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miR-184 represses β-catenin and behaves as a skin tumor
suppressor
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miR-184-knockout mice display perturbed epidermal stem cell differentiation. However, the potential role of miR-184 in skin
pathology is unclear. Here, we report that miR-184 controls epidermal stem cell dynamics and that miR-184 ablation enhances skin
carcinogenesis in mice. In agreement, repression of miR-184 in human squamous cell carcinoma (SCC) enhances neoplastic
hallmarks of human SCC cells in vitro and tumor development in vivo. Characterization of miR-184-regulatory network, suggests
that miR-184 inhibits pro-oncogenic pathways, cell proliferation, and epithelial to mesenchymal transformation. Of note, depletion
of miR-184 enhances the levels of β-catenin under homeostasis and following experimental skin carcinogenesis. Finally, the
repression of β-catenin by miR-184, inhibits the neoplastic phenotype of SCC cells. Taken together, miR-184 behaves as an
epidermal tumor suppressor, and may provide a potentially useful target for skin SCC therapy.
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INTRODUCTION
Squamous cell carcinoma (SCC) is the second most common form
of non-melanoma skin cancer. The causes for SCC are environ-
mental including exposure to ultraviolet radiation, chemical
exposures, viral infection such as human papillomavirus, or host
factors such as genetic susceptibilities, skin tone and immuno-
suppression [1]. SCC may develop from actinic keratoses, which
are precursor lesions that may progress to SCC. Prevention by
treatment of actinic keratoses or early detection and surgical
excision of SCC allows clinical cure [2, 3]. However, tumors that
evolve, become infiltrative and aggressive, may recur locally or
develop metastasis. Treatments to locally advanced or metastatic
SCC are sparse, and include radiation therapy, chemotherapy,
EGFR inhibitors and recently immunotherapy [4, 5]. Response to
these therapies is only partial, and there are no good histological
markers that can predict therapy response. Therefore, there is a
need to better understand the molecular pathways that control
cancer progression and cancer stem cells. This understanding will
promote the development of better diagnostic and prognostic
markers and efficient therapeutic measures [6].
One of the principal pathways that are hyper-activated and pro-

tumorigenic in SCC is the Wnt/β-catenin pathway [7]. Wnt
signaling controls several signal transduction pathways and is
implicated in the development/progression of multiple cancers
when aberrantly regulated. Recent evidence has highlighted a
potentially critical role for Wnt signaling in both the development
and progression of cutaneous SCC [7]. The level of β-catenin, a
major intracellular signal transducer of the Wnt pathway, was

increased in cutaneous SCC samples compared to normal skin, as
demonstrated by immunohistochemistry [8]. In addition, local
activation of Wnt/β-catenin was observed in cutaneous SCC
tumors but not in healthy skin [9]. The identification of Wnt
pathway as upregulated and as pro-tumorigenic in cutaneous SCC,
suggests that targeting Wnt compounds may represent a
pertinent therapeutic strategy [7].
Micro ribonucleic acids (miRNAs) are small non-coding RNAs

that function as post-transcriptional repressors. miRNAs typically
bind to complementarity sequences of the 3′-untranslated region
of messenger RNA of their target genes, thereby, inducing mRNA
degradation or repressing mRNA translation [10]. Aberrant
expression, amplification or mutations in miRNA coding genes
have been associated with the silencing of a tumor suppressor
target gene or activation of oncogenes, leading to initiation,
progression and drug resistance of different human malignancies
[11–13]. Nevertheless, very little is known about the role of
miRNAs in modulating cutaneous SCC. The unique properties of
miRNAs makes them an optional therapeutic target by antisense
oligonucleotides, an approach that is under investigation in pre-
clinical studies [14].
miR-184 is a highly evolutionary miRNA conserved from fly to

human. Four different point mutations in different sites of pre-
miR-184 were associated with multiple and severe eye abnorm-
alities that lead to blindness [15]. Previous reports suggested that
miR-184 may act as a tumor suppressor or oncogenic miRNA
[16–19] suggesting a context-dependent role for miR-184 in
cancer. Ablation of miR-184 in mice resulted in augmented
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epidermal stem cell proliferation and skin hyperplasia [20],
suggesting that miR-184 may play a role in skin cancer.
Here, we report that miR-184 acts as a skin tumor suppressor

gene in mouse and human models. miR-184 is down-regulated in
chemically induced tumorigenesis and its repression in human
cutaneous SCC enhances neoplastic cell hallmarks. We char-
acterized miR-184-regulatory network and propose that by
inhibiting canonical Wnt/β-catenin, miR-184 represses SCC
phenotype.

MATERIALS AND METHODS
Cell culture
C12C20 human SCC cells were grown in G medium (containing 60%
Dulbecco’s modified Eagle’s medium (DMEM, Gibco), 30% DMEM/F-12
(Gibco), 10% FCII serum (Hyclone), 5 µg/ml insulin (Merck), 0.5 µg/ml
hydrocortisone (Merck), 10 ng/ml EGF (Peprotech), 0.2 mM adenine (Merck)
and 1% penicillin/streptