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Cellular responses to TNF are inherently heterogeneous within an isogenic cell population and across different cell types. TNF
promotes cell survival by activating pro-inflammatory NF-κB and MAPK signalling pathways but may also trigger apoptosis and
necroptosis. Following TNF stimulation, the fate of individual cells is governed by the balance of pro-survival and pro-apoptotic
signalling pathways. To elucidate the molecular mechanisms driving heterogenous responses to TNF, quantifying TNF/TNFR1
signalling at the single-cell level is crucial. Fluorescence live-cell imaging techniques offer real-time, dynamic insights into molecular
processes in single cells, allowing for detection of rapid and transient changes, as well as identification of subpopulations, that are
likely to be missed with traditional endpoint assays. Whilst fluorescence live-cell imaging has been employed extensively to
investigate TNF-induced inflammation and TNF-induced cell death, it has been underutilised in studying the role of TNF/
TNFR1 signalling pathway crosstalk in guiding cell-fate decisions in single cells. Here, we outline the various opportunities for
pathway crosstalk during TNF/TNFR1 signalling and how these interactions may govern heterogenous responses to TNF. We also
advocate for the use of live-cell imaging techniques to elucidate the molecular processes driving cell-to-cell variability in single
cells. Understanding and overcoming cellular heterogeneity in response to TNF and modulators of the TNF/TNFR1 signalling
pathway could lead to the development of targeted therapies for various diseases associated with aberrant TNF/TNFR1 signalling,
such as rheumatoid arthritis, metabolic syndrome, and cancer.
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FACTS

● TNF is a pro-inflammatory cytokine that is secreted by
immune cells in response to harmful stimuli.

● Stimulation with TNF promotes cell survival by activating pro-
inflammatory signalling pathways but may also trigger
apoptosis and necroptosis.

● Cellular responses to TNF exhibit significant heterogeneity,
both within an isogenic cell population and across different
cell types.

● Cell-to-cell variability in response to TNF poses a significant
challenge to the successful treatment of cancer.

QUESTIONS

● What are the mechanisms driving heterogenous responses
to TNF?

● How does signalling pathway crosstalk guide cell-fate decisions in
response to TNF?

● Can fluorescence live-cell imaging be utilised to investigate TNF/
TNFR1 signalling pathway heterogeneity at the single-cell level?

● Could sensitising resistant cancer cells to TNF-induced cell death
be an effective strategy for the treatment of cancer?

INTRODUCTION
Tumour Necrosis Factor alpha (TNF) is a pro-inflammatory cytokine
that plays a central role in regulating innate immune and
inflammatory responses. Stimulation of cells with TNF activates a
series of complex signalling cascades that drive cell-fate decisions.
Heterogeneity within the TNF signalling network can be observed
in the dynamics of receptor binding, signalling pathway interac-
tions and gene expression. Whilst each of these signalling events
is transient, precise regulation is required as the resulting cell-fate
decision is often irreversible. The most fundamental decision is
binary: should a cell survive or commit to apoptosis? In the normal
life of an organism, it is advantageous for apoptotic decision-
making to be heterogenous and dynamic, so that not all cells die
at the same time. If a population of cells is exposed to harmful
stimuli, damaged cells will be removed by apoptosis. However, the
innate heterogeneity in pro-apoptotic signalling creates the
probability of a surviving subpopulation (known as fractional
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killing). The mechanisms that create this natural heterogeneity
pose a challenge when the objective is to eliminate an entire cell
population, such as in the treatment of cancer. This review focuses
on the application of fluorescence live-cell imaging to analyse
cellular heterogeneity in TNF/TNFR1 signalling and its influence on
cell-fate decisions.
TNF controls inflammatory signalling and cell fate through

binding to two distinct receptors: TNFR1 and TNFR2, which are
differentially expressed in different cell types. TNFR1 contains a
death domain (DD) in its cytoplasmic tail, whilst TNFR2 lacks a DD
[1, 2]. The single-cell response to TNF stimulation is largely
controlled by the balance of TNFR1 and TNFR2 expression. TNFR1
is broadly expressed, and signalling through this receptor will be
the focus of this review. TNFR2 expression in contrast is limited to
specific cell types, creating natural cell-type heterogeneity at the
level of TNF-receptor binding [2–5]. TNF/TNFR2 recruits down-
stream signalling components independently of DD interactions
and is associated with immune modulation and tissue homo-
eostasis [2, 6]. TNFR2 is overexpressed in many cancers [7], where
TNFR2-expressing cells can recruit and activate immunosuppres-
sive cells to support immune escape and tumour development [8].
Targeting TNF/TNFR2 signalling is therefore a promising candidate
for cancer immunotherapy [6, 9].
TNF/TNFR1 signalling is facilitated by context-dependent

homomeric DD interactions between TNFR1 trimers and down-
stream signalling components. These differential and dynamic
signalling interactions define a second level of heterogeneity in
the response to TNF. TNF/TNFR1 signalling can induce the
formation of at least three distinct signalling complexes in a
context-dependent manner. Complex I formation leads to
activation of NF-κB and MAPK signalling and is associated with
inflammation and cell survival [10]. Alternatively, complex IIa and
IIb both lead to cell death by inducing apoptosis and necroptosis,
respectively [11]. TNF/TNFR1 signalling through complex I
coordinates immune and inflammatory responses by promoting
transcriptional upregulation and secretion of various cytokines
and inflammatory mediators [12–14]. Signalling through complex
II helps to maintain tissue homoeostasis by eliminating damaged
or infected cells [15]. The delicate balance between these two
signalling pathways plays a pivotal role in determining cell fate,
regulating inflammation, and preserving immune system integrity.
Heterogeneity in TNF/TNFR1 signalling can be observed

