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Integrating spatial and single-cell transcriptomics reveals tumor
heterogeneity and intercellular networks in colorectal cancer
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Single cell RNA sequencing (scRNA-seq), a powerful tool for studying the tumor microenvironment (TME), does not preserve/
provide spatial information on tissue morphology and cellular interactions. To understand the crosstalk between diverse cellular
components in proximity in the TME, we performed scRNA-seq coupled with spatial transcriptomic (ST) assay to profile 41,700 cells
from three colorectal cancer (CRC) tumor-normal-blood pairs. Standalone scRNA-seq analyses revealed eight major cell populations,
including B cells, T cells, Monocytes, NK cells, Epithelial cells, Fibroblasts, Mast cells, Endothelial cells. After the identification of
malignant cells from epithelial cells, we observed seven subtypes of malignant cells that reflect heterogeneous status in tumor,
including tumor_CAV1, tumor_ATF3_JUN | FOS, tumor_ZEB2, tumor_VIM, tumor_WSB1, tumor_LXN, and tumor_PGM1. By
transferring the cellular annotations obtained by scRNA-seq to ST spots, we annotated four regions in a cryosection from CRC
patients, including tumor, stroma, immune infiltration, and colon epithelium regions. Furthermore, we observed intensive
intercellular interactions between stroma and tumor regions which were extremely proximal in the cryosection. In particular, one
pair of ligands and receptors (C5AR1 and RPS19) was inferred to play key roles in the crosstalk of stroma and tumor regions. For the
tumor region, a typical feature of TMSB4X-high expression was identified, which could be a potential marker of CRC. The stroma
region was found to be characterized by VIM-high expression, suggesting it fostered a stromal niche in the TME. Collectively, single
cell and spatial analysis in our study reveal the tumor heterogeneity and molecular interactions in CRC TME, which provides insights
into the mechanisms underlying CRC progression and may contribute to the development of anticancer therapies targeting on
non-tumor components, such as the extracellular matrix (ECM) in CRC. The typical genes we identified may facilitate to new
molecular subtypes of CRC.
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INTRODUCTION
Colorectal cancer (CRC) is a molecularly heterogeneous disease
[1, 2]. The heterogeneity of cell types involved in CRC
carcinogenesis makes it difficult to elucidate cell lineages using
traditional developmental biology techniques such as bulk
transcriptomics methods [3]. Through single-cell transcriptomics
technology, it is now possible to deconstruct a tumor into its
diverse cell subpopulations and thus gain a better understanding
of the underlying biology like subtyping [4–6]. However, spatial or
anatomical information inherent in the tissue architecture is lost
using single-cell transcriptomic technology only.
Spatial transcriptomics (ST) is an emerging technology that

adds spatial dimensionality and tissue morphology information to
the single-cell transcriptomics data of cells in an undissociated
tissue, thus helping to preserve precise spatial or anatomical
information. Overcoming the throughput limitation of in situ

hybridization (ISH) methods, ST allows for unbiased mapping of
transcripts in individual tissue sections with spatial resolution by
using spatially barcoded oligo-deoxythymidine microarrays [7]. As
a high-throughput spatially resolved transcriptomic tool, ST has
been used to study architecturally complex tissues or diseases
including melanoma [8], prostate cancer [9], cardiac sarcoidosis
[10], non-small cell lung [11], human and other species’ cortex
[12, 13], as well as their spatiotemporal characterizations [14–16].
Extensive multimodal studies have unraveled molecular land-

scape of diverse diseases [17]. Combining these two complemen-
tary and powerful technologies has been confirmed to be scalable
to study architecturally complex tissues and to provide mean-
ingful biological insight across a range of pathologies, such as
melanoma [18], bone marrow [19], prostate cancer [20], pancreatic
ductal adenocarcinomas [21], myocardial infarction [22], lung
fibroblasts [23], spinal cord [24] and plants like rice root [25].
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The tumor microenvironment (TME) comprises various cell
types (immune cells, fibroblasts, endothelial cells, etc.) and
extracellular components (growth factors, cytokines, extracellular
matrix, hormones, etc.) that surround cancerous/tumor cells [26].
Since many currently used anticancer therapies target non-tumor
components, such as the extracellular matrix (ECM) [27], immune
system and vascular system [28], understanding cellular compo-
nents and how their dynamic interactions to shape the tumor
landscape are particularly important.
In this study, we aim to provide a comprehensive global view of

tumor heterogeneity and intercellular interaction networks of CRC
using single-cell transcriptional profiles coupled with spatial
transcriptional profiles. By analyzing the single-cell and spatial
transcriptional profiles of 41,700 cells from 3 treatment-naïve
patients with CRC, we generated a molecular map of all major CRC
populations based on single-cell RNA sequencing (scRNA-seq).
The malignant cells in epithelial cells were identified and
categorized into seven subclasses (tumor_CAV1, tumor_ATF3_-
JUN | FOS, tumor_ZEB2, tumor_VIM, tumor_WSB1, tumor_LXN,
tumor_PGM1), which may help to the molecular subtyping of
colorectal cancers. In addition, we used spatially resolved
transcriptomics in combination with computational tools to
attribute cell types to different CRC niches. Annotated tumor
regions based on the cryosection sections represented high
TMSB4X expression, and suggested a typical marker of tumorgen-
esis. The stroma region was characterized by VIM gene, which was
also used as a typical feature of one subtype of malignant cells in
CRC scRNA-seq. Furthermore, we inferred the important interac-
tion between tumor and stromal regions mediated by gene pair of
C5AR1 and RPS19, which played roles of ligand and receptor,
respectively.

RESULTS
Landscape view of cell composition in tumors, adjacent
tissues and peripheral blood in patients with CRC
To shed light on the complexity of the TME in CRC, we performed
scRNA-seq along with spatial trancriptome sequencing on viable
cells derived from matched tumor and adjacent tissues, as well as
peripheral blood mononuclear cells (PBMCs) of 3 patients with
CRC (Fig. 1a, Supplementary Table S1). On average, we obtained
more than 150 G sequencing reads for each sample, with a
median sequencing saturation of 91.40% (87.0%–95.5%). A total of
41,700 cells were identified in 9 samples derived from 3 patients
(including 10347, 13241 and 18112 in tumor tissues, adjacent
tissues and peripheral blood, respectively; Supplementary Table
S2). We obtained approximately 1000 genes and 2500 unique
molecular identifiers (UMIs) for each cell, indicating sufficient
coverage and transcript representations. After quality control
filters (few detected features in cells and few expressed cells
associated with detected features), we acquired 35,666 high-
quality cells for further analysis.
To define cell clusters with similar expression profiles, we

performed dimensionality reduction of t-distributed stochastic
neighbor embedding (tSNE) implemented in the Seurat package.
Each cluster was further identified as a specific cell subpopulation
on the basis of the expression of the most variable genes and the
canonical markers, including those in epithelial cells (with gene
markers: EPCAM, KRT5, PHGR1, LGALS4, and TFF3), T cells
(CD4+ T cells: PTPRC, CD3D, and CD4; CD8+ T cells: PTPRC,
CD3D, and CD8A), B cells (CD19 and MS4A1), monocytes (CD14,
ITGAX for CD11C), natural killer (NK) cells (FCGR3A and NCAM1),
endothelial cells (CDH5, PLVAP, CLDN5, VWF), fibroblasts (LUM,
DCN, COL1A1), and mast cells (KIT, CPA3, MS4A2, and TPSAB1)
(Fig. 1b). In addition to these well-known markers, we also
analyzed cluster-specific genes via differential gene expression
analysis (Supplementary Table S3). These cluster-specific marker
genes included FBLN1 for fibroblasts, as well as MT1A and PLN for

smooth muscle cells (Fig. 1c, Fig. S1e). In total, eight cell types in
CRC were identified based on canonical markers and cluster-
specific genes: epithelial cells, fibroblasts, endothelial cells,
monocytes, T cells, NK cells, B cells, and mast cells. The
heterogeneous compositions of the TME in CRC across tumor
tissues, normal tissues and peripheral blood are consistent with a
recent single-cell transcriptome study of CRC [29].
To characterize different cell compositions in tumor tissues,

normal tissues and peripheral blood in CRC, the proportions of
each cell type were investigated. An overall increase in myeloid
cell populations and decrease in B cell populations were
observed in tumor tissues compared to normal tissues (Fig. 1b,
bottom; Fig. S1d), suggesting a redirected immune response in
CRC patients. In details, we observed that the proportion of
monocytes was increased with approximately 2.5-fold, whereas
that of NK cells and B cells was decreased (about 0.3–0.4 times)
in tumors compared to normal tissues, suggesting a myeloid
immunosuppression in the CRC TME (Fig. S1a,b, Supplementary
Table S4). To further explore the distinct cell compositions in the
TME across individuals, more detailed proportions were assessed
(Fig. 1d). These results showed, for example, that in patient
T0602, the proportion of epithelial cells decreased in contrast
with patient T0529 and increased compared to that in patient
T0609 (Fig. 1d, left; Fig. S1 c1; Supplementary Table S5). Since the
transition from normal epithelium to intraepithelial neoplasia
were found to be associated with CRC patient survival [30, 31],
the difference in epithelial cells across individuals may be
important for survival and worthy of further investigation.
Considering that the cellular proportion determined by scRNA-
seq may be biased toward an underrepresentation of malignant
cells derived from epithelial cells [32], we also explored the
proportions of immune and stromal cells account for all cells
except epithelial cells which includes tumor cells like previous
study [29]. The results showed that myeloid cell-driven immune
response in patient T0529 was stronger than that in the other
two patients (Fig. 1d, right; Fig. S1 c2).

Epithelial cells represents multilineages including a lineage of
malignant cells
It has been suggested that human colon cancer cells recapitulate
the multilineage differentiation processes of normal colon
epithelia. To investigate each lineage contributing to the CRC
heterogeneity at single cell resolution, we subclustered cell
populations for each cell type to identify subpopulations. To
annotate these subpopulations, we combined another published
CRC cohort consisting of 6 CRC patients in tumor regions as well
as matched normal mucosa [29], and transferred the annotations
of subtypes to our datasets in this study with the Seurat R package
(Fig. 2a). Since the transition from normal epithelium to
intraepithelial neoplasia were found to be associated with CRC
patient survival [24], we focused on epithelial cells and found
9 subpopulations, namely CD19+ CD20+ B cells, crypt cells,
enterocytes, goblet cells, intermediate, mature colonotypes,
proinflammatory, stem-like, and tumor cells (Fig. 2b).
To distinguish malignant cells and nonmalignant cells in

epithelial cells, we performed scRNA-seq-based copy number
variation (CNV) and subclustering analysis (Fig. S2a, b). The
proportions of malignant cells in each subcluster of epithelial cells
were shown in Fig. S2c. The trajectory revealed a transcriptional
hierarchy, defining seven molecular states (Fig. 2c, top). The cells
from tumor tissues dominated the divergent differentiation states
2 and 5, suggesting the tissue arrangement along pseudotimes
(Fig. 2c, bottom).
To illustrate the differentiation paths across the multilineages

