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Mesenchymal stem cells (MSCs) are widely distributed pluripotent stem cells with powerful immunomodulatory capacity. MSCs
transplantation therapy (MSCT) is widely used in the fields of tissue regeneration and repair, and treatment of inflammatory
diseases. Apoptosis is an important way for tissues to maintain cell renewal, but it also plays an important role in various diseases.
And many studies have shown that MSCs improves the diseases by regulating cell apoptosis. The regulation of MSCs on apoptosis
is double-sided. On the one hand, MSCs significantly inhibit the apoptosis of diseased cells. On the other hand, MSCs also promote
the apoptosis of tumor cells and excessive immune cells. Furthermore, MSCs regulate apoptosis through multiple molecules and
pathways, including three classical apoptotic signaling pathways and other pathways. In this review, we summarize the current
evidence on the regulation of apoptosis by MSCs.
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FACTS

● MSCs protect tissue cells from apoptosis and improve diseases
through apoptosis regulation pathways.

● MSCs promote specific cell apoptosis to combat autoimmune
diseases and tumors.

● The apoptosis of MSCs themselves or surrounding tissue cells
also helps enhance the therapeutic effect.

OPEN QUESTIONS

● What are the most key molecules for the antiapoptotic effect
of MSCs, and how to stabilize and enhance the antiapoptotic
effect of MSCs?

● What are the effects of MSCs on other forms of programmed
cell death?

● How to explore the intrinsic mechanisms and potential clinical
application strategies of apoptosis in MSCs?

● How to enhance the therapeutic effects of MSCs through
apoptotic products?

INTRODUCTION
Mesenchymal stem cells (MSCs) transplantation therapy (MSCT)
has been widely recognized as an effective clinical strategy for a

variety of diseases [1]. And the therapeutic effect of MSCs mainly
depends on several factors and molecules, including immunomo-
dulatory molecules, chemokines, growth factors, and non-coding
RNAs (ncRNAs) [2–4]. The factors and molecules affect the
proliferation, apoptosis, immune homeostasis and metabolic
balance of disease-related cells. Through the mediators, MSCs
reduce disease damage and improve regeneration potential by
inhibiting abnormal apoptosis and promoting tissue cell prolifera-
tion. In addition, MSCs have a strong immunoregulatory capacity,
which effectively regulate the immune homeostasis of disease
tissues and protect normal tissue cells from damage [1, 5].
However, there remains a lack of understanding of the above
processes, which hampers the further clinical application of MSCs.
Apoptosis is a complex programmed cellular death process that

involves many molecules and pathways [6]. Physiological apoptosis
maintains homeostasis by removing senescent cells and abnormal
cells, but pathological apoptosis is an important factor in the
occurrence and development of diseases [7]. In ischemic-reperfusion
injuries, hemorrhagic diseases, and neurodegenerative diseases,
excessive apoptosis of cells is a key factor in the development of the
diseases [8–10]. In addition, resistance of tumor cells to apoptosis is
an important contributor to tumor proliferation and invasion
[11, 12]. Therefore, correcting the abnormal apoptosis process of
cells is an important method to alleviate the diseases.
MSCs regulate the apoptosis of the cells through multiple

molecules and pathways (Fig. 1). Many studies have found that
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MSCT significantly reduce the apoptosis of diseases-related tissue
cells (Table 1), which is achieved by the activation of a variety of
signaling pathways [13–15]. More interestingly, MSCs also alleviate
diseases by promoting apoptosis in some cells, such as
autoimmune diseases and tumors [16–18]. These evidences
suggest that MSCs exert therapeutic effects by regulating the
apoptotic process of various cells. In this review, we summarize
the current understanding of the role of MSCs in the regulation of
apoptosis, and provide a new perspective on the relationship
between MSCs and apoptosis.

MSCS PROTECT CELLS FROM APOPTOSIS
Inhibition of apoptosis is an important mechanism of MSCs to
alleviate various diseases, including cardiovascular diseases, renal
injury, neurodegenerative diseases, and premature ovarian failure
[19–22]. In these diseases, the number of normal cells undergoing
pathological apoptosis is closely related to the severity of the
disease. Moreover, many studies have found that the apoptosis of
these cells mainly through three pathways, including endogenous
pathway, exogenous pathway, and endoplasmic reticulum path-
way [23, 24]. And MSCs regulate the above three apoptotic
pathways through various mechanisms to significantly reverse
apoptotic events in various pathological states (Fig. 2).