throughout different stages of the signalling network. Stochastic
variation in early events such as TNF-TNFR1 binding controls
downstream signalling pathway activation [16, 17]. The dynamic
nature of these signalling cascades leads to a further level of cell-
to-cell heterogeneity. The key transcription factor NF-κB translo-
cates to the nucleus in response to TNF. In some cells, this is a
single cycle of nuclear translocation. In other cells, delayed
negative feedback loops in the NF-κB system, most importantly
via IκBα and A20 [18–22], drive regular cycles of NF-κB
translocation into and out of the nucleus [23]. The activation
dynamics of NF-κB [24–27] determine the specific gene expression
profile of individual cells [23, 28–30]. Precise integration of
dynamic signalling events and downstream gene expression is
therefore important for determining the appropriate fate of a cell
in response to TNF.
Given that TNF/TNFR1 signalling interactions are transient and

dynamic, they need to be measured quantitatively and dynami-
cally in real-time at the single-cell level to elucidate the molecular
mechanisms driving heterogenous TNF responses and ultimate
cell-fate decisions. Live-cell imaging has been the technique of
choice to study these processes. Whilst this approach has been
employed extensively to investigate TNF-induced inflammation
[18, 23, 31–33], and to some extent TNF-induced cell death
[34–36], the role of TNF/TNFR1 signalling pathway crosstalk in
guiding cell-fate decisions in single cells has been understudied. It
is vital to understand the mechanisms driving cell-to-cell

variability in response to TNF and modulators of the TNF/
TNFR1 signalling pathway, as drugs designed to promote TNF-
induced cell death suffer from fractional killing [37–40], and poor
responses in various cell lines [39, 41].
Abnormal TNF/TNFR1 signalling is associated with a wide range

of human ailments, spanning from rheumatoid arthritis [42, 43]
and metabolic syndrome [44] to cancers [45–47]. Several of these
diseases are associated with chronic inflammation, as elevated
levels of TNF drive TNF/TNFR1 signalling through complex I
[43, 47, 48]. TNF production is itself upregulated by TNF/
TNFR1 signalling, establishing a positive feedback loop that
amplifies inflammation. Pulsatile and localised TNF secretion is
therefore a further driver of cell and tissue heterogeneity that can
direct discrete patterns of NF-κB dynamics and gene expression
[31, 33]. Anti-TNF therapy is an effective treatment for chronic
inflammatory diseases [49–51]. However, long-term TNF blockade
can give rise to significant side-effects due to immune suppres-
sion, such as opportunistic and viral infections [52, 53]. TNFR1-
deficient mice are highly susceptible to infection by Gram-positive
bacteria [54, 55] and viruses [56, 57]. TNFR1 knock-out (KO) mice
are also resistant to TNF injection [58], which induces lethal septic
shock in wild type mice through RIPK1 kinase activity-dependent
cell death [59]. These findings demonstrate the pleiotropic effects
of TNF and suggest that its complete blockade may not be a
suitable long-term treatment for chronic inflammatory diseases.
There is strong evidence to suggest that dysregulation of

complex II signalling, leading to erroneous cell death, is a
contributor to pathology in chronic inflammation, autoimmune
diseases, and viral infection [14, 60–62]. In inflammatory bowel
disease, increased TNF-induced cell death can lead to disintegra-
tion of the epithelial barrier and subsequent bacterial infiltration.
This drives intestinal inflammation, as observed in Crohn’s disease
and ulcerative colitis [63]. Establishing a comprehensive under-
standing of the interplay between TNF/TNFR1 complex I and
complex II signalling in single cells will therefore be important to
elucidate the underlying mechanisms of diseases associated with
aberrant TNF/TNFR1 signalling. Specific non-coding RNAs [64, 65]
and short peptides [66, 67] have been identified as key regulators
of inflammatory and immune responses. These intracellular
components represent potential targets for small molecules and
could therefore enable the development of “precision” TNF drugs
that only target specific signalling arms, as opposed to the entire
signalling cascade.

TNF/TNFR1 signalling through complex I
Upon TNF binding, TNFR1 undergoes receptor trimerization. This
brings together the cytoplasmic domains of TNFR1, allowing
interaction with various adaptor and signalling proteins. TNFR1
recruits TRADD and RIPK1 through homomeric DD interactions
[68, 69]. TRADD acts as a scaffold for the recruitment of TRAF2/
TRAF5 and cIAP1/cIAP2 to form TNF/TNFR1 complex I [68, 69] (Fig.
1). cIAP1/cIAP2 are E3 ubiquitin ligases that catalyse the formation
of K63-linked ubiquitin chains on TNF/TNFR1 complex I compo-
nents, including RIPK1 [70–73]. Ubiquitin-modified RIPK1 enables
the recruitment of TAB2 and TAB3 to the complex [74–77], which
in turn recruit TAB1 and TAK1 [78, 79]. TAK1 is a serine/threonine
protein kinase that activates the MAPK pathway [80, 81].
Ubiquitin-modified RIPK1 recruits LUBAC, a heterotrimeric com-
plex composed of HOIL-1L, HOIP, and SHARPIN [82–85]. LUBAC is
an E3 ubiquitin ligase that conjugates complex I components,
including RIPK1, with linear M1-linked ubiquitin and can
potentially generate hybrid K63/M1-linked chains [85–88].
The IKK complex, consisting of IKK1, IKK2, and NEMO [89–91], is

recruited to TNF/TNFR1 complex I through the binding of NEMO
to ubiquitinated RIPK1 [76, 92]. NEMO binds to K63-linked
[76, 93, 94], M1-linked [95, 96], and hybrid K63/M1-linked ubiquitin
chains [87, 88]. Recruitment of NEMO to TNF/TNFR1 complex I
brings the IKK complex in proximity to TAK1, which
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phosphorylates and activates IKK2 [92]. Active IKK2 phosphor-
ylates IκBα, leading to its ubiquitin-mediated proteasomal
degradation. This liberates NF-κB from its cytoplasmic inhibitory
complex, allowing its translocation to the nucleus, where it
induces the expression of inflammatory and anti-apoptotic genes
[30]. NF-κB, as described above, induces the expression of
negative regulators of its own signalling pathway, including IκBα,
IκBβ, IκBε, and A20 [18–22]. These delayed negative feedback
mechanisms lead to oscillatory NF-κB dynamics and in other
contexts ensure the appropriate cessation of pro-inflammatory
signalling upon removal of harmful stimuli, thus promoting the
restoration of cellular homoeostasis.

TNF/TNFR1 signalling through complex II
The post-translational modification (PTM) profile of RIPK1 is
believed to play a pivotal role in determining whether propagation
of TNF/TNFR1 signalling primarily occurs through complex I or
complex II [97–99]. In addition to ubiquitination, RIPK1 is subject to
phosphorylation by various kinases, including IKK2 [100], MK2
[101–103], TBK1, and IKKε [104], among others. These phosphor-
ylation events have been shown to protect against RIPK1 kinase-
dependent cell death, either by repressing RIPK1 kinase activity or
inhibiting the binding of RIPK1 to complex II components, such as
FADD and caspase 8. Notably, both IKK2 and MK2 also mediate the
activation of further signalling events downstream of complex I,
leading to the expression of TNF-induced pro-inflammatory and

anti-apoptotic genes [30, 105]. This suggests that complex I
formation not only inhibits complex II activation via the induction
of anti-apoptotic genes but also through the post-translational
regulation of RIPK1. Under specific conditions (discussed in the
next section), the PTM profile of RIPK1 can promote its dissociation
from complex I to form complex IIa (Fig. 2). Auto-phosphorylation
of RIPK1 at serine 166 [106] is thought to be a key driver of this
switch.

Fig. 1 TNF/TNFR1 signalling through complex I. 1 Trimeric TNF
binds to TNFR1 on the cell-surface membrane of target cells and
induces oligomerization of the receptor. 2 TRADD and RIPK1 are
recruited to the intracellular domains of TNF/TNFR1 through their
‘death domain’. These proteins then recruit TRAF2/5 and cIAP1/2 to
form TNF/TNFR1 complex I. 3 cIAP1/2 adds K63-linked ubiquitin
chains to RIPK1, allowing for the recruitment of LUBAC and TAB2/3.
TAB2/3 recruits TAB1 and TAK1. TAK1 then activates the MAPK
signalling pathway. 4 LUBAC adds M1-linked ubiquitin chains to
RIPK1 and potentially generates K63/M1-linked hybrids. M1- and
K63/M1- linked ubiquitin chains on RIPK1 allow for the recruitment
of the IKK complex through NEMO. Recruitment of the IKK complex
to TNFR1 brings it in proximity to TAK1, which phosphorylates and
activates IKK2. 5 IKK2 phosphorylates IκBα, leading to its ubiquitin-
mediated proteasomal degradation and liberation of NF-κB, thus
activating the NF-κB signalling pathway.

Fig. 2 TNF/TNFR1 signalling through complex II. TNF stimulation
predominantly induces the formation of TNF/TNFR1 complex I,
leading to activation of pro-inflammatory NF-κB and MAPK
signalling pathways. However, TNF/TNFR1 signalling may also
trigger apoptosis and necroptosis via complex IIa and IIb,
respectively. 1 TNF/TNFR1-disrupting agents, such as SMAC
mimetics and TAK1 inhibitors, can promote the dissociation of
complex I and formation of complex II. In complex IIa, RIPK1
associates with TRADD, FADD, cFLIP, and pro-caspase 8. The high
local concentration of pro-caspase 8 induces caspase 8 activation
through autocleavage and trans-cleavage from other active cas-
pases. Caspase 8 then cleaves and activates caspase 3, which in turn
cleaves downstream components to induce apoptosis. 2 If caspase
activation is inhibited, complex IIb can prevail as the dominant
signalling pathway. In this pathway, RIPK1 is phosphorylated by
RIPK3, causing it to dissociate from complex IIa and instead form a
RIPK1-RIPK3 pro-necrotic complex. RIPK3 then directly phosphor-
ylates MLKL, causing it to oligomerise and translocate to the plasma
membrane. MLKL binds to phosphatidylinositol phosphates on the
membrane’s inner leaflet and disrupts the integrity of the cell
membrane, resulting in the release of intracellular contents. This
process leads to cell swelling, rupture, and ultimately culminates in
cell death by necroptosis.
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In complex IIa, RIPK1 associates with TRADD, FADD, pro-caspase 8,
and c-FLIP. The high local concentration of complex IIa components
leads to proximity activation of caspase 8 via pro-caspase 8 auto-
cleavage and trans-cleavage from other active caspases. Caspase 8
then cleaves and activates executioner caspases, such as caspase 3,
which cleave downstream components including ICAD, iPLA2, and
XKR8 to induce apoptosis [107–109]. Interestingly, caspase 8 has also
been shown to directly cleave RIPK1 [110, 111]. RIPK1 cleavage has
been suggested to promote TNF-induced apoptosis by inhibiting NF-
κB and the expression of pro-survival genes [110, 112]. However,
other recent studies have suggested that caspase 8-mediated RIPK1
cleavage may be important for limiting apoptotic and necroptotic
forms of cell death [113, 114]. Highlighting the significance of RIPK1
cleavage in protecting against cell death-driven inflammation, Lalaoui
et al. [115] and Tao et al. [116] have identified specific monogenic
single amino acid mutations in humans that render RIPK1
uncleavable, leading to the early onset of autoinflammatory disease.
When complex IIa forms but caspases are not activated, complex

IIb can prevail as the dominant signalling pathway [117–119]. In
these circumstances, RIPK1 is phosphorylated by RIPK3, causing
dissociation from complex IIa and formation of a RIPK1-RIPK3 pro-
necroptotic complex [120–122]. The formation of RIPK1-RIPK3
heterodimers also promotes RIPK3 homodimerization [123]. RIPK3
homodimers are required for necroptosis and are sufficient to
induce MLKL-dependent cell death [123]. Active RIPK3 directly
phosphorylates MLKL at threonine 357 and serine 358 within its
activation loop, triggering a conformational change that induces
the formation of higher-order MLKL oligomers [124–127]. These
oligomers translocate to the plasma membrane, where they bind
to phosphatidylinositol phosphates on the membrane’s inner
leaflet. Membrane-bound MLKL oligomers disrupt the integrity of
the cell membrane, resulting in the release of intracellular contents.
This process leads to cell swelling, rupture, and ultimately
culminates in cell death by necroptosis [128].
Interestingly, genetic deletion of RIPK1 has been shown to

promote TNF-induced necroptosis via RIPK3 [129, 130]. Wang et al.
[131] demonstrated that in RIPK1 KO cells, TRADD forms a complex
with RIPK3, which promotes RIPK3 oligomerization and phosphor-
ylation, leading to activation of MLKL and subsequent necroptosis.
This implies a level of redundancy between TNF/TNFR1 complex II
components, as TRADD can replace the role of RIPK1 during
complex IIb-mediated signalling in RIPK1 KO cells. This redundancy
is important in development, as ablation of TRADD can rescue
Ripk1−/− Ripk3−/− mice from perinatal lethality [132, 133]. Whilst
deletion of TRADD fails to rescue the survival of Ripk1−/− mice, it is
sufficient to reduce systemic cell death and inflammation in
Ripk1−/− neonates [132]. Interestingly, TRADD is essential for TNF-
induced NF-κB activation in Ripk1−/− Ripk3−/−

fibroblasts [133],
suggesting that it plays an important redundant role in both TNF/
TNFR1 complex I- and complex II-mediated signalling.

The interplay between TNF/TNFR1 complex I and complex II
signalling is a key determinant in regulating cell fate
Initial investigations into TNF-induced apoptosis demonstrated
that activation of NF-κB by TNF protects against cell death
[134–138]. Multiple studies have demonstrated that NF-κB
activates a set of genes that cooperatively suppress TNF-induced
apoptosis [139–141]. These target genes include cIAP1, cIAP2, and
XIAP [142]. cIAP1/2 limits extrinsic apoptosis by preventing
caspase 8 activation and weakly inhibiting executioner caspases
[143–145]. cIAP1/2 are also required for proper activation of the
NF-κB signalling pathway [144, 145]. XIAP suppresses apoptosis by
inhibiting initiator and executioner caspases [146, 147]. Anti-
apoptotic members of the BCL-2 family of proteins have also been
identified as NF-κB transcriptional targets [148, 149]. These
proteins bind to the outer mitochondrial membrane to prevent
mitochondrial outer membrane permeabilization and thus directly
inhibit intrinsic apoptosis.

Two separate studies demonstrated that c-FLIP, a negative
regulator of apoptosis, is induced by NF-κB [150, 151]. Micheau
and Tschopp [138] reported that treatment of cells with TNF
induces the sequential formation of TNF/TNFR1 complex I and
complex II. The authors proposed that NF-κB signalling down-
stream of complex I promotes the upregulation of c-FLIP, which
inhibits caspase 8 and thus hampers the apoptotic function of
complex II. However, if NF-κB activation is defective, c-FLIP
expression will not surpass the threshold required to protect cells
from TNF-induced apoptosis. TNFR1-mediated signal transduction
therefore includes a checkpoint, resulting in cell death (via
complex II) in instances where the initial signal (via complex I,
NF-κB) fails to activate appropriately. There is a clear evolutionary
rationale for the existence of this checkpoint, given that
pathogens have developed mechanisms to disrupt TNF/TNFR1
complex I signalling as a protective measure against the host’s
immune response [152–154]. If TNF/TNFR1 signalling is activated
in response to infection, complex I-mediated inflammatory
signalling will be engaged. If the invading pathogen significantly
disrupts this pathway, and thus curtails the expression of pro-
survival genes, subsequent complex II-mediated signalling will
promote cell death to eradicate the pathogen. The dynamic
interplay between hosts and pathogens can be viewed as a
biological conflict system [155]. Such systems give rise to
evolutionary arms races, wherein hosts face selective pressure to
evolve resistance to pathogens, whilst pathogens simultaneously
strive to develop countermeasures to evade host surveillance and
establish a successful infection [156].
Several TNF/TNFR1 components play a role in both complex I-

and complex II-mediated signalling pathways. As previously
mentioned, RIPK1 is a core component of pro-inflammatory, pro-
apoptotic and pro-necroptotic complexes [157]. A20/TNFAIP3 has
been implicated as an important negative regulator of both
complex I-induced inflammation and complex II-induced cell
death. A20/TNFAIP3 is a TNF-inducible dual ubiquitin-editing
enzyme [158]. It is one of the key negative feedback loops that
regulate the dynamics and function of the NF-κB signalling system
and has been implicated in controlling the repeated response to
pulsatile TNF signalling [33]. It has also been proposed to regulate
the timing of NF-κB oscillations through both the level of
heterogeneous A20 expression and as a sensor of temperature
[159]. The functional importance of A20/TNFAIP3 was indicated by
the observation that A20-deficient mice develop severe inflam-
mation and cachexia, are hypersensitive to TNF, and die
prematurely [160]. A20 has unique properties as a ubiquitin-
modifying enzyme, displaying deubiquitinating (DUB), E3 ubiqui-
tin ligase, and ubiquitin-binding activities [161]. ZnF4, the domain
of A20 with E3 ubiquitin ligase activity, has been shown to bind to
K63-linked ubiquitin chains on complex I components [162]. This is
suggested to aid recruitment of A20 to the receptor complex and
protect K63-linked ubiquitin chains from degradation [96].
Transgenic mice with inactivating mutations in either A20’s DUB
[163–165] or ZnF4 domains [163, 165] are grossly normal and do
not develop the severe phenotype of A20-deficient mice.
The ZnF7 domain of A20 binds to M1-linked ubiquitin chains

and is required for recruitment of A20 to complex I [166, 167].
ZnF7-mutant mice develop arthritis [168], supporting a ZnF7-
dependent role for A20 in regulating TNF/TNFR1 signalling.
Binding of ZnF7 to M1-linked ubiquitin chains has been shown
to protect them from degradation by DUB enzymes such as CYLD
[96, 166]. CYLD (another NF-κB target gene) has been proposed to
remove M1-linked ubiquitin chains from complex I components to
destabilise the complex and promote a switch towards the
formation of complex II [96, 166]. In protecting M1-linked chains
from degradation, A20 suppresses TNF-induced cell death by
stabilising complex I. Antagonising interactions between A20 and
CYLD may provide a mechanism for regulating the interplay
between complex I and complex II-mediated signalling pathways
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(Fig. 3). ZnF7-mediated recruitment of A20 to complex I also
inhibits downstream activation of the IKK complex and thus
negatively regulates pro-inflammatory signalling [169].
Global deficiency in RIPK3 significantly restores the survival of

A20-deficient mice [170, 171], suggesting that A20 protects
against complex II-induced necroptosis. In contrast, MLKL
deficiency fails to rescue the early lethality of A20-deficient mice
[171], further complicating the role of A20 in TNF/
TNFR1 signalling. Although A20’s exact role in TNF/
TNFR1 signalling remains unclear, it has a clear influence on the
PTM profile of TNF/TNFR1 complex components. For instance,
A20’s control over the level and type of ubiquitination on RIPK1
represents a crucial element for determining cell fate at the
intersection of TNF/TNFR1 complex I and complex II signalling.

Heterogeneity in TNF/TNFR1 signalling
Heterogeneity represents an inherent characteristic of cell
populations and plays an important role in many regulatory
processes. Cell-to-cell variability in TNF/TNFR1 signalling can be

attributed to multiple mechanisms, including the dynamics of TNF
secretion, receptor binding, signalling pathway interactions and
gene expression [23, 32, 172]. Stochastic variation in protein-
protein interactions between TNF and TNFR1 can have a
significant impact on downstream signalling pathway activation.
A minimum of two TNFR1-TNF contact points is required to
activate the JNK/p38/NF-κB pathways [16]. Binding to fewer sites
is sufficient to activate NF-κB but not JNK and p38 [16]. Within a
population, TNFR1-TNF interactions could facilitate the activation
of JNK/p38/NF-κB in some cells, whilst only NF-κB is activated in
others. A further level of heterogeneity arises through the
opposing negative and positive feedback loops that drive NF-κB
inhibition (IκBα and A20) and TNF amplification (pulsatile
secretion). Heterogenous NF-κB activation dynamics can produce
diverse gene expression profiles [23, 28–30]. The dynamic profile
of NF-κB could significantly influence the sensitivity of a cell to
apoptosis by controlling the level of anti-apoptotic gene
expression.
TNF/TNFR1 signalling cascades are inherently noisy due to

stochastic fluctuations in genetic circuits [17]. This noise arises
from variations in transcription and translation levels between
cells, leading to differences in the expression of signalling
components [173, 174]. This could also influence the composition
of signalling complexes. For example, a reduction in cIAP1/2
expression promotes the formation of complex II [145]. Cell-to-cell
variability can be observed in the kinetics of signalling reactions
[175, 176]. Dynamic signalling events are significantly influenced
by fundamental physical processes [177], such as cell cycle phase
[178], growth rate [179], and the intrinsic promiscuity of protein-
protein interactions [17]. Each of these dynamic signalling events
must be properly integrated to determine the appropriate
response of a cell to TNF, as apoptotic decision-making has a
significant impact on both the individual cell and wider
population. Cells respond heterogeneously to drugs that promote
TNF-induced cell death by undergoing apoptosis at different time
points. Some cells may also be resistant to treatment, leading to
fractional killing [40, 180, 181]. Heterogeneity in TNF/
TNFR1 signalling therefore likely provides a built-in mechanism
to increase the survival probability of cell populations when
exposed to an apoptotic-inducing stress.

Elucidating the mechanisms driving heterogenous responses
to TNF: the advantages and disadvantages of live-cell imaging
Conventional bulk-cell experimental techniques fail to truly
capture cellular heterogeneity, as they provide average
measurements across the entire cell population. Instead,
methods capable of extracting information from individual
cells within the population must be employed. Various aspects
of cellular heterogeneity can be assessed using techniques
such as scRNA-seq for gene expression [182], scATAC-seq for
DNA accessibility [183, 184], scChIP–seq for histone modifica-
tions [185], and scBS-seq for DNA methylation [186]. Flow
cytometry also enables single-cell analysis of phenotypes,
including cell viability, surface marker expression and cell cycle
phase [187]. These methods are all endpoint assays, meaning
that cell behaviour cannot be continuously tracked over time
within the same sample. This can be challenging for capturing
transient signalling events, as it is difficult to treat and prepare
samples within short timeframes. Since many cellular processes
are dynamic, their investigation requires real-time non-invasive
analysis of single cells. Non-invasive live-cell imaging has
become the technology of choice to understand heteroge-
neous and dynamic processes. Ideally, this requires tools to
study single molecule interactions, protein translocation and
real-time analysis of gene expression [188]. Live-cell imaging of
fluorescent-fusion proteins (FFP) has had a particularly impor-
tant role, for example in the elucidation of NF-κB dynamics [23]
(discussed in the next section).

Fig. 3 Interplay between TNF/TNFR1 complex I and complex II
signalling pathways. TNF stimulation activates a series of complex
signalling cascades that drive cell-fate decisions. The intricate
interplay between these signalling pathways plays a pivotal role in
determining a cell’s response to TNF. There are several checkpoints
throughout TNF/TNFR1 signalling where crosstalk can occur. 1 One
of the primary components believed to govern the interplay
between TNF/TNFR1 complex I- and complex II-mediated signalling
occurs during the early stages of complex formation. The post-
translational modification (PTM) profile of RIPK1 determines whether
signalling will predominantly propagate from complex I or complex
II [97]. Under specific conditions, RIPK1 can experience significant
PTM alterations, causing it to dissociate from TNF/TNFR1 complex I
and instead form complex IIa. 2 The PTM profile of RIPK1 is thought
to be regulated by the antagonistic interactions of A20 and CYLD.
A20 binds to M1-linked chains on RIPK1 and protects them from
degradation by CYLD, thus stabilising complex I. If CYLD successfully
removes M1-linked ubiquitin, RIPK1 is more likely to dissociate from
complex I and form complex IIa. 3 TNF/TNFR1 complex I-driven
activation of NF-κB leads to increased expression of pro-survival
genes, such as cIAP1/2 and c-FLIP. c-FLIP directly inhibits activation
of pro-caspase 8, thus reducing signalling downstream of complex
IIa. A20 is also under NF-κB transcriptional control, adding another
layer of complexity to TNF/TNFR1 signalling crosstalk.
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Single-cell resolution fluorescence live-cell imaging techniques
have been utilised to investigate heterogeneity in various cellular
processes [23, 189–191]. FFPs have been generated to track the
dynamics, localisation, and expression of proteins of interest
[192, 193]. These widely used approaches for tracking protein
localisation require the FFP to be expressed in the cell type of
interest. Importantly, the FFP and its expression level must not
interfere with protein function. It is important to check whether a C-
or N-terminal fusion is optimal. Remarkably, fluorescent proteins
have been found to often take on the stability of the protein they are
fused to, as exemplified in the case of rapid signal-dependent
degradation of enhanced green fluorescent protein (eGFP)-IκBα [23].
Various techniques have also emerged to support tracking of RNA
molecules in cells to study transcription, translation, and RNA
localisation within cells. A set of emerging techniques include, but
are not limited to, the use of bacteriophage MS2 coat protein system
[194–197], fluorogenic RNAs [198–200], and several RNA-targeting
CRISPR-Cas systems [201–203]. Fluorophore-labelled probes such as
Annexin V, propidium iodide and caspase-cleavable DEVD have also
been used in a fluorescence live-cell imaging context to study cell
death kinetics in response to specific reagents [204–206]. These
fluorescent probes can also be utilised in flow cytometry assays to
study cell death kinetics in a similar fashion [207].
Combining fluorescence live-cell microscopy with techniques

such as immunofluorescence and immunohistochemistry can help
to identify issues of perturbation of normal function. Fixing cells
and staining for the endogenous protein of interest can confirm
whether the same phenotype is identified compared to live-cell
imaging experiments. Detection of fluorescent markers during

live-cell imaging requires excitation of the fluorophore using a
specific wavelength of light, and detection of light emitted at a
longer wavelength [208]. Maintaining cellular health in a
homoeostatic environment is a crucial component of fluorescence
live-cell imaging [209] This requires ensuring constant tempera-
ture, humidity, pH, and osmolality. Excitation of the fluorophore
should also be kept to a minimum to avoid oxidative stress and
photobleaching. In many cases it is useful to use a DNA staining
fluorescent dye to mark the nucleus, but care must be taken. For
example, Hoechst 33342 is a popular DNA-staining dye but this
can induce apoptosis due to phototoxicity from repeated
excitation [210].

Example of the use of live-cell imaging to investigate NF-kB
dynamics
Initial studies quantified NF-κB dynamics by transiently transfect-
ing plasmids expressing RelA-FFPs into cells [23]. Following TNF
treatment, RelA translocation between the nucleus and the
cytoplasm could be visualised in real-time and quantified by
calculating the nuclear-cytoplasmic (N-C) ratio. More recently,
stable RelA-FFP cell lines have been established using lentivirus
[211, 212], Bacterial Artificial Chromosome-mediated expression
[159, 213] (Fig. 4), and CRISPR/Cas9-mediated RelA-FFP knock-in
[24, 214]. Stable RelA FFP lines offer the advantage of relatively
uniform RelA-FFP expression levels [215]. Isogenic knock-in cell
lines have the added benefit of enabling RelA-FFP expression from
the endogenous RelA promoter, thus avoiding any behavioural
artifacts associated with RelA overexpression.
GFP-RelA knock-in mice have been generated to study NF-κB

dynamics [216]. Homozygous GFP-RelA mice can be used to
derive various primary cell types, such as macrophages and
endothelial cells. Employing fluorescence live-cell imaging to
measure the activation dynamics of NF-κB in different primary
cells derived from the same source could address cell-specific
mechanisms controlling NF-κB activity [216]. Additionally, RelA
N-C shuttling can be measured in vivo within individual cells of
live GFP-RelA mice using intravital fluorescence microscopy [217].
Conducting experiments in live mice enables the continuous
tracking of physiological changes over an extended period within
the same research subject. This is particularly useful for studying
cellular responses to TNF, as inflammation and cell death can
manifest over a range of timescales, spanning from hours to years,
depending on whether the response is acute or chronic [218, 219].
This approach can also be utilised to conduct experiments such as
lineage tracing, allowing for the constant monitoring of cell-fate
decisions over time [220, 221].
Utilising fluorescence live-cell imaging to measure NF-κB N-C

shuttling revealed that the duration of TNF exposure influences
NF-κB activation dynamics [23, 31]. Interestingly, Lee et al. [222]
demonstrated that short pulses of TNF (1 min) are more effective
at inducing apoptosis in HeLa (human cervical carcinoma) cells
than longer pulses. Prolonged exposure to TNF increases the
duration of NF-κB nuclear occupancy and thus increases the
induction of NF-κB target genes [222]. Given that TNF/
TNFR1 signalling through complex I inhibits complex II
[100–103], and multiple NF-κB target genes protect against
apoptosis [96, 138, 148, 149], sustained NF-κB activation caused
by longer TNF pulses maintains the inhibition of complex II and
thus reduces cell death [222, 223]. This finding underscores the
importance of TNF/TNFR1 complex I and complex II signalling
crosstalk in controlling cell-fate decisions in response to TNF. The
duration of TNF exposure also provides additional opportunities
for cell-to-cell variability, as a short pulse of TNF may be sufficient
to induce apoptosis in some cells but not others. A further study
utilised fluorescence live-cell microscopy alongside mathematical
modelling to establish a connection between NF-κB dynamics and
necroptosis in response to TNF [224]. A20 was identified as a key
regulator in controlling the interplay between complex I-mediated

Fig. 4 NF-κB oscillations in single cells. Mouse ear fibroblasts from
an eGFP-RelA Bacterial Artificial Chromosome transgenic line were
imaged on a Zeiss LSM780 confocal microscope every 2 min for 16 h
following 10 ng/ml TNF stimulation. A Images at 0min and 22min
after TNF stimulation (scale bar 10 microns) (B) Analysis of nuclear
fluorescence in an example single-cell over time.
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NF-κB signalling and complex IIb-mediated necroptotic signalling
in single cells. The decision for a cell to undergo necroptosis is
proposed to be controlled by A20, which forms an incoherent
feedforward loop during NF-κB signalling to protect a fraction of
cells from transient TNF doses but renders them sensitive to long-
term TNF exposure.

