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How does mTOR sense glucose starvation?
AMPK is the usual suspect
Gabriel Leprivier1 and Barak Rotblat 2

Abstract
Glucose is a major requirement for biological life. Its concentration is constantly sensed at the cellular level, allowing
for adequate responses to any changes of glucose availability. Such responses are mediated by key sensors and
signaling pathway components that adapt cellular metabolism to glucose levels. One of the major hubs of these
responses is mechanistic target of rapamycin (mTOR) kinase, which forms the mTORC1 and mTORC2 protein
complexes. Under physiological glucose concentrations, mTORC1 is activated and stimulates a number of proteins and
enzymes involved in anabolic processes, while restricting the autophagic process. Conversely, when glucose levels are
low, mTORC1 is inhibited, in turn leading to the repression of numerous anabolic processes, sparing ATP and
antioxidants. Understanding how mTORC1 activity is regulated by glucose is not only important to better delineate
the biological function of mTOR, but also to highlight potential therapeutic strategies for treating diseases
characterized by deregulated glucose availability, as is the case of cancer. In this perspective, we depict the different
sensors and upstream proteins responsible of controlling mTORC1 activity in response to changes in glucose
concentration. This includes the major energy sensor AMP-activated protein kinase (AMPK), as well as other
independent players. The impact of such modes of regulation of mTORC1 on cellular processes is also discussed.

Facts

● mTORC1 is inhibited by AMPK-dependent and
-independent mechanisms upon glucose depletion.

● mTORC1 recruitment to the lysosomal membrane is
critical for mTORC1 activation in response to glucose.

● mTORC1 accommodates the activity of key anabolic
processes to glucose availability.

Open questions

● How do the known glucose sensors actually sense
glucose and what are the other glucose sensors
governing mTORC1 activity?

● Is the mTOR response to glucose availability
quantitative or qualitative?

● How can we take advantage of the upstream
regulation of mTORC1 by glucose to design novel
anticancer strategies?

Glucose fuels organismal life. Organisms have evolved
sophisticated biological mechanisms to sense and respond
to changes in glucose availability. At the cellular level,
there are key molecules that sense glucose levels and
control the activity of specific signaling pathways that
adapt cellular metabolism to the amount of available
glucose.
One of the major hubs of glucose-sensing pathways is

the highly conserved mechanistic target of rapamycin
(mTOR) kinase, which is found in one or both of the
protein complexes mTORC1/mTORC2 (ref. 1). During
periods of glucose availability, mTORC1 is activated and
phosphorylates a number of downstream targets to sti-
mulate anabolic processes, including protein, nucleotide,
and lipid syntheses, while blocking the catabolic process
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of autophagy2. This promotes mTORC1-driven cell
growth and proliferation3,4. During times of glucose
scarcity, mTORC1 is inhibited, leading to the blocking of
the above-mentioned anabolic processes in conjunction
with an induction of autophagy, resulting in the restric-
tion of cell growth and proliferation2. This response is
critical to preserve energy—protein synthesis being the
most ATP consuming process in the cell5—as well as
antioxidants, and therefore to preserve cell viability under
such stress condition6. Indeed, failure to inactivate
mTORC1 under glucose-deprived conditions leads to
ATP depletion, in part due to abnormal protein synthesis
activity, and cell death, indicating that mTORC1 inhibi-
tion is absolutely required to support cell survival during
glucose shortage7–9.
The regulation of mTORC1 by glucose has pathological

implications, as mTORC1 has been found to be deregu-
lated in diseases characterized by abnormal glucose
metabolism10. This is the case in cancer, whose micro-
environment is characterized by poor glucose supply due
to defective and inefficient tumor vasculature11. Since
mTORC1 has been reported to be consistently overactive
in various cancers10, and based on its pro-anabolic
properties, it has been proposed as a therapeutic target
for these diseases. While a number of mTORC1 inhibitors
have been tested in a wide range of cancer types, their
usage in clinics is currently rather limited12, in particular
due to emergence of resistance13. Additionally, this is
likely explained by the observation that mTORC1 inhi-
bition mediates tumor cells protection against conditions
of glucose deprivation7,8, commonly encountered within
the tumor microenvironment. This was well illustrated by
Palm et al., who demonstrated that in a mouse model of
pancreatic cancer, the mTORC1 inhibitor rapamycin
rather promotes proliferation of tumor cells located in
poorly vascularized areas of the tumor14. Therefore,

taking advantage of the current understanding of the
regulation of mTORC1 by glucose, an attractive antic-
ancer strategy would be to interfere with the repression of
mTORC1 activity under glucose deprivation to prevent
metabolic adaptation mediated by mTORC1 inhibition.
An important question that remains is how mTORC1

activity is controlled by glucose levels and which sensors
are involved. While this has been well characterized in the
case of amino acids, there is currently no clear overall
picture for mTORC1 control in response to glucose.
Here, we depict the currently known upstream com-

ponents and regulators of mTORC1 activity in response
to glucose, offering possible suspects for the role of the
glucose deprivation sensors that could represent potential
therapeutic targets.