among the epithelial cell populations, the semisupervised
trajectory inferred by monocle2 [33] revealed a transcriptional
hierarchy defining three branches. The hierarchy was dominated
by malignant epithelial cells, as well as normal epithelial cells
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(including goblet cells and (stem-like/transit amplifying cells) and
immune-related cell types (including proinflammatory and
mature colonotypes), which originated from normal epithelial
cells with branching toward malignant epithelial cells (gray) and
immune-related cell types (light green), respectively (Fig. 2d).
Projection of malignant epithelial cells along the epithelial cell
differentiation trajectory revealed segregation of tumor cells
from normal epithelial cell types and stem-like populations.
The greater stemness of malignant epithelial cells suggested
the regenerative/proliferative potential of these tumor cells
(Fig. 2e). The hypoxia and epithelial mesenchymal transition

(EMT) were also investigated in the malignant epithelial cell
populations (Fig. S2e).

Transcriptional and functional features of malignant cells
reveal heterogeneity in CRC patients
To characterize the malignant cell populations, we scrutinized the
transcriptional features between malignant and nonmalignant
cells. The known malignant epithelial cell populations character-
ized by upregulated expression of S100A4, VEGFA, MYC, and
ICAM1 (intercellular adhesion molecule-1), according to their
significant differential expression (loge|fold change | > 0.25, T test,

Fig. 1 Cell type identification in human CRC by 10X Genomics scRNA-seq. a Workflow of sample collection and single-cell transcriptome
analysis from Chinese patients with CRC. b t-distributed stochastic neighbor embedding (t-SNE) plot of 35,666 high-quality cells from CRC
patients (the CRC scRNA-seq dataset), grouped into eight major cell types (left panel, top). Proportions of the global cell types in tumor tissues,
adjacent tissues and blood on average (left panel, bottom). The normalized expression of marker genes for each cell type (right panel) (c).
Gene expression heatmap analyzed by 10X Genomics scRNA-seq. d Proportions of the global cell types in individual samples with CRC.
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p value < 0.05) (Fig. 2f, left). The most differentially expressed gene
EMP3 (Epithelial membrane protein 3), which has been identified
as an tumor suppressor in breast cancer [34], glioma [35] and
remains to be elucidated in colon cancer. The characteristic genes
in malignant epithelial cell populations were found to be involved
in biological processes such as matrix remodeling, cell prolifera-
tion and apoptosis (Fig. 2f, right, Supplementary Table S6), hinting
the occurrence of EMT. Moreover, the terms ‘positive regulation of
angiogenesis’, ‘cellular response to decreased oxygen levels’ and
‘extracellular matrix organization’ were enriched with differentially
expressed genes, also suggestive of the malignant tendency of the
cell populations. Using genes that characterizing malignant
epithelial cell populations, the biological pathways that those
genes implicated in were shown in Fig. S2d. In addition, we
predicted the regulons for malignant and non-malignant cells,
respectively. The list of top 5 regulons for the two cell populations
were shown in the heatmap (Fig. 2g). In malignant cells, a famous
oncogene MYC was shown to be one of the key regulons. The
transcriptional regulation role of ATF1 in CRC cell lines has been

characterized by a study of combing RNA-seq and ChIP-seq assays,
in which found rs7017386 allele-specifcally enhanced the binding
affnity of ATF1 and promotion of two oncogenic lncRNAs via
forming a long-range chromatin loop [36]. Therefore, both the
characteristics of the Stemness, hypoxia, and EMT and the
prediction of oncogenic regulons consistently reflected the
malignancy and tumorgenesis roles of the identified malignant
epithelial cells aforementioned.
To focus on transcriptional programs for subcategorizing tumor

cells, we performed subclustering and trajectory analysis for
malignant cell populations. We assigned seven tumor cell
subclusters to all the malignant cell populations, namely
tumor_CAV1, tumor_ATF3_JUN | FOS, tumor_ZEB2, tumor_VIM,
tumor_WSB1, tumor_LXN, and tumor_PGM1 (Fig. 2h, Fig. S2f).
The trajectory revealed a transcriptional hierarchy, converging into
three discrete tumor subclusters. One subcluster was highly
enriched with gene response to histone deacetylase (HDAC)
inhibitors (like ATF3 and CAV1), and another subcluster was highly
enriched with inflammatory gene (LXN and PGM1). The subcluster
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enriched with tumor metastasis-related hypoxia (WSB1) originated
from the aforementioned differentiation paths. Sample arrange-
ment along the differentiation trajectory of tumor cells revealed
malignancy in patient T0602.

Transcriptional features in a spatial resolution on cryosections
from patients with CRC
To examine spatially transcriptional differences within colorectal
tissues, we mounted cryosections of unfixed CRC tissues originat-
ing from the same CRC patients onto spatially barcoded ST
microarray slides to generate unbiased transcriptome maps. After
haematoxylin and eosin (H&E) staining and brightfield imaging,
we annotated the slides according to the distinct histological

features (Fig. 3a). The samples were then processed for ST analysis.
We demultiplexed the sequenced reads and identified their spatial
location within tissues using the ST location-specific barcodes of
the array. For patient T0602, we detected approximately/average
3413 median UMIs and approximately/average 1660 median gene
numbers per ST spot for both the tumor tissue section (named
CRC5_1) and the normal tissue section (named CRCN5_1).
First, the spatial transcriptomics data were integrated with the

scRNA-seq data using Seurat-v3 anchor-based integration to
annotate each region in the corresponding section [37, 38]. Every
spot in the spatial data was considered a weighted mix of cell-
types identified by scRNA-seq. For each spot, the cell type with the
maximum prediction score among all possible cell types and thus

Fig. 3 Spatial transcriptome (ST) of CRC and mapping of cell types at spatial resolution. a A pathologic section from tumor tissues of one
CRC patient (T0602). b Annotations obtained by integration analysis of the CRC. scRNA-seq dataset and CRC5_1 in ST-seq dataset using seruat
labeltransfer. c Clustering of the CRC5_1 ST spots and annotating CRC5_1 tumor cryosection on the ST slide. CRC5_1 cryosection was obtained
from tumor tissues of patient T0602. d Expression levels for genes with subtype-specific patterns in CRC5_1 ST spots. i Standardized
expression levels of five genes in the CRC5_1 in ST-seq datasets. e A pathologic section from normal, adjacent tissues of the CRC patient
(T0602). f Annotations obtained by integration analysis of the CRC scRNA-seq dataset and CRC5N_1 in ST-seq dataset using seruat
labeltransfer. g Clustering of the CRC5N_1 ST spots and annotating CRCN5_1 normal cryosection on the ST slide. CRC5N_1 cryosection was
obtained from adjacent tissues of patient T0602. h Expression levels for genes with subtype-specific patterns in CRC5N_1 ST spots.
j Standardized expression levels of five genes in the CRC5N_1 in ST-seq datasets.
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transferred from the scRNA-seq dataset is illustrated (Fig. 3b, f).
After further adjustment on the basis of annotated histological
features, we annotated four and two anatomical regions in the
CRC5_1 section (derived from a tumor tissue, Fig. 3c), and in the
CRCN5_1 section (derived from an adjacent tissue), separately
(Fig. 3g). We observed many obviously characteristic genes, which
represented higher expression in annotated regions especially in
the tumor tissues (Fig. 3i) compared to normal tissues (Fig. 3j). It is
noted that five DEGs in comparision of malignant and non-
malignant cells in the CRC scRNA-seq dataset were included
IFITM1, CXCL1, CXCL8, S100A4, and TGFBI. The higher expression
in tumor or stromal regions were shown in Fig. S3. IFITM1 was
highly expressed and spatially restricted relative to the annotated
tumor regions. IFITM1 is an interferon-induced transmembrane
protein family member. The roles of IFITM1 has been summarized
that it involves in gallbladder carcinoma, esophageal adenocarci-
noma, colorectal cancer, and gastric cancer [39]. Fang et al.
investigated that over-expression of IFITM1 promoted the aggres-
siveness of CRC cells, whereas knockdown of IFITM1 expression
inhibited cell migration, invasion or tumorigenicity in vitro [40].
Pauline et al. found a highly significant increase in IFITM mRNA
levels in 154 patients with colon and rectal carcinomas, compared
to corresponding normal tissues [41]. Kelemen et al. thought that
IFITM1 expression determined extracellular vesicle uptake in
colorectal cancer [42]. CXCL1 and CXCL8, members of the
angiogenic CXC chemokine family are highly expressed only on
the border of annotated tumor regions in our study, suggesting
that an immune exclusion and blockage by the tumor. S100A4
(S100 calcium-binding protein A4) was a typical feature in the
annotated stromal region in our study. Angiogenesis and
prognostic roles of S100A4 in colorectal cancer have been
investigated [43, 44]. TGFB1 is highly expressed and spatially
restricted relative to the annotated stromal region in our study.
TGFB is released by macrophages and fibroblasts, and it modulates
cell growth, differentiation, and cell death in colorectal cancer [45].
TGFB signaling is implicated in metastasis of colorectal cancer [46].
In addition, the genes characterizing classical phenotypes of
cancer stem-like (ASCL2), hypoxia (WSB1) and apoptosis (ATF3)
were all highly expressed in the tumor or stromal region,
suggesting cell differentiation programs. To facilitate comparisons,
the expression of the aforementioned genes in the adjacent
normal tissue samples is presented (Fig. 3j).

Different anatomical regions in a spatial resolution represents
cell compositions on tumor, stroma, immune and epithelium
Second, standalone analysis of the spatial transcriptome along
with the annotated anatomical regions was performed to identify
spatially differential transcriptional programs. Interestingly, we
found region-specific transcriptional differences. Unsupervised
clustering of spatial transcriptome of CRC5_1 along with
annotated anatomical regions revealed that the tumor region
was characterized by heterogeneous cell cluster enriched high
TMSB4X expressing cell populations (Fig. 3d, Fig. S3), which was
not observed in CRCN5_1 (Fig. 3f). The higher expression of
TMSB4X is consistent with the recent finding that TMSB4X is one of
the markers of epithelial cells in CRC tumor tissue [47]. TMSB4X
encodes thymosin beta-4, a well-known secreted small peptide,
which is identified as a novel prognostic marker for non-small cell
lung cancer [48]. TMSB4X has been validated as a therapeutic
target in colon cancer stem cells in a previous study [49].
Additionally, in other architecture-dependent tissues whose
spatial locations are deeply intertwined with their functions, such
as brain and heart, TMSB4X has been reported to be involved in
tumor progression via neovascularization, cell adhesion and the
epithelial-mesenchymal transition [50, 51]. When TMSB4X was
silenced both in vitro and in vivo, differentiation and tumorigeni-
city were diminished [52]. Targeting highly expressed TMSB4X or
TMSB4X-high cell populations identified in spatial trascriptome in

CRC has the potential to become a new therapeutic strategy in
CRC. Moreover, the annotated stromal region overexpressed
classical marker genes for fibroblasts or endothelial cells, such as
LUM, VIM, COL1A1, and COL1A2. It is noted that the differential
expression of VIM gene in comparison of stromal regions and
other regions in CRC ST-seq dataset was also identified in CRC
scRNA-seq dataset, in which VIM gene was one of the DEGs in
malignant cells compared to non-malignant cells.
As proximity is a necessity for physical interactions among cells,

anatomical regions or cell-type proximity/interactive maps can be
used to guide the discovery of interactions between anatomical
regions or cell types in the same or different lineages. We first
carried out a pseudotemporal trajectory analysis of the four
anatomical regions in CRC5_1 section. Our data revealed that the
lineage stemmed from the colon epithelium, and then went
through an infiltration to divide into two major lineages,
corresponding to stromal and tumor spots, respectively (Fig. 4a,
top). The trajectory reconstruction confirmed two major terminal/
branching cell fates at tumor and stoma spots, respectively (Fig.
S4a). Moreover, seven continuous states were identified during
along pseudotime trajectory (Fig. S4b). Tumor spots were
observed mainly in state 5, and stromal spots were found
primarily in state 6, which indicated different states during
tumorgenesis, even though these two anatomical regions were
proximal to each other. The colon epithelium was observed mostly
in state 1, and immune infiltration was distributed in states 2,3,4
and 7, sporadically in state 6.
Consistent with the trajectory, the tumor and stromal spots

exhibited greatest pseudotime meaning the most extent of
differentiation and mature/terminal programme (Fig. S4b). To
explore the characteristics of the branching cell fates, cell cycle
phase analysis was performed. Approximately 70% of stromal
spots arrested in the G1 phase of cell cycle, but this outcome was
not observed in tumor anatomical regions (Fig. 4b). G1 phase cell
cycle arrest may be responsible for the inhibition of colorectal cell
proliferation in the stromal region. Compounds that promote G1
cell cycle arrest were used and confirmed to be a treatment of
colorectal cancer [51].

Spatially resolved interactions of tumor and stromal regions
To investigate the regulators critical for the branching cell fates of
tumor and stromal regions, SCENIC-based regulon analysis was
performed. The results showed a spatial-resolved, specific regulon
set (Fig. S4c). Four of the top 5 regulons in stromal or tumor region
were overlapped, including CDX1, IRF8, HNF4A, and CREB3lL1 (Fig.
S4d). The stromal region was specifically regulated by IRF3. The
previous research suggested that overexpression of IRF3 causes
cell-cycle arrest in the G1/S phase thereby resulting in inhibition of
DNA synthesis [53]. However, the tumor region was found to be
specifically regulated by POU2F2. A recent research suggested that
POU2F2 played tumorigenic roles in glioblastoma by leading to a
metabolic shift towards aerobic glycolysis [54], but the roles in
colorectal cancer remain poorly understood. In conclusion, the
transcription factor IRF3 plays a key role in the generation of
stromal cells in the stromal region, but not tumor cells in the
tumor region, and the underlying programme involves in
inhibition of cell proliferations by arresting cells in the G1/S phase.
To further investigate the interaction between the neighboring

anatomical region, especially between the tumor region and other
regions, we secondly performed CellphoneDB-based cell interac-
tion analysis to investigate the underlying ligand-receptor pairs in
different anatomical regions derived from CRC tumors. The
aforementioned trajectory suggested the crosstalk between
stromal region and tumor anatomical region (Fig. 4a, top). We
observed intensive cellular interactions between the stromal
region and tumor regions. (Fig. 4c). For example, the stromal
region was predicted to interact with the tumor region in tumor
tissues through C5AR1-RPS19, which is known to promote tumor
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growth by facilitating recruitment of these cells to tumors [55].
C5AR1 is known to activate and recruit myeloid-derived suppres-
sor cells to tumors and reshape immunosuppressive tumor
microenvironment [56]. Accordingly, research studies have shown
that the activated complement system has a tumor-promoting
effect, including angiogenesis, trophoblastic invasion and tissue
remodeling, which includes processes favorable for tumor
establishment and progression [57, 58]. It was proposed that
RPS19 was one of the marker of epithelial-mesenchymal transition
(EMT), and regulated the metastasis abilities of cancer cells by
in vitro assays [59]. Decreasing RPS19 in tumor cells or interrupting
the C5AR1-RPS19 interaction reduces RPS19-mediated immuno-
suppression, impairs tumor growth, and delays the development
of tumors in an in vivo assay of breast cancer [60].
To evaluate the refined characterization of the tumor region, we

reclustered the spots in the tumor region to discern any spatial

differentiation process. Reclustering the spots in the tumor region
led to the identification of five subregions corresponding to five
gene modules (Fig. 4d): C0 spots expressed high levels of collagen,
which is the major component of the TME and participates in
cancer fibrosis [61], including collagen type III (COL3A1), COL4A2,
COL4A1, COL6A2, COL1A2, and COL1A1. In contrast to C1 spots,
C0 spots in the outermost layer in the CRC5_1 section, constituted
the primary structural element of the ECM. C1 spots expressed
high levels of ECM transcripts implicated in cell migration,
including fibronectin (FN1), tumor protein, transnationally-
controlled 1 (TPT1), transforming growth factor beta induced
(TGFBI), and whey acidic protein (WAP) 4-disulfide core domain
protein 2 (WFDC2). In addition, C1 spots maintain an intermediate
phase with both undifferentiated and differentiated phenotypes.
Transferring cell type labels to spatial data suggested that only the
epithelial cells in scRNA-seq were spatially restricted to the

Fig. 4 The trajectory and interactions of cell lineages at spatial resolution. a The trajectory of all ST spots of CRC5_1 cryosection in the ST-
seq dataset, color-coded by four annotated, spatial regions (tumor, stroma, immune infiltration, colon epithelium, as shown in Fig. 3c. b The
distribution of ST spots of CRC5_1 cryosection on cell cycle phases. c Receptor-ligand pair expression in each pair of spatial regions in CRC5_1
cryosection using CellPhoneDB. d Hierarchical clustering of ST spots from the tumor region in CRC5_1 cryosection and indicative of five tumor
subtypes based on five transcriptomic signatures. e The trajectory of five tumor subregions.
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outermost layer of the section (tumor subcluster C0), and C1 was
spatially restricted to the center of the section. C2 spots expressed
extremely high levels of proline rich and Gla domain 3 (PRRG3),
which is a member of a family of vitamin K-dependent
transmembrane proteins that contain a glutamate-rich extracel-
lular domain. C2 spots characterized by a senescence-like
proliferation, are represented by MAP3K12 [62]. C3 spots
expressed extremely high levels of fatty acid-binding protein 1
(FABP1), which is essential for proper lipid metabolism in
differentiated enterocytes [63]. The creatine kinase B (CKB)
promotes metastatic survival by modulating intra- and extra-
cellular energetics [64]. C3 spots are characterized by metabolism.
C4 spots expressed high levels of mitochondrial phosphoenolpyr-
uvate carboxykinase 1 (PCK1) gene, which increases colon cancer
cell growth in part by promoting the consumption of both glucose
and glutamine in the tricarboxylic acid (TCA) cycle [21]. The roles
of hypoxia-reprogrammed TCA cycles in promoting human breast
cancer cell growth via a HIF-1α-mediated PCK2 pathway have
been reported [65]. C4 spots are characterized by hypoxia-
response.
Based on characteristic genes of five subregions of tumor

region, we defined five gene modules, including focal adhesion
dynamics (C0), intermediate (C1), ECM (C2), metabolic (C3),
hypoxia-response (C4) modules. The results suggested roles for
these gene modules in tumor progression, implying a need for a
combination of an anticancer therapy with corresponding
modulators.

DISCUSSION
Colorectal cancer is a complex and heterogeneous malignant
tumor of the colon and rectum. According to the degree of tumor
differentiation and invasion, CRC can be classified into different
subtypes. However, the published CRC studies usually were
performed with whole tissues, such as bulk RNA-seq, blurring
the heterogeneous characteristics of different cell types and
limiting the ability to capture tumor heterogeneity. Cancerous
tissue is composed of a mixture of various components, such as
tumor cells, stromal cells, immune cells, and ECM, leading to a
complex TME [66]. The TME components exhibit interactive
crosstalk with tumor cells and their surrounding factors, which
in turn shapes tumor structure, metabolism, and secretion, thus
affecting tumor development and/or metastasis. Immune cells
within the TME play crucial roles during tumorgenesis. Immu-
notherapy aims to fight against cancer, infection, and other
diseases stimulating or suppressing the immune system. Immu-
notherapy displays promising therapeutic outcomes and limited
side effects [67]. An increasing number of clinical trials have
proven the effects of immunotherapy in certain types of solid
tumors, such as melanoma, non-small-cell lung cancer, renal
cancer, and prostate cancer [68]. Recently, immunotherapy drugs
such as CAR-T drugs have been approved by the FDA for clinical
application. However, not all patients respond favorably to
immunotherapy. Researchers have begun to examine the com-
plexity and diversity of the TME and are realizing its importance in
immunotherapy. Focusing on the TME facilitates to better
understanding of the occurrence, development and metastasis
of tumor and may lead to better diagnosis and treatment [69]. The
expression pattern and function of tumor cell-associated immune
molecules from in the TME provide useful information to
determine whether a patient will might benefit from immunother-
apy. There is an urgent need for improved techniques to better
understand the TME and analyze the composition of immune cells
and various other various cell types in tumor tissues. Single-cell
sequencing and spatial transcriptomics have satisfied this
requirement, and these two new-newly emerging techniques
can be used to analyze samples at the single-cell level and
monitor the in situ spatial information of tumor tissues.

Single-cell RNA sequencing enables investigation of the
transcriptional regulation of highly heterogeneous cell popula-
tions or subpopulations and facilitates the discovery of genes that
indicate cell subtypes, or that mark intermediate states during a
biological process, as well as bifurcation between two alternative
cellular fates. Spatial RNA sequencing enables the anatomical,
in situ locations to be preserved, but cannot achieve rigorous
single cell resolution. Actually, 10–20 cells are typically identified
in each spot in the ST assay. Since in situ locations representing
tissue sections are lacking in the scRNA-seq and single-cell
resolution is lacking in the spatial RNA-seq, it is necessary to
combine single-cell RNA-seq and spatial RNA-seq to reflect both
cellular locations at true single-cell resolution. This allows
inferences on functional relationships between scRNA-seq-
defined populations based on their colocalization in space, and
ultimately provides a more comprehensive characterization of cell
types in their native environment than can be gained from either
modality alone. In addition to transferring annotation at single cell
level to spatial locations, we think that the current combinatory
analysis between single-cell and spatial transcriptome remains to
be more closely and complex.
In this study, we combined single-cell and spatial transcrip-