Overcoming cellular heterogeneity in the treatment of cancer
Epigenetic variability within an isogenic cell population may be
evolutionarily advantageous, as diverse responses to harmful
stimuli increase the probability that a subpopulation of cells can
survive [225]. Whilst the response of individual cells may differ due
to both regulated and stochastic variations in cellular processes,
robust phenotypes can be observed at the population level
[32, 226]. Applied to the TNF/TNFR1 signalling pathway, cell-to-cell
variability could ensure that TNF/TNFR1-disrupting pathogens do
not fully eradicate the cell population by inducing apoptosis in all
cells. Thus, cellular heterogeneity may provide a built-in safe-
guarding mechanism to ensure the continued survival of a cell
population. Oyler-Yaniv et al. [227] developed the idea that TNF
regulates a trade-off between cell death decision speed and
accuracy in response to infection. Whilst infected cells die faster in
the presence of TNF, this comes at the expense of increased death
of uninfected bystander cells. The precise control of this trade-off
in individual cells, which is likely regulated by TNF/
TNFR1 signalling pathway crosstalk, is essential to restrict the
spread of infection throughout the entire cell population.
Although epigenetic variability is a useful survival strategy for

an isogenic cell population, it poses a significant challenge to the
successful treatment of cancer. Intra-tumour heterogeneity (ITH)
describes the existence of subpopulations within a tumour that
exhibit distinct genetic, epigenetic, and phenotypic characteristics
[228]. In the same way that heterogenous responses to TNF/
TNFR1-disrupting pathogens increase the probability of survival
for isogenic cell populations, ITH maximises the fitness of cancer
cell populations in dynamic tumour environments [229]. There are
at least three mechanisms driving ITH in cancer [1]: genetic
heterogeneity, wherein cancer cells stochastically accumulate
mutations through genomic instability, leading to the emergence
of tumour subclones with distinct genotypes [2, 230]; non-genetic
heterogeneity, resulting from variations in regulatory mechanisms,
including epigenetic, posttranscriptional, and post-translational
modifications [3, 229]; tumour microenvironmental (TME) hetero-
geneity, caused by region-specific selection pressures throughout
different parts of the tumour [231]. These mechanisms are not
mutually exclusive and work in concert, contributing to a complex
system with multiple layers of heterogeneity [229]. In the context
of TNF/TNFR1 signalling, ITH has the potential to create tumour
subpopulations that exhibit increased resistance to TNF-induced
cell death. Through modification of TNF/TNFR1 signalling compo-
nents, cancer cells could modulate pathway crosstalk so that
complex I-mediated cell survival is favoured over complex II-
induced cell death, even in conditions where signalling through
complex I is disrupted. These modifications could include changes
to gene expression, PTM profile or genetic mutations.
‘Hot’ TMEs are characterised by high infiltration of immune cells,

including cytotoxic lymphocytes (CL) and M1/M2-like tumour-
associated macrophages [232, 233]. These immune cells release
cytokines, giving rise to an inflammatory phenotype [234, 235].
The secretion of cytokines such as interferon γ, TNF, and TNF-
related apoptosis-inducing ligand by CLs represents a key
antitumour mechanism, as it induces proliferative arrest and/or
apoptosis in target cells [236–242]. In immune hot TMEs with high
concentrations of TNF, it would be advantageous for cancer cells
to be more resistant to TNF-induced cell death. Indeed, Kearney
et al. [240] revealed that tumour cells upregulate PD-L1 expression
to suppress secretion of TNF and cell killing by CLs. Kearney et al.
[241] further demonstrated that loss of the TNF/TNFR1 signalling

components Casp8 and Tnfrsf1a increases resistance to CD8+ T
cell- and natural killer cell-mediated TNF-induced cell death, thus
driving immune cell evasion in cancer.
The acquired resistance of cancer cells to TNF-induced cell

death is currently a research area of interest, as modulators of the
TNF/TNFR1 signalling pathway have the potential to sensitise
resistant cancer cells to TNF [240, 242]. Recent studies have
highlighted the importance of TNF-induced cell death in
contributing to CAR T-cell cytotoxicity [243, 244]. Encouragingly,
the antitumour activity of CAR T-cells can be significantly
enhanced when cancer cells are made more susceptible to TNF-
induced cell [243]. Table 1 provides an overview of the various
mechanisms driving TNF-induced cell death that have currently
been published.
Establishing a mechanistic and quantitative understanding of

the molecular processes underpinning heterogeneous responses
to TNF could prove invaluable for increasing the efficacy of cancer
treatments. Given that cellular heterogeneity poses a significant
challenge to drugs that induce both intrinsic and extrinsic
apoptosis, there is a need for techniques that offer real-time
and dynamic insights into molecular processes in single cells. This
review therefore advocates for the application of fluorescence
live-cell imaging in the study of TNF/TNFR1 signalling, with a
specific focus on how complex I and complex II signalling
interactions govern cell-fate decisions. The generation of isogenic
cell lines that endogenously express FFPs of TNF/TNFR1 signalling
components would allow for quantitative and dynamic measure-
ments of cellular responses to TNF in single cells. TNFR1, RIPK1
and A20 would be suitable candidates for this approach.
Promisingly, recent studies have already begun utilising fluores-
cence live-cell microscopy to examine both intrinsic [245] and
extrinsic [224] apoptosis, indicating a bright future for the field.
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