Table 2. Antioxidants alleviate the progression of RILI.

Antioxidants Natural or
synthetic

Mechanism RILI models Type of
radiation

Dose Ref

Salen Mn complex (EUK-
189 and EUK-207) and Mn
porphyrins

Synthetic Novel Synthetic SOD/Catalase
Mimetics possess superoxide
dismutase (SOD), catalase and
peroxidase activities.

Capillary
endothelial cells

X-ray 2-50 Gy [28]

GC4401 Synthetic Highly specific superoxide
dismutase mimic

Mice γ-ray 4 Gy [29]

P. ginseng water extract Natural / Mice X-ray 15 Gy [30]

Epicatechin Natural / Mice γ-ray 5 Gy [31]

Betaine Natural / Rats γ-ray 9 Gy [32]

Date syrup Natural / Rats γ-ray 6 Gy [102]

Persimmon leaf Natural / Rats γ-ray 6 Gy [100]

Grape seed oil Natural / Rats γ-ray 7 Gy [101]

Flaxseed oil Natural / Mice γ-ray 5 Gy [96]

Astragalus polysaccharide Natural / Mice γ-ray 5 Gy [55]

Fig. 2 The activation of inflammatory response pathways in a
variety of cells is involved in the development of RILI. Radiation
directly induces hepatocyte injury through oxidative stress and
inflammatory response and then aggravates liver injury by activat-
ing liver Kupffer cells and recruiting circulating immune cells to
infiltrate and activate. In the late stage of RILI, NPCs and HSC are
involved in the process of liver fibrosis mainly mediated by TGF-β1.
NPC: nonparenchymal cell; HSC: hepatic stellate cells.
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interleukin (IL)−1, IL-6, and cytokines [51], which subsequently
elevates the infiltration of inflammatory cells, resulting in liver
inflammation and injury [49, 52, 53].
NF-κB, which plays a predominant role in inflammation [54], can

be activated by oxidative stress [55] and interacts with inflamma-
tion via a very complex mechanism. ROS can activate the NF-κB
signaling pathway along with proinflammatory cytokines in RILI
[6, 54, 56]. IL-6 and TNF-α secretion induced by NF-κB signaling
can further aggravate inflammatory damage [54]. Radiation
upregulates the expression of NF-κB-related genes (TRAF6, NIK,
RELB, IKK, RELA) involved in both canonical and noncanonical NF-
κB pathways [57] in hepatocytes and NPCs [56]. In addition,
increased RelA(p65) expression [55], as well as nuclear transloca-
tion [31, 39], has been observed in RILI. Several studies have
confirmed that anti-inflammatory and antioxidant agents can
alleviate the development of RILI accompanied by decreased NF-
κB expression [31, 55].
Genomic instability triggers the inflammatory response. Recent

studies revealed that the cytosolic DNA sensing pathway
has emerged as the major link between DNA damage and
innate immunity [58, 59]. The cyclic GMP-AMP synthase
(cGAS)–stimulator of interferon genes (STING) pathway connects
DNA damage to inflammation [60]. After radiation, a large quantity
of free double-stranded DNA (dsDNA) is released by injured
hepatocytes. cGAS-STING signaling is rapidly activated by dsDNA
in liver NPCs, causing interferon (IFN)-I production and release and
concomitant hepatocyte damage [56]. Additionally, the activation
of cGAS-STING can upregulate NF-κB (p50/p65) nuclear transloca-
tion and transcriptional activity [59, 61].
KCs are also involved in the development of RILI. After radiation

exposure, TNF-α secretion increases in KCs, and the level of TNFR1
increases in hepatocytes [62]. Antisense oligonucleotide inhibition
of TNF-α has been suggested to attenuate apoptosis in RILI [62]. In
another study, the authors noted that GdCl3, a selective inhibitor
of KCs, could reduce radiation-induced IL-1β, IL-6, and TNF-α
production and ameliorate acute RILI [63]. GdCl3 pretreatment
decreased the number of apoptotic hepatocytes and liver
sinusoidal endothelial cells (LSECs) and also decreased hepatic
steatosis [63]. Therefore, KC-derived TNF-α and the subsequent
activation of TNFR1 in hepatocytes promote the development
of RILI.
TGF-β1 is a cytokine that regulates the production, degradation,

and accumulation of extracellular matrix (ECM) proteins. It plays a
pivotal role in fibrosis that follows tissue damage in many vital
organs and tissues, and its levels correlate with the degree of
fibrosis [64]. TGF-β1 expression is significantly increased in the
liver following radiation and the development of fibrosis [40, 41],
and the extent of fibrosis correlates with the magnitude of this
increase [65]. Certain inflammatory cells, hepatic stellate cells
(HSCs), mesenchymal cells and epithelial cells may be involved in
the intricate process of radiation‑induced liver fibrosis by acting as
cellular sources of active TGF-β1 [39, 66, 67]. TGF-β1 can induce
fibrosis via activation of both the canonical and noncanonical
signaling pathways, which results in the activation of myofibro-
blasts, excessive production of ECM and inhibition of ECM
degradation [64]. Excess ROS generated from radiation can disrupt
the noncovalent bonds between latency-associated peptide (LAP)
and TGF-β1; afterward, activated TGF-β1 results in the phosphor-
ylation and activation of small mothers against decapentaplegic
(SMAD) after binding to the receptor [7]. Then, the complex
consisting of SMAD4 and phosphorylated SMAD2 and SMAD3
translocates to the nucleus to transcribe specific genes. SMAD3
can exert profibrotic functions in several ways [64]: (1) it can bind
directly to gene promoters to induce transcription of profibrotic
molecules, including α-smooth muscle actin (α-SMA), collagen I
and tissue inhibitor of matrix metalloproteinases (TIMP), which
results in myofibroblast activation and matrix deposition; (2)
SMAD3 can induce transcription of profibrotic microRNA (miRNA)

and long noncoding RNA (lncRNA) to inhibit the transcription of
antifibrotic miRNAs; and (3) SMAD3 can increase the transcription
of profibrotic molecules by influencing epigenetic modifications of
DNA and histone proteins. The canonical pathway of TGF-β1-
SMAD is referred to as the core axis that induces the differentia-
tion of fibroblasts to myofibroblasts in several organs. It is crucial
to the initiation and/or perpetuation of radiation-induced fibrosis
[7, 66]. Additionally, ROS can regulate TGF-β1 signaling via
noncanonical (SMAD-independent) mechanisms that are essential
for normal profibrotic gene expression in many systems [68].
Furthermore, TGF-β1 can stimulate prolonged production of ROS
in hepatocytes [69]. This positive feedback may aggravate the
development and pathogenesis of late radiation-induced fibrosis
in normal tissues. Inhibition of TGF-β signaling using soluble TGF-β
type II receptor protein attenuates radiation-induced liver fibrosis
in rats [65]. Hu et al. [70] reported that paeoniflorin treatment can
attenuate radiation-induced hepatic fibrosis by inhibiting the TGF-
β1-SMAD signaling pathway. Xiao et al. [68] declared that HSC
activation, the central link of fibrosis, could be triggered by the
TGF-β1-mediated PI3K/Akt signaling (noncanonical) pathway after
radiation.
Wang et al. [40] found that activity of the Hedgehog (Hh)