Endogenous pathway (mitochondrial pathway)
Endogenous pathway refers to apoptotic events induced by
changes in mitochondrial membrane permeability, also known
as mitochondrial pathway. The increased permeability of the
mitochondrial membrane leads to the release of pro-apoptotic
factors in the mitochondria into the cytoplasm, which activates
the caspase cascade and initiates the apoptotic process [25, 26].
And b-cell lymphoma-2 (Bcl-2) family proteins are the main
regulators of mitochondrial pathway, which regulate the
permeability of mitochondrial membrane [27]. The Bcl-2 family
includes antiapoptotic proteins Bcl-2 and Bcl-xl, pro-apoptotic
proteins Bad, Bid, Bax, and Bim. And multiple factors derived
from MSCs control the permeability of mitochondrial membrane
and thus regulate apoptosis by regulating the differential
expression of Bcl-2 family.
Bcl-2 and Bax are the most reported apoptotic indicator

proteins. Many studies have found that multiple mediators
derived from MSCs significantly increase antiapoptotic protein

Bcl-2 and decrease pro-apoptotic protein Bax in disease cells,
including lnterleukin-6 (IL-6), prostaglandin E2, transforming
growth factor-beta, microRNA (miR)-29a-3p, and miR-125b-5p
[28–32]. And miR-93, miR-150-5p, and long ncRNA-UCA1 from
MSCs also promote the expression and recovery of Bcl-2 in target
cells [33–35]. In addition, the conditioned medium of MSCs
enhance translocation of Bcl-2 to the nucleus in mouse alveolar
epithelial cells [36]. The findings suggest that MSCs have strong
regulatory capabilities on both Bcl-2 and Bax. Moreover, MSCs also
inhibit apoptosis by regulating the expression of Bcl-xl and Bad
[37–39]. Therefore, the Bcl-2 family is an important center for the
regulation of apoptosis by MSCs in the mitochondrial pathway.

Exogenous pathway (Death receptor pathway)
Exogenous pathway refers to death receptor-mediated apoptotic
events, also known as death receptor pathway. There are five
major death receptors, including Fas, tumor necrosis factor
receptor, death receptor (DR) 3, DR4, and DR5, and their
corresponding ligands include Fas-L, tumor necrosis factor (TNF),
DR3L, and TNF-related apoptosis inducing ligand (TRAIL). Speci-
fically, the extracellular apoptotic signals activate the intracellular
caspase cascade by activating different death receptors. And these
death receptors and related signaling systems are also important
targets for MSCs to exert antiapoptotic effects. For example, MSCT
significantly reduce the TNF-α, inducible nitric oxide synthase, Fas-
L, and other pro-apoptotic signals in the cell microenvironment,
and finally alleviate the apoptosis of cells [40, 41]. Moreover, the
miR-17 derived from MSCs-extracellular vesicles (EVs) regulates
bromodomain-containing protein 4-mediated enhancer of zeste
homolog 2 (EZH2)/TRAIL axis to essentially inhibit lipopolysac-
charide (LPS)-induced inflammation and apoptosis of RAW264.7
cells [42]. Similarly, MSCs effectively inhibit alveolar macrophage
apoptosis and reverse LPS-induced lung injury by reducing toll-
like receptor (TLR) 3 mediated mitogen-activated protein kinase
(MAPK) and NF-κB signaling [43]. These evidences suggest that
MSCs inhibit death receptor-mediated apoptosis by reducing
apoptotic signals and regulating death receptor apoptotic
signaling pathway.

Endoplasmic reticulum pathway
Endoplasmic reticulum stress (ERS) refers to an increase in
misfolded proteins resulting from impaired endoplasmic reticulum
function, and long-term ERS induce apoptosis [24]. Studies have

Fig. 1 Mesenchymal stem cells (MSCs) exhibit varying apoptotic regulatory effects for different cell. The influence of MSCs on apoptosis
varies depending on the target cells. MSCs typically demonstrate significant antiapoptotic effects on cells that have been damaged by disease
or trauma. However, MSCs can also promote the apoptosis of immune cells and tumor cells. These findings highlight the crucial role of MSCs
in the intricate regulatory network of apoptosis.
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Table 1. Mechanism of MSCs resistance to apoptosis.

Pathways Molecules Mechanisms Refs

Mitochondrial pathway IL-6 Via the activation of the JAK-STAT3-Ref-1 and JAK-Stat3-Bcl-2/Bax-Caspase-
3 pathways; Upregulate the mRNA expression of Cyclin D and Bcl-xl

[28, 37]

PGE2 Via ERK1/2 and GSK3beta phosphorylation to increase Bcl-2 and decrease
Bax expression

[29]

TGF-β Through TGF-β/Bax singling pathway [30]

miR-29a-3p Regulate Bcl-2 and Bcl-xl genes [31]

miR-125b-5p Repress the protein expression of p53, leading to the modulation of Bcl-2
and Bax to inhibit apoptosis

[32]

miR-93 Through targeting the HDAC4/Bcl-2 axis [33]

miR-150-5p Via targeting Bax [34]

lncRNA-UCA1 Target miR-873 via sponging, reducing the latter’s suppressive effects on its
target XIAP, and this translated into AMPK phosphorylation and increased
level of the antiapoptotic protein Bcl-2

[35]

Enhance translocation of Bcl-2 to the nucleus [36]

CXCL12 Reduce caspase-3 activation and modulate the expression of the
antiapoptotic protein Bcl-xl

[38]

Upregulate p-AKT and p-Bad by PI3K-AKT-Bad pathway [39]

Death receptor pathway Suppress the protein expression levels of macrophage-related factors
inducible nitric oxide synthase and TNF-α

[40]

miR-21-5p Modulate Fas-L expression [41]

miR-17 Regulate BRD4-mediated EZH2/TRAIL axis to essentially inhibit LPS-induced
macrophages inflammation and apoptosis

[42]

Via TLR3-regualted MAPK and NF-κB signaling pathway [43]

Endoplasmic reticulum
pathway

HGF Via a microenvironment-dependent paracrine HGF/c-Met signaling
mechanism to suppress ERS and its downstream pro-inflammatory and pro-
apoptotic consequences

[44]

TNF-inducible gene 6
protein

Suppress ERS-induced apoptosis and NF-κB activity [45]

miR-21 By alleviating ERS and inhibiting p38 MAPK [46]

By improving Myc expression through both stromal cell-derived factor 1
signal and contact effect

[47]

Upstream regulatory
pathways

miR-29b-3p Activate the PI3K/AKT pathway by carrying miR-29b-3p into neurons and
silencing PTEN, thus reducing neuronal apoptosis

[49]

miR-223 Inhibit the apoptosis of neurons in vitro by targeting PTEN, thus activating
the PI3K/Akt pathway

[50]

miR-144 Inhibit cell apoptotic injury in hypoxic conditions by delivering miR-144 to
cells, where it targets the PTEN/AKT pathway

[51]

miR-486-5p By suppressing PTEN expression, activating the PI3K/AKT signaling
pathway, and subsequently inhibiting the apoptosis of injured
cardiomyocytes

[52]

lncRNA-KLF3-AS1 Inhibit autophagy and apoptosis of IL-1beta-treated chondrocyte through
PI3K/Akt/mTOR signaling pathway

[53]

miR-132-3p Downregulate the target protein RASA1, while upregulate the expression of
Ras and the downstream PI3K phosphorylation

[54]

Involve NRG-1/HER2, MAPK, PI3K/AKT, p-JNK/JNK, and p-STAT/STAT
signaling pathways

[162]

Involve G-CSF/PI3K/AKT pathway [163]

By inhibiting apoptosis of skin cells and promoting their proliferation
through activating PI3K/AKT signaling pathway

[164]

miR-369-3p Downregulate the expression of YAF2, inhibit the stability of PDCD5/p53,
and reduce the apoptosis of ovarian granulosa cells

[55]

miR-644-5p Inhibit the apoptosis of ovarian granulosa cell by targeting p53 [56]

miR-125b-5p Suppress the expression of the pro-apoptotic genes p53 and BAK1 in
cardiomyocytes

[57]

miR-455-3p Target the MEKK1-MKK4-JNK signaling pathway [58]

miR-19a Target SOX6, activate AKT, and inhibit JNK3/caspase-3 activation [59]

By inhibiting p38/MAPK pathway [60–62]
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found that hepatocyte growth factor (HGF) and TNF-inducible
gene 6 protein secreted by MSCs significantly inhibit ERS and its
subsequent pro-apoptotic and pro-inflammatory consequences
[44, 45]. Moreover, miR-21 derived from MSCs-exosomes (MSCs-
Exos) effectively inhibit hypoxia-induced apoptosis by alleviating
ERS and inhibiting phosphorylation of p38 MAPK [46]. MSCs
protect the islets after transplantation from ERS-induced apoptosis
and improved the viability of the islets [47]. These findings reveal
that MSCs can inhibit ERS and thus alleviate apoptosis.

Upstream regulatory pathways
In addition to the three major apoptotic signaling pathways
mentioned above, there are other pathways that control apoptosis
by regulating the expression of survival and apoptosis-related
genes. According to regulated genes, these pathways should be
divided into two categories: antiapoptotic pathway and pro-
apoptotic pathway. And these pathways are also important targets
for MSCs to exert antiapoptotic effects.

Antiapoptotic pathway
Phosphatidylinositol 3-kinase (PI3K)-AKT is an important pathway
for cell survival, and its activation upregulate the expression of
many antiapoptotic genes and proliferative genes [48]. Moreover,
cancer suppressor gene PTEN dephosphorylates AKT and reduces
its activation, which is a negative regulator of PI3K/AKT pathway.
However, MSCs-derived miR-29b-3p, miR-223, miR-144, and miR-
486-5p activate PI3K/AKT pathway by inhibiting PTEN, thus
inhibiting apoptosis [49–52]. Similarly, long ncRNA KLF-AS1 and
miR-132-3p derived from MSCs-Exos also activate the PI3K/AKT
pathway and exert antiapoptotic effects [53, 54]. These findings
show that MSCs protect cells from apoptosis by secreting various
factors to activate the PI3K/AKT signaling pathway.