tomics to create a hierarchical map of cellular lineages in CRC.
There CRC patients are involved, as well as single-cell transcrip-
tomes of ~47,000 cells, and spatial gene expression maps. We first
constructed CRC single-cell maps consisting of epithelial cells,
mast cells, monocytes, T cells, B cells, Endothelial cells, and NK
cells. Then we focused on the epithelial cells, from which we
identified malignant cells. Also, we performed analyses of
differential expression, functional enrichments, transcription
factors to characterize the features of malignant cells compared
to non-malignant cells. By sub-classification of malignant cells, we
found seven subtypes according to transcriptional features, which
could be helpful to molecular subtyping of CRC. Combining spatial
and scRNA-seq datasets using bioinformatics approaches, we
transferred cell type annotations at single cell level to those at the
spot level. The results showed four regions including tumor,
stroma, immune-infiltration, and colon epithelium. Then we
mainly focused on proximate cellular interactions (tumor and
stroma) within colorectal tissue, to quantify anatomically restricted
gene expression and explore crosstalks between tumor and
stromal regions. Tumor and stromal regions were characterized by
TMSB4X and VIM high expressions, respectively. The cellular
interactions or crosstalks were inferred to be mediated by C5AR1
and RPS19, which remained to be further validations.
In summary, we comprehensively explored the cellular land-

scape and reconstructed the putative interaction network
consisting of tumor cells and their microenvironment. This
collective view allowed us to elucidate how diverse cellular
components jointly determine CRC molecular subtypes in
individual patients.

MATERIALS AND METHODS
Subjects and clinical characteristics
We chose the patient inclusion criteria as the clinical stage of the tumor
being stage 2 and stage 3, without the presence of intestinal obstruction or
abdominal infection. Three patients were included and all patients were
treatment-naive before tumor resection. No one knows the underlying
mechanism heterogeneity in a single cell level. Matched adjacent normal
tissues and primary tumors and peripheral blood were obtained from all 3
patients (CRC0529, CRC0602, CRC0609). The detailed clinical information
were shown in the Supplementary Table S7. All sampling and experimental
steps in this study were approved by the Ethics Committee of Zhuhai
People’s Hospital Affiliated with Jinan University (Research projects IRB
Review Approval Notice: LW-[2022]#1). Relevant informed consent
documents were signed by the participants before sample collection
and data acquisition, all participants received no compensation from
this study.
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Preparation of single-cell suspensions
All tissue samples were washed twice with cold PBS. Tissue samples were
cut into 1mm3 in size and placed in petri dish with cold PBS, then
transferred into centrifuge tube, adding appropriate amount of enzyme and
shaking at a certain temperature for a period of time. After 2-3minutes’
standing, supernatant were collected and then use a filter membrane to
remove large clumps. After centrifuge the cells were collected, and then we
resuspended the cells with red blood cell lysis buffer and incubate 2-3min
at room temperature and then centrifuge at 120×g under 4°C for 3min.
Samples were resuspended again with cold PBS.

Droplet-based single-cell sequencing
Using the Single Cell 5’ Library and Gel Bead Kit (10X Genomics, 120237)
and Chromium Single Cell A Chip Kit (10X Genomics, 120236), the cell
suspension was loaded onto the Chromium single-cell controller (10X
Genomics) to generate single-cell gel beads in the emulsion (GEMs)
according to the manufacturer’s protocol. Briefly, single cells were
suspended in PBS containing 0.04% bovine serum albumin. Approximately
10,000 cells were added to each channel, and about 6000 cells were
recovered. The captured cells were lysed, and the released RNA was
barcoded via reverse transcription in individual GEMs. Reverse transcrip-
tion was performed at 53°C for 45min, followed by 85°C for 5 min, and
then the temperature was held at 4°C in a C1000 Touch Thermal Cycler (Bio
Rad). After reverse transcription, single-cell droplets were broken and the
single-strand cDNA was isolated and cleaned with Cleanup Mix containing
DynaBeads (Thermo Fisher Scientific). cDNA was generated and amplified,
and quality was assessed using the Agilent 4200. Single-cell RNA-seq
libraries were prepared using Single Cell 5’ Library Gel Bead Kit V2
following the manufacture’s introduction. Next generation sequencing was
performed on an Illumina Novaseq6000 with a sequencing depth of at
least 100,000 reads per cell and pair end 150 bp (performed by CapitalBio
Technology, Beijing).

Single cell RNA-seq (scRNA-seq) data processing
Sequencing data were aligned to the human reference genome (GRCh38)
and processed using the CellRanger (version 4.0.0). The gene expression
matrix from the CellRanger pipeline was filtered, normalized using the
Seurat R package (v3.2) [37]. Cells were selected if they met the following
criteria: (i) top 99% of cells in unique molecular identifier counts; (ii) >200
genes; and (iii) <25% of mitochondrial gene expression in UMI counts.
After the removal of low-quality cells, the gene expression matrices were
normalized to the total UMI counts per cell and transformed to the natural
log scale. Then all the datasets of individual sample were integrated using
the “FindIntegrationAnchors” and “IntegrateData” function in Seurat.
Louvain algorithm was applied to iteratively group proximal cells together
by “FindClusters” function with resolution of 0.6. Visualization was
achieved by both the t-Distributed Stochastic Neighbor Embedding (tSNE)
projection and Uniform Manifold Approximation and Projection (UMAP).
Cell type annotations were performed on Blueprint and Encode reference

dataset via SingleR [70], along with the marker-based correction. We
classified all cells into eight major cell types, including T cells, B cells, NK cells,
Monocytes, Epithelial cells, Fibroblasts, Endothelial cells, and Mast cells.