pathway increased in response to RILI and induced compensatory
proliferation of liver progenitors and myofibroblastic hepatic
stellate cells (MF-HSCs), thereby promoting liver fibrosis. Six weeks
after a single dose of radiation, the RNA expression of ihh (a Hh
ligand), smo (a Hh receptor), and gli2 (a Hh target gene) showed a
great increase. The levels of liver triglycerides, TGF-β, α-SMA, and
collagen α1 increased, whereas the level of bone morphogenetic
protein (BMP)7 decreased. Ten weeks after single-dose radiation,
RNA expression of shh (another Hh ligand), Smo, and Gli2 steadily
increased with obvious liver fibrosis [40]. Similarly, in a fractio-
nated radiation mouse model, the Hh pathway was upregulated in
acute and chronic RILI with elevated hepatocyte apoptosis and
fibrosis [71]. Moreover, a Hh inhibitor decreased liver Hh activity in
irradiated mice and attenuated the proliferation of hepatic
progenitors, liver injury, and fibrosis [40].

RADIATION AND MICRORNAS
miRNAs play important roles in the regulation of diverse biological
effects, such as cell proliferation, apoptosis, differentiation, and
cell responses to environmental stimulation, including radiation
[72, 73]. They exert their regulatory effects at the posttranscrip-
tional level by binding to target genes via base pairing with the
mRNA 3′ untranslated region (3′ UTR) to downregulate protein
expression.
DNA damage caused by radiation can induce miRNA expression

in an ATM kinase-dependent manner [74]. Activated ATM kinase
induced by DSBs phosphorylates transcription factors, such as
cAMP response element-binding protein (CREB) and p53, which
are responsible for a large portion of miRNA expression by binding
to the promoter region [74]. In addition, activated ATM kinase can
posttranscriptionally regulate the biogenesis of many miRNAs
through phosphorylation of breast cancer 1 (BRCA1) and KH-type
splicing regulatory protein (KSRP), both of which are key
components of both the Drosha and Dicer complexes [74]. Little
is known about the regulatory mechanisms of ATM-independent
miRNAs.
In an RILI mouse model, 48 differentially expressed miRNAs

were identified through high-throughput deep sequencing
technology and compared with mice that did not receive radiation
[73]. Further analysis revealed that the predictive target genes of
these miRNAs took part in an extensive range of biological effects,
including transcription, modification, cell proliferation, and repair
[73]. Additionally, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways associated with radiation-induced differentially
expressed miRNAs included “Pathways in cancer”, “TGF-β
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signaling”, “MAPK signaling”, “Focal adhesion”, “Apoptosis” and
the “Wnt signaling pathway” [75].
Radiation increases miR-34a expression in the liver without a

relationship between the expression level and radiation dose
[73, 76]. miR-34a, a p53 transcriptional target, can induce p53-
mediated apoptosis, cell cycle arrest in the G1 phase and
senescence [76]. In addition, miR-34a can activate p53 by directly
inhibiting SIRT1 and HDM4 [77, 78], a potent negative regulator of
p53, and indirectly inhibiting HDM2 [77]. Therefore, miR-34a can
increase p53 protein levels and stability, creating a positive
feedback loop that acts on p53 [78]. In addition, miR-34a regulates
a variety of target genes involved in the cell cycle, cell
proliferation, senescence, migration, and invasion [77]. For
example, miR-34a can regulate cell apoptosis by influencing the
phosphorylated key protein levels in mitogen-activated protein
kinase (MAPK) signaling through mediating MAP3K9 [79] and
MAP3K10 [80] expression. In addition, miR-34a can induce cell
cycle arrest, especially during cell proliferation and senescence, by
interacting with its target genes N-MYC, CCND1, CCNE2, CDK4,
CDK6, and MET [81–83]. It has been confirmed that miR-34a can
induce cell senescence through four main methods: the p53/miR-
34a/SIRT1 axis, the miR-34a/E2F/RB axis, the miR-34a/HBP1/RAS
axis and the miR-34a/MAPK/p16 axis [77]. In normal tissue
receiving radiation exposure, miR-34a can aggravate tissue injury
by promoting DNA damage, cytokine production, and cell
senescence or suppressing cell cycle progression and antioxidant
molecules [76]. Chen et al. [84] reported that overexpression of
miR-34a-5p directly reduced the expression of Krüppel-like factor
4 (KLF4) and induced hepatocyte apoptosis after radiation
exposure.
In mice fed a high-fat diet, the expression of miR-466e-5p was

upregulated, while a miR-466e inhibitor can counteract free fatty
acid-triggered radiation sensitization [75].
miR-146a-5p is a key regulator of lipopolysaccharide (LPS)/