Pro-apoptotic pathway
In the apoptotic signaling network, the p53 signaling pathway
regulates the expression of pro-apoptotic genes, including Bax,
Bak, Bad, and Apaf-1. However, miR-369-3p, miR-644-5p, and

Table 1. continued

Pathways Molecules Mechanisms Refs

Others By transferring mitochondria [63, 64]

Increase the mitochondrial membrane potential and alleviate compression-
induced mitochondrial damage to alleviate compression-mediated nucleus
pulposus cell apoptosis

[65]

Retard mitochondria damage and cell apoptosis by an AMPK-PGC1-alpha
axis

[66]

Promote mitophagy and inhibit apoptosis and pyroptosis of renal tubular
epithelial cells in kidney tissues by upregulating SIRT1/Parkin

[67]

By reduce mitochondrial reactive oxygen species overproduction, decrease
the accumulation of mitochondrial fragmentation, restore ATP generation
and upregulate mitophagy

[68]

miR-486 Reduce Smad1 expression by target regulating Smad1 whose reduction
could inhibit mTOR activation, leading to the increase of autophagy and
the reduction of podocyte apoptosis

[69]

Through regulating Notch2/mTOR/autophagy signaling [70]

miR-217 Target EZH2, and EZH2 bound to the FOXO3 promoter and consequently
downregulate its expression, which restrain NPC apoptosis and ECM
degradation by stimulating cell autophagy

[71]

ALKBH5 ALKBH5-mediated FIP200 mRNA demethylation in enhancing autophagy
and reducing apoptosis

[72]

Reduce pyroptosis in the injured liver and promote the expression of those
factors related to liver regeneration, while they can inhibit the NF-κB
pathway and activate the wnt/beta-catenin pathway

[73]

Increase FOXO3a expression to enhance mitophagy, therefore protecting
microglia from I/R-induced pyroptosis and alleviating subsequent neuronal
injury

[74]

miR-539-5p Suppresses pyroptosis through NLRP3/caspase-1 signal [75]

circ-HIPK3 By regulate miR-421, resulting in increased expression of FOXO3a, leading
to inhibition of pyroptosis and release of IL-1beta and IL-18

[76]

miR-223-3p Restrict cardiac inflammation, pyroptosis, and dysfunction by disrupting
FOXO3/NLRP3 axis

[77]

miR-26a-5p Degrade METTL14 and thus decrease NLRP3 [78]

circ-003564 Attenuate inflammasome-related pyroptosis via delivering circ-003564 [79]

MSCs mesenchymal stem cells, IL Lnterleukin, JAK Janus kinase, STAT signal transducer and activator of transcription, Ref-1 Redoxfactor-1, Bcl-2 B-cell
lymphoma-2, PGE2 prostaglandin E2, ERK extracellular regulated protein kinases, GSK3β glycogen synthase kinase 3, TGF-β transforming growth factor-beta,
HDAC histone deacetylase, miR micro RNA, XIAP X-linked inhibitor of apoptosis protein, AMPK Adenosine 5′-monophosphate-activated protein kinase, CXCL12
C-X-C motif chemokine 12, PI3K phosphatidylinositol 3-kinase, TNF-α Tumor necrosis factor-alpha, Fas-L Fas ligand, BRD4 bromodomain-containing protein 4,
EZH2 enhancer of zeste homolog 2, TRAIL TNF-related apoptosis inducing ligand, LPS lipopolysaccharide, TLR3 Toll-like receptor 3, MAPK mitogen-activated
protein kinase, HGF hepatocyte growth factor, ERS endoplasmic reticulum stress, PTEN phosphatase and tensin homolog, RASA1 Ras GTPase activating protein
1, NRG-1 neuregulin-1, HER2 human epidermal growth factor receptor-2, G-CSF granulocyte colony-stimulating factor, YAF2 YY1 associated factor 2, PDCD5
programmed cell death 5, BAK1 Bcl-2 antagonist/killer 1, MEKK1 MAPK kinase 1, MKK4 MAPK kinase 4, JNK c-Jun N-terminal kinase, SOX6 SRY-box transcription
factor 6, PGC1 peroxisome proliferator-activated receptor gamma coactivator 1, SIRT1 Sirtuin 1, EZH2 enhancer of zeste homolog 2, FOXO3 forkhead box O3,
NPC nucleus pulposus cells, ECM: extracellular matrix, ALKBH5 ALKB homolog 5, FIP200 FAK-family interacting protein of 200 kDa, NLRP3 NOD-like receptor
thermal protein domain associated protein 3, METTL14 methyltransferase-like protein 14.
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miR-125b-5p in MSCs-Exos exert antiapoptotic effects by inhibit-
ing the activation of p53 [32, 55–57]. And interestingly, miR-455-
3p and miR-19a exhibit antiapoptotic effects by inhibiting JNK and
subsequent activation of p53 and caspase-3 [58, 59]. Additionally,
MSCs significantly alleviate cisplatin-induced toxicity and improve
islet viability by inhibiting p38/MAPK pathway [46, 60–62]. These
findings indicate that MSCs synergistically exert an inhibitory
effect on apoptosis by inhibiting the pro-apoptotic pathway while
enhancing the antiapoptotic pathway.

Others
MSCs also resist apoptosis in some interesting ways, including by
regulating mitochondria and autophagy. Li, X et al. and Li, H et al.
have found that MSCs protect airway smooth muscle cells and
injured neurons from apoptosis by mitochondrial transfer [63, 64].
And MSCs also show the ability to regulate mitochondrial
potential, reduce mitochondrial stress, and reduce mitochondrial
damage to inhibit apoptosis [65, 66]. In addition, promoting
mitochondrial protective autophagy is also an important way that
MSCs resist apoptosis [67, 68]. Notably, the protective autophagy
induced by MSCs is not only in the mitochondria but also in the
whole cell. MSCs enhance autophagy flux by inhibiting mTOR
signal activation, which promote autophagy and inhibit apoptosis
[69, 70]. And forkhead box O3 and ALKBH5 are also targets of
MSCs mediated protective autophagy to inhibit apoptosis [71, 72].
Therefore, MSCs fight apoptosis by regulating mitochondrial
biological function and promoting protective autophagy.
Resistance to NOD-like receptor thermal protein domain

associated protein 3 (NLRP3)-mediated pyroptosis is an interesting
extension of the ability of MSCs to inhibit apoptosis. MSCT
significantly decrease inflammasome-related pyroptosis markers
including cleaved caspase-1, gasdermin D, NLRP3, IL-1beta, and IL-
18 in diseases [73–75]. And MSCs-Exos also play a key role in this
process. MSCs-Exos upregulate the expression of FOXO3a, which
inhibit pyroptosis and the release of inflammatory cytokines
[74, 76]. In MSCs-Exos, ciric-003564, miR-539-5p, ciric-HIPK3, miR-
223-3p, and miR-26a-5p are all involved in the inhibition of NLRP3-

mediated pyroptosis by MSCs [75–79]. These ncRNAs greatly
enhance the remission effect of MSCs on various pyroptosis
diseases, and suggest that MSCs have great potential to combat
inflammatory apoptosis.

MSCS IMPROVE DISEASES BY INHIBITING APOPTOSIS
Inhibition of tissue cell apoptosis is a key mechanism in the
therapeutic effect of MSCs, which enables MSCT to improve many
diseases. These diseases involve the following tissues and organs,
including heart, liver, lung, and nervous system. And Ischemia-
reperfusion injury (IRI) is a common factor inducing abnormal
apoptosis in these tissues and organs [80]. Interestingly, MSCs can
significantly improve the tissue and organ dysfunction caused by
these diseases through inhibiting abnormal apoptosis and
inflammatory responses.

Heart diseases
Myocardial infarction (MI) is a common heart disease in which
myocardial cells undergo IRI, which often induces abnormal
apoptosis of cardiomyocytes [81]. MSCs-derived medium and
exosomes are considered as new biological drug for the treatment
of MI. And various ncRNAs in the culture medium and exosomes
have significant therapeutic effects by inhibiting cardiomyocyte
apoptosis, including miR-150-3p, miR-144, miR-486-5p, miR-455-3p,
miR-19a, miR-25-3p, miR-185, miR-221/222, and lncRNA-KLF3-AS1
[34, 51, 52, 58, 59, 82–85]. By secreting these ncRNAs, MSCT
significantly inhibit myocardial cell apoptosis and fibrosis, reduce
inflammation, and improve myocardial function. Notably, enhancing
the cardioprotective effects of MSCs by genetic modification or gene
editing also is a welcome approach [19]. In particular, various
molecules with cardioprotective effects, include n-cadherin, lipocalin
2, c1q/tumor necrosis factor-related protein 3, follistatin-like 1,
stromal-derived factor 1, v-erb-b2 avian erythroblastic leukemia viral
oncogene homolog 4, and glucagon-like peptide-1 [86–92]. In
addition, pretreatment of MSCs before transplantation in vitro also
achieve similar enhancement effects by enhancing apoptosis

Fig. 2 Mesenchymal stem cells (MSCs) inhibit apoptosis by targeting multiple pathways. MSCs of various origins influence the outcome of
apoptosis by targeting multiple apoptosis regulatory pathways. This is mainly achieved through their secreted components, which include
various ncRNAs and cytokines. These antiapoptotic mediators significantly inhibit caspase cascade in target cells through endogenous
pathways, exogenous pathways, and endoplasmic reticulum stress pathways, thereby preventing apoptosis. Upstream signaling pathways of
apoptosis regulation, such as the PI3K pathway and p53 pathway, are also among the targets of regulation. In addition, MSCs also exert
antiapoptotic effects through the regulation of mitochondria and autophagy.
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resistance, such as hypoxia pretreatment, interferon (IFN)-γ pretreat-
ment, atorvastatin pretreatment, sphingosine 1-phosphate pretreat-
ment, and the combined pretreatment of HGF and insulin-like
growth factor 1 [35, 93–96]. These findings suggest that enhancing
the antiapoptotic ability of MSCs has a broad prospect in alleviating
myocardial cell injury caused by MI.