10x Visium Spatial transcriptomics (ST)
Cryosections were cut at 10-μm thickness, mounted onto the GEX arrays.
Sections were placed on Thermocycler Adaptor with the active surface
facing up and incubated for 1 min at 37°C, and fixed for 30min with
methyl alcohol under −20°C, and then stained with H&E (Eosin, Dako
CS701, Hematoxylin Dako S3309, bluing buffer CS702). The brightfield
Images were taken on a Leica DMI8 whole-slide scanner at 10× resolution.
Visium spatial gene expression was processed using Visium spatial gene

expression slide and Reagent Kit (10× Genomics, PN-1000184). For each
well, Slide Cassette was used to create leakproof wells for adding reagents.
70 μL Permeabilization enzyme was added and incubated at 37 °C for
20min. Each well was washed with 100 μL SSC, and 75 μL reverse
transcription Master Mix was added for cDNA Synthesis.
cDNA library were prepared for sequencing. After the first-strand

synthesis finished, reverse transcription Master Mix was removed from the
wells, and then 75 μL 0.08 M KOH was added and incubated for 5 min at
room temperature, then we removed the KOH from wells and washed with
100 μL EB buffer. A total of 75 μL Second Strand Mix was added into each
well for second-strand synthesis. cDNA amplification was performed on a
S1000TM Touch Thermal Cycler (Bio Rad). According to the manufacture’s

introduction, Visium spatial libraries were constructed using Visium spatial
Library construction kit (10× Genomics, PN-1000184). The libraries were
sequenced using an Illumina Novaseq6000 sequencer with a sequencing
depth of at least 100,000 reads per spot with pair-end 150 bp (PE150)
reading strategy (performed by CapitalBio Technology, Beijing).

Spatial transcriptome sequencing (ST-seq) data processing
The sequencing reads were mapped to the GRCh38 human genome and
expression was quantified with the spaceranger-1.0.0. Further analysis was
performed with Seurat (version 3.0.2). To annotate spots, we applied the
integration workflow introduced in Seurat v3, which enabled the
probabilistic transfer of cell types from the scRNA-seq data to the ST data.
Specifically, we first identified pairwise correspondences between single
cells and single spots to quantify the batch effect. Each spot was then
annotated based on the transcriptomic similarity between spots and cell
types in the scRNA-seq dataset. This probabilistic transfer procedure was
implemented using the FindTransferAnchors (dims=1:30) and Transfer-
Data (dims=1:30) functions in Seurat with the combination of top 100
DEGs of each cell type.

Differential expression and functional enrichment analysis
After dimensional reduction and projection of all cells into two-
dimensional space by tSNE and UMAP, cells were clustered together
according to common features. The “FindAllMarkers” function in Seurat
was used to find markers for each of the identified clusters. Using
differentially expressed genes (DEGs) of each cluster, we performed
functional enrichment analysis which were implemented by clusterpro-
filer (v3.10.1) with |log2Foldchange | >0 and p.adj < 0.05 as thresholds
(hypergeometric test). The enrichment analysis of comprehensive
functions including Gene Ontology (GO), Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways, Reactome and Disease. Gene sets
enrichment analysis was performed by GSEA application version of JAVA
(v2.2.2.4), which used predefined gene sets from the Molecular
Signatures Database (MSigDB, v6.2).

Regulon analyses
Regulon scores for individual cells were computed using the SCENIC
(single-cell regulatory network inference and clustering) pipeline [71]. A
log-normalized expression matrix of neuronal cells was used as an input
into the pySCENIC workflow (https://pyscenic.readthedocs.io/en/latest/
index.html) with default settings to infer regulons (master TFs and their
target genes).

CNV estimation and identification of malignant cells
The chromosomal CNA profile of single cells was inferred by the R package
inferCNV (version 1.0.4) [72]. Average signal were used as reference to
define a baseline of normal karyotype such that their average copy
number value was subtracted from all cells. The following parameters were
applied: cutoff=0.1, cluster_by_groups=TRUE, HMM= TRUE, and
denoise=TRUE.

Cell-cell communication analysis
In order to explore cell-cell communications via ligand–receptor interac-
tions, we employed the strategy proposed by Vento-Tormo et. al. [73]
based on a public repository of ligands, receptors and interactions
database CellPhoneDB (v2.0) [74]. The interaction score between two
different cell types was mediated by a specific ligand-receptor pair based
on the mean gene expression of ligand from one cell type and the
corresponding receptor from another cell type. To identify the significant
cell-cell interaction, we permuted the change of cell type label for each cell
at 1,000 times to calculate the significance of each pair (p-value < 0.01).
This procedure was performed between all pairs of cell types. The
interactions between distinct cell subpopulations via putative ligand-
receptor pairs were visualized using the ggplot2 package.

Single-cell trajectory analysis
We used Monocle v.2 [33] to illustrate the cell state transition in total
epithelial cells, tumor cells in the CRC scRNA-seq dataset and in CRC5_1
tumor cryosection in the ST-seq dataset. This R package applied a reversed
graph embedding technique to reconstruct single-cell trajectories. UMI
count matrices and the negbinomial.size parameter were used to create a
CellDataSet object in the default setting. We filtered variable genes with
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the following cutoff criteria: (1) genes expressed in more than 10 cells; (2)
average expression value > 0.1; and (3) Qval < 0.01. These variable genes
were used for semisupervised trajectory reconstruction. Dimensional
reduction and cell ordering were performed using the DDRTree method
and the orderCells function.

DATA AVAILABILITY
The raw sequence data reported in this study have been deposited in the Genome
Sequence Archive [75], at the National Genomics Data Center, Beijing Institute of
Genomics, Chinese Academy of Sciences/China National Center for Bioinformation
(BioProject Accession: PRJCA022899, GSA: HRA009354), and are publicly accessible at
http://bigd.big.ac.cn/gsa. The additional data that support the findings of this study
are available from the corresponding author on request.
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