TLR4 signaling. Chen et al. [50] found that miR-146a-5p was
upregulated in HSCs after radiation. Overexpression of miR-146a-
5p, which attenuates hepatocyte apoptosis and liver fibrosis, can
inhibit cell proliferation, proinflammatory cytokine secretion, and
cell activation in radiated HSCs by downregulating the expression
of TLR4 [50].
Fu et al. [85] demonstrated that miR-495 was downregulated

after radiation. Overexpression of miR-495 could alleviate RILI by
targeting the transcription factor 1 (Sp1)/endothelial nitric oxide
synthase (eNOS) pathway. Consequently, nitric oxide (NO) and its
downstream product TGF-β1 were inhibited after radiation-
induced injury.
Extracellular vesicles (EVs), such as exosomes and microvesicles,

are cell-derived membranous surrounding vesicles [86]. Most cells
can release EVs for intercellular communication [87]. The contents

of EVs comprise proteins, messenger RNAs (mRNAs), miRNAs and
DNA derived from the cell of origin; therefore, EVs are cell type-
and cell condition-specific. miRNAs in EVs can be delivered to
bystander cells to exert regulatory functions [87]. For example,
senescent cells can release senescence-associated miRNAs
shuttled by EVs to spread prosenescence signals [88, 89]. Radiation
can promote EV release in a dose-dependent manner [90].
However, studies focusing on radiation-induced changes in EV
content are limited. miR-21 and miR-34c transferred by EVs from
radiated cells can mediate bystander effects in nonradiated cells
[91, 92]. miRNAs in mesenchymal stem cell (MSC)-derived EVs also
play an important role in radiation-induced injury. miR-214-3p
transferred to MSC-derived EVs attenuates radiation-induced
injury of endothelial cells in the lung by inhibiting the ATM/p53/
p21 signaling pathway and SASP development [93]. miR-214 in
human neural stem cell-derived EVs ameliorates radiation-induced
brain injury [94]. However, data on miRNA-mediated intercellular
communication and therapy during RILI are lacking.
Overall, miRNAs induced by radiation can participate in the

development of RILI by binding to diverse target genes and
exerting complex effects (Table 3). In addition, miRNAs can also be
transferred from donor cells to bystander cells by EVs to promote
RILI development. In addition, specific miRNAs in MSC-derived EVs
may provide a new avenue to minimize RILI. Further investigations
should be conducted to explore the potential functions of miRNAs.

CONCLUSION AND FUTURE DIRECTIONS
The present study aimed to profile the overall mechanism of RILI
and the effects of radiation on hepatocyte senescence. RILI is a
major complication of radiotherapy for the treatment of liver
cancer and other upper abdominal malignant tumors [11, 95]. RILI
can increase the risk of liver dysfunction and liver failure and
seriously affect subsequent treatments and prognosis [11].
Lacking pharmacological therapies, the management of RILI
remains a major problem in clinical practice.
DNA damage caused by radiation is the main reason for cell

senescence in RILI [4, 20]. Additionally, the death of numerous
hepatocytes caused by radiation may increase the effects of
replicative aging. Senescence can deteriorate liver function, cell
viability and tissue regeneration under pathological conditions.
Hepatic senescence without proliferative ability causes the liver to
be much more susceptible to harmful factors and may contribute
to the deterioration of RILI. SASP secreted from senescent cells can
lead to changes in tissue homeostasis and the microenvironment.
Senescent cell elimination has been proven to be beneficial to
radiation-induced injury in several studies. Although evidence on
RILI is still lacking, treatment with senolytic agents is a very
promising method.