Liver diseases
Liver transplantation is an effective strategy for the treatment of
various end-stage liver diseases; however, IRI of hepatocytes often
occurs during this process [97]. Emerging evidences suggest that
MSCs have a strong hepatoprotective effect, which helps to
alleviate hepatic IRI, liver failure, and liver fibrosis [98–100]. The
hepatoprotective effect is mainly reflected in inhibiting hepato-
cyte apoptosis, promoting hepatocyte proliferation, inhibiting liver
inflammation, and oxidative stress. Various secretory mediators
derived from MSCs significantly inhibit liver injury, improve the
success rate of liver transplantation, promote liver regeneration,
and improve liver function by playing a hepatoprotective effect
[28, 101–103]. These mediators include IL-6, prostaglandin E2,
ransforming growth factor-beta, and ncRNAs [28–30, 104]. In
addition, heme oxygenase 1 modification and hypoxic precondi-
tioning significantly enhance the hepatoprotective effect of MSCs
[105, 106]. Therefore, MSCT has a significant alleviating effect on
hepatocyte apoptosis caused by acute liver injury.

Lung diseases
MSCT is also highly effective for various lung diseases through key
mechanisms such as inhibition of apoptosis. Interestingly, the
apoptotic protective effect of MSCs on alveolar epithelial cells has
a broad range of disease applications, including acute respiratory
distress syndrome or lung injury induced by IRI, smoke, influenza
virus, sulfur mustard, and radiation [107–112]. In addition, MSCT
also protect against pulmonary fibrosis induced by diabetes,
silicosis, and bleomycin [113–115]. Moreover, the major protective
mediators are mainly derived from the secretome of MSCs [36].
Therefore, MSCs have a wide range of effects to protect lung
against various injury, including inhibiting alveolar epithelial cell
apoptosis and fibrosis, inhibiting inflammation, reducing lung
injury, and promoting the recovery of alveolar barrier function.

Neurological diseases
Hypoxic-ischemic encephalopathy and spinal cord injury are
important causes of neuronal apoptosis, which can also be
mitigated by MSCs. In the in vivo rat middle cerebral artery
occlusion model and in vitro neuronal oxygen and glucose
deprivation experiments, MSCs significantly inhibit abnormal
apoptosis of neuronal and microglial, and improve neurobeha-
vioral deficits [33, 116]. And MSCs-derived exosomes or vesicles
are the key mediators in this process [21]. In addition to secreting
vesicles, an interesting mechanism by which MSCs alleviate spinal
cord injury induced neuronal apoptosis is by mitochondrial
transfer [117]. Mitochondria derived MSCs transfer to damaged
neurons not only inhibit apoptosis but also promote axon
regeneration, which improve motor recovery. Moreover, MSCs
also alleviate Alzheimer disease by reducing inflammation,
inhibiting apoptosis, and regulating autophagy [118].

Other diseases
There are also diseases involving other organs or tissues that can
be alleviated by MSCs through inhibiting apoptosis, including
kidney injury, premature ovarian failure, pancreatitis, interverteb-
ral disc degeneration, and osteoarthritis [67, 119–122]. Similar to
the aforementioned diseases, MSCs significantly alleviate abnor-
mal tissue cell apoptosis, reduce tissue inflammation and restore
organ function in these diseases. In general, the antiapoptotic
effect of MSCs has the following characteristics. The antiapoptotic
ability of MSCs mainly alleviates two types of apoptosis-related

diseases, instantaneous massive apoptosis due to acute injury and
persistent apoptosis due to chronic injury. The remission of MSCs
on these two apoptotic diseases mainly depends on blocking the
apoptotic process and alleviating the inflammatory microenviron-
ment. Moreover, the antiapoptotic mechanisms of MSCs are
mainly mediated through their secretome, including ncRNAs,
cytokines and mitochondria. MSCs secrete these mediators to
inhibit apoptosis and reduce inflammation, which are the main
therapeutic effects of MSCs on the disease. In addition, in vitro
pretreatment or gene modification can enhance the effect of
MSCT by enhancing the survival ability of MSCs or carrying
protective components. These characteristics make MSCT have
strong efficacy to be used in the treatment of many diseases.

MSCS ENHANCE APOPTOSIS OF TARGET CELLS
MSCs promote apoptosis of tumor cells
In addition to the aforementioned MSCs promote tumor growth by
inhibiting tumor cell apoptosis, MSCs also are found to promote
tumor cell apoptosis and inhibit tumor growth (Table 2). For
example, miR-23b-5p derived from MSCs-Exos significantly reduce
the proliferation and induce apoptosis of acute myeloid leukemia
cells by reversing the TRIM14-activated PI3K/AKT pathway [123]. And
miR-205 retards prostate cancer progression by inhibiting rhophilin
Rho GTPase binding protein 2 [124]. Similarly, TNF-α-induced MSCs
upregulate TRAIL expression and induce apoptosis in triple-negative
breast cancer MDA-MB-231 (MDA) cells by secreting IFN-β [125]. And
MSCs with highly expressed Fas-L significantly induce apoptosis in
multiple myeloma cells [126]. Moreover, MSCs have also been
shown to have significant pro-apoptotic effects on a variety of other
tumor cells, including glioma U251 cells, pancreatic cancer cell,
hepatocellular carcinoma cells, and lymphoma cells [127–130].
Therefore, MSCs have a strong pro-apoptotic effect on a variety of
tumor cells through various pathways. These findings show the
broad application prospect of MSCs in the field of tumor therapy;
however, it also suggests that we need to further explore the
relationship between MSCs and tumor cells.

MSCs promote apoptosis of immune cells and other cells
MSCs also alleviate various autoimmune diseases by promoting
apoptosis of immune cells. The pro-apoptotic effect of MSCs on
immune cells is usually regarded as part of the immunosuppressive
ability of MSCs. And emerging evidences suggest that MSCs
significantly inhibit T cells to exert immunosuppressive activity,
which is involved in a variety of immune molecules, including
indoleamine (2,3)-dioxygenase, programmed cell death 1 ligand 1,
and Fas-L [18, 131–133]. These immune molecules help MSCs
effectively alleviate graft-versus-host disease, systemic sclerosis, and
DSS-induced ulcerative colitis. In addition, in vitro experiments also
find that MSCs promote hepatic stellate cells apoptosis and help to
alleviate the process of liver fibrosis [134, 135]. Many ncRNAs are
also involved in the remission of autoimmune diseases. MSCs-
derived exosomes suppress miR-5189-3p to facilitate the apoptosis
of fibroblast-like synoviocytes via the basic leucine zipper ATF-like
transcription factor 2/JAK2/STAT3 signaling pathway, which facil-
itate relieve ankylosing spondylitis (AS) [136]. The MSCs-secreted
miR-26a inhibit the proliferation of high glucose-induced human
skin fibroblasts cells and promote cell apoptosis, which may be
related to the TLR4/NF-κB signaling pathway [137]. These above
evidences indicate that the pro-apoptotic effect of MSCs on
immune cells is also an integral part of the efficacy of MSCs.

SELF-REGULATION OF APOPTOSIS BY MSCS
The apoptosis of MSCs themselves is closely related to the
therapeutic effects of MSCT and the treatment of various diseases.
Regulation of MSCs apoptosis involves multiple molecular and
signaling pathways (Table 3). Several factors, such as hypoxia/
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serum deprivation, hydrogen peroxide, dexamethasone, and
metformin, can induce MSC apoptosis [138–141]. Nonetheless,
there are various measures that can alleviate this apoptotic effect,
including drug induction, exogenous factor pretreatment, over-
expression of genes or ncRNAs, and more [142–145]. Therefore,
The primary factors that pose a threat to MSC apoptosis are
hypoxia, oxidative stress, and drug toxicity, while the rescue
measures primarily target key signaling molecular pathways,
including ERK, MAPK, NRF2, PI3K/AKT, and the Bcl-2 family.
Although MSCs undergo apoptosis due to various reasons,

interestingly, apoptotic MSCs also possess significant biological
functions and therapeutic potential. Researches have shown that the
MSCs injected into the body during MSCT therapy undergo
widespread apoptosis and induce receptor-mediated immune
regulation within the body, which is closely related to the
therapeutic effects of MSCT [146, 147]. Further researches highlight
that apoptotic vesicles derived from MSCs (MSC-ApoVs) possess
various functions and promising applications, including immune
regulation, promotion of proliferation and tissue regeneration,
homeostasis maintenance, and drug delivery[148, 149]. This is
mainly based on the molecules transferred by MSC-ApoVs
[147, 150], and the immune response after immune cell engulfment
of MSC-ApoVs [151, 152]. These findings broaden the therapeutic
strategies of MSCT and deepen our understanding of MSC-ApoVs.
Moreover, MSCs have demonstrated the ability to exert biological

effects through the engulfment of apoptotic cells. This phenomenon
occurs when apoptotic cells stimulate MSCs to target apoptotic sites
via the HGF/c-Met axis [153, 154]. Furthermore, the presence of
circulating apoptotic bodies contributes to the self-renewal and
osteogenic differentiation of bone marrow MSCs by delivering
cytokines [155]. Additionally, apoptotic cells induce MSCs to actively

suppress T-cell immunity through the COX2/PGE2 axis [156].
Consequently, exploring the interaction between MSCs and
apoptosis will provide valuable insights into the biological functions
of MSCs and the therapeutic potential of MSCT.

INSIGHTS INTO THE DUAL REGULATORY EFFECTS OF MSCS ON
APOPTOSIS
MSCs exhibit a dualistic characteristic in the regulation of apoptosis,
displaying both inhibitory and promotive effects that can be
attributed to various factors. Initially, depending on the specific
cytokine stimulation, MSCs can exert diverse or even contradictory
effects. For instance, interferon-gamma activates MSCs and pro-
motes anti-inflammatory and antiapoptotic effects by inducing the
release of various anti-inflammatory factors and growth factors that
inhibit inflammatory responses and reduce cell death [157].
Conversely, certain cytokines such as LPS may stimulate MSCs to
secrete signaling molecules that enhance inflammation and increase
apoptosis [158]. In such cases, MSCs may contribute to promoting
inflammatory responses and facilitating apoptotic processes.
Subsequently, MSCs are characterized by their heterogeneity and

encompass various subsets that bestow them with remarkable
adaptability. Sun et al. and Wang et al. identified 7 tissue-specific
and 5 functionally conserved subsets of MSCs using scRNA-seq,
demonstrating that hUC-MSCs possess enhanced immunomodula-
tory potential [159, 160]. Additionally, Zhang S et al. discovered two
distinct subsets of MSCs in hUC-MSCs with variations in immune
regulation and tissue differentiation functions [161]. The presence of
these diverse subsets of stem cells contributes to the bidirectional
regulation of the immune system [2] and may also account for the
dual regulatory effect on apoptosis.

Table 2. MSCs enhance apoptosis of target cells.

Molecules Mechanisms Effects Refs

miR-23b-5p By reversing the TRIM14-activated PI3K/AKT
pathway

Reduce the proliferation and induce apoptosis of acute myeloid
leukemia cells

[123]

miR-205 By inhibiting rhophilin Rho GTPase binding
protein 2

Retard prostate cancer progression [124]

IFN-β By upregulating TRAIL expression Induce apoptosis of MDA cells [125]

Fas-L By Fas/Fas-L pathway Induce apoptosis of MM cells [126]

By downregulating the PI3K/AKT signaling
pathway

Inhibit U251 cells proliferation and the EMT-like [127]

By altering cell cycle arrest and MMP7
signaling-triggered EMT

Inhibit PDAC cell proliferation, tumor growth and invasion [128]

Inhibit proliferation rate and increase the apoptosis rate [129]

Decrease cell viability and increase apoptosis [130]

IDO Inhibit T-cell proliferation by inducing apoptosis of activated T
cells

[131]

PD-L1 Suppress the activation of CD4+ T cells, downregulate
interleukin-2 secretion and induce irreversible
hyporesponsiveness and cell death

[132]

Fas-L Fas-regulated monocyte chemotactic protein 1 recruit T cells for
Fas-L-mediated apoptosis

[18, 133]

Through inhibiting TGF-β1 and Smad3
expression and increasing Smad7 protein
expression

Promote hepatic stellate cells apoptosis [134,
135]

Via the BATF2/JAK2/STAT3 signaling pathway Facilitate relieve ankylosing spondylitis [136]

miR-26a Related to the TLR4/NF-κB signaling pathway Inhibit the proliferation of high glucose-induced human skin
fibroblasts cells, and promote cell apoptosis

[137]

MSCs mesenchymal stem cells, TRIM14 tripartite motif containing 14, PI3K phosphatidylinositol 3-kinase, TRAIL TNF-related apoptosis inducing ligand, MDA
MDA-MB-231 cells, Fas-L Fas ligand, MM multiple myeloma, EMT Epithelial-mesenchymal transition, MMP7 matrilysin; matrix metalloproteinase 7, TGF-β
transforming growth factor-beta, BATF2 basic leucine zipper transcriptional factor ATF like 2, JAK Janus kinase, STAT signal transducer and activator of
transcription, TLR4 Toll-like receptor 4.
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CONCLUSION
The great potential of MSCs in the treatment of various diseases is
attracting more and more attention, which makes the research on
the therapeutic mechanism of MSCs more and more in-depth. The
regulation of apoptosis is an important part of the MSCs
therapeutic mechanism. In general, MSCs have been shown to
inhibit apoptosis and promote survival of various tissue cells.
Moreover, this process involves three major apoptotic regulatory
pathways and is closely related to autophagy, aging, and
proliferation. However, in partial disease states, MSCs will also
show the promotion of apoptosis in specific cells, such as
lymphocytes and tumor cells. And these pro-apoptotic effects
are generally considered to be part of the immunosuppressive
effect of MSCs. These complex and orderly regulatory mechanisms
constitute the homeostasis regulatory network of MSCs on tissue

cells, which is the basis for MSCs to exert various therapeutic
effects. However, the mechanism of MSCs regulating apoptosis
still needs to be further explored. In particular, the complex
regulatory network of MSCs on apoptosis, autophagy, aging,
proliferation and survival of tissue cells deserves more attention.
These studies will help to further understand the important role of
MSCs in maintaining homeostasis.
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