AMPK
One of the best characterized upstream regulators of

mTORC1 activity in response to glucose is the energy
sensor AMP-activated protein kinase (AMPK). Under
glucose shortage, which induces energy depletion, AMPK
directly senses increases in AMP:ATP and ADP:ATP
ratios, leading to its activation15–17. The current model is
that AMPK inhibits mTORC1 in response to glucose
starvation through the phosphorylation and activation of
the mTOR negative regulator tuberous sclerosis complex
2 (TSC2)18, on one hand, and through the phosphoryla-
tion and inhibition of the mTORC1 component
regulatory-associated protein of mTOR (Raptor)19, on the
other hand (Fig. 1). Such regulation was demonstrated to
inhibit protein synthesis and cell cycle progression, con-
trolling cell size and preventing apoptosis, downstream of
mTORC1 inhibition, at times of energy crisis7,18,19. These
findings provide further support to the model whereby
mTORC1 senses glucose deprivation through AMPK.
Nevertheless, in AMPK knockout cells, mTORC1 is still

Fig. 1 AMPK, Rag GTPases, GADD34, and TBC1D7 regulation of mTORC1 in response to glucose levels. Orange corresponds to active
molecules; gray corresponds to inactive molecules.
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inactivated upon glucose starvation, indicating that
AMPK is not essential for glucose sensing by mTORC1
(refs. 20,21) and therefore that other sensors of glucose
levels control mTORC1.

Rag GTPases and lysosomal v-ATPase
mTORC1 is regulated by a complex of the Ras-related

GTPases (RagA–D), functioning as heterodimers of RagA
or B interacting with RagC or D, with an important
function in the response to amino acids10. Upon GTP
loading of RagA and B, and GDP loading of RagC and D,
mTORC1 is recruited to the surface of the lysosome
where it is activated by Rheb22. This latter protein is a
major regulator of mTORC1 activity that is directly under
the repressive control of TSC1/2 (ref. 23). Some evidence
suggests that Rag GTPases may also contribute to
mTORC1 regulation by glucose. Indeed, overexpression
of constitutively active GTP-bound RagA was found to
increase cell sensitivity to glucose starvation, due to
constitutive recruitment of mTORC1 to lysosomal
membranes, and consequent activation by the lysosomal
vacuolar-type H+-ATPase (v-ATPase22; Fig. 1). Further-
more, upon glucose starvation, v-ATPase recruits and
activates AMPK, suggesting a mechanism linking the two
kinases24. Nevertheless, how v-ATPase senses glucose
starvation is not clear.

ULK1 and the tRNA synthetase LARS1
Leucyl-transfer RNA (tRNA) synthetase 1 (LARS1) is an

amino acid sensor signaling leucine levels to mTORC1 by
binding to RagD proteins and regulating their GTPase
activity25. Yoon et al. found that in the absence of glucose,
the unc-51 like autophagy activating kinase 1 (ULK1)
phosphorylates LARS1 to reduce its binding to leucine,
induce its detachment from the lysosomal membranes,
and reduce its interaction with RagD, together leading to
the inhibition of mTORC1 (Fig. 2), and promotion of

leucine catabolism toward ATP generation26. Intriguingly,
glucose deprivation-induced ULK1 phosphorylation is in
part AMPK dependent and previous studies showed that
ULK1 is a target of both AMPK and mTORC1 (refs. 2,27).
Nevertheless, it is still not clear how ULK1 senses glucose
starvation28.

ER stress-induced GADD34 as a possible glucose
level sensing mechanism
Another protein regulating mTORC1, through TSC1/2,

in response to glucose starvation is growth arrest and DNA
damage protein 34 (GADD34)29. GADD34 is induced
during endoplasmic reticulum (ER) stress and functions to
downregulate the ER stress response, allowing cells to
recover from stress and resume protein synthesis30. Nota-
bly, upon glucose restriction, GADD34 was reported to be
induced by ATF4, and to bind and dephosphorylate TSC2,
leading to mTORC1 inhibition29 (Fig. 1). Because TSC1/2
inhibition is important for the proper ER stress response31

and for survival upon glucose starvation18, and because ER
stress is induced by glucose starvation32,33, it is possible that
the induction of the ER stress response (likely through
GADD34) is a mechanism by which mTORC1 senses glu-
cose starvation. Nevertheless, Tsc1−/− cells failed to induce
ATF4 and GADD34 expression, upon induction of ER
stress31 or glucose starvation29 respectively, suggesting that
there might be a feedback loop and that mTOR inhibition
may be upstream to GADD34 expression.

The TSC complex component TBC1D7
TBC1D7 was identified as an additional component of

the TSC complex whose depletion activates mTORC1
(ref. 34; Fig. 1). In addition, while TBC1D7 contributes to
mTORC1 inhibition upon glucose starvation by repres-
sing Rheb, this is not the case upon amino acid with-
drawal34. How TBC1D7 senses glucose starvation is
not known.

Fig. 2 ULK1 and LARS regulate mTORC1 in a glucose-dependent manner. Orange corresponds to active molecules; gray corresponds to inactive
molecules.
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Sensing through glycolytic flux
E2F1 is a pro-oncogenic transcription factor promoting

mTORC1 activity through two distinct mechanisms. On
one hand, it was described that E2F1 induces the
expression of a v-ATPase subunit to stimulate mTORC1
activity35. On the other hand, Almacellas et. al. found that
E2F1 induces mTORC1 activity in response to glucose
stimulation by promoting the transcription of 6-phos-
phofructo-2-kinase/fructose-2,6-biphosphatase 3
(PFKFB3), a glycolytic enzyme whose product, fructose
2,6-P2, is an allosteric modulator of phosphofructokinase
1 (PFK1), a rate-limiting glycolysis enzyme36 (Fig. 3).
Interestingly, PFKFB3 activity promotes mTORC1 trans-
location to the lysosomes by enhancing mTORC1 inter-
action with RagB. The localization of PFK1, a glycolysis
sensor, to lysosomal membranes and the evidence that
mTORC1 is sensitive to PFKFB3 activity suggest a
mechanism by which mTORC1 may sense glycolytic flux
and therefore glucose levels (Fig. 3). Importantly, the same
study found that neither E2F1 induction nor PFKFB3
activity affect AMPK activity, excluding AMPK involve-
ment in mTORC1 induction by E2F1 and PFKFB3
(ref. 36).

Hexokinase 2 as a glucose sensor
Upon entering the cytoplasm, glucose binds to and is

phosphorylated by hexokinase 1/2 (HK1/2). Roberts et al.
found that during glucose starvation, HK2 binds to
mTORC1 to inhibit its downstream signaling and induce
autophagy37 (Fig. 3). In addition, the same authors
reported that 2-deoxy-glucose, a known HK and glycolysis
inhibitor, blocks HK2 interaction with TORC1, inhibits
autophagy and cell survival upon glucose starvation. It is
therefore possible that HK2, through an unknown
mechanism, acts as a glucose sensor candidate signaling
to mTORC1.

Conclusion
The activity of mTORC1 is tightly regulated by glucose

availability through the action of key sensors and signaling
components, involving a diverse range of players beyond
the prominent energy sensor AMPK. Notably, such reg-
ulators only marginally overlap with the ones involved in
amino acids-mediated mTORC1 control, highlighting
distinct modes of mTORC1 regulation according to the
type of nutrients. In a pathological context, in particular
cancer, such glucose-responding mTORC1 upstream
regulators could represent potential therapeutic targets.
Indeed, since the inhibition of mTORC1 is a critical event
supporting tumor cell survival under the glucose-deprived
conditions commonly encountered in the tumor micro-
environment, preventing this blocking by targeting one of
its regulators is expected to lead to cell death. Among all
the regulators described above, AMPK holds promises as
a target as it was shown to promote tumor survival under
glucose deprivation38 and to support progression of few
cancer types, such as glioblastoma, non-small-cell lung
carcinoma, and colorectal cancer39–41.
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Fig. 3 PFKFB3 and HK2 pathways control mTORC1 in response to glucose concentrations. F-6-P is fructose 6-P; F-2,6-bisP is fructose 2,6-P2.
Orange corresponds to active molecules; gray corresponds to inactive molecules.
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