Table 3. MiRNA involved in RILI.

miRNA Mechanism Biological effect Response Ref

miR-34a Increase p53 protein levels and stability,
and create a positive feedback loop acting
on p53.

Induce p53 mediated apoptosis, cell cycle
arrest in the G1 phase, and senescence,
senescence, migration, and invasion.

Increase [45, 48, 49]

miR-34a-5p Reduces the mRNA and protein levels
of KLF4.

Negatively regulate KLF4 expression and
promote apoptosis.

Increase [50]

miR-466e-5p Might involve lipid metabolism. Modulate radiation responses in diet-
induced obesity.

/ [47]

miR-146a-5p Inhibit the TLR4 signaling pathway. Attenuate radiation-induced hepatic
stellate cell activation and hepatocyte
apoptosis

Increase [35]

miR-495 Indirectly downregulate eNOS and NO
production via targeting Sp1 and inhibit
NO and its downstream product TGF -β1.

Alleviate cell injury. Decrease [51]
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After radiation exposure, the oxidative and antioxidant balance
in the liver is impaired [6, 15, 28]. Oxidative stress results in
structural changes and the dysfunction of proteins, lipids and
nucleic acids and alters cell survival and metabolism. Interestingly,
the effects of ROS are controversial. Various antioxidants have
been confirmed to alleviate the progression of RILI by acting as
ROS scavengers [28, 55, 96, 97]. Moreover, glibenclamide activates
Akt-NF-κB signaling by upregulating cellular ROS, benefiting
hepatocyte survival [39]. ROS form as a natural byproduct of
normal oxygen metabolism, participating in cell signal transduc-
tion and homeostasis under physiological conditions. Therefore,
compared with simply eliminating ROS, readdressing the balance
of the oxidation/reduction system is the dominant direction
in RILI.
Glucose and lipid metabolism disorders are observed even after

low-dose radiation, and the effects will last a long time.
Additionally, livers suffering from lipid metabolism disorder are
more sensitive to RILI [43]. Attention needs to be paid to basic liver
conditions when receiving abdominal radiotherapy or radiation
exposure.
Hepatocyte necrosis and apoptosis occur after high-dose

radiation, which activates the inflammatory response in the liver
via numerous pathways [41, 51, 54]. The interaction between
injured hepatocytes and liver NPCs promotes the process of
inflammation and liver fibrosis through the activation of several
critical pathways [56, 63]. Interventions aimed at the TNF-α, NF-κB,
TGF-β, and Hh pathways can alleviate RILI. Similarly, inflammatory
signal activation has two sides during the progression of RILI. On
the one hand, it can aggravate liver injury in the early stage of RILI.
On the other hand, it is necessary for organ proliferation and
repair after severe damage [98]. You et al. [99] confirmed that the
combined absence of KCs and infiltrating macrophages resulted in
a marked delay in liver repair after acetaminophen-induced liver
injury.
Radiation-induced miRNAs participate in preventing or promot-

ing RILI via interactions with their target genes [73]. In addition to
intracellular regulatory effects, miRNAs delivered by EVs, impor-
tant mediums of cellular communication, may play an important
role in nonradiative cell injury during RILI. miRNAs are widely
involved in the regulation of oxidative stress, inflammation and
aging. The regulatory role of miRNAs on radiosensitivity allows
them to have the potential to be useful in clinical radiotherapy.
RILI is a multistep, dynamic process that involves a complicated

network in which oxidative stress, inflammation, cell death,
fibrosis, miRNAs and senescence interact via the regulation of
multiple pathways. Restoring cellular homeostasis is critical for its
treatment. The mechanism underlying RILI is not yet fully
understood, highlighting the significance of continued research
to clarify the role of different pathways in various liver cells. Future
research on RILI is necessary to develop novel therapeutic
interventions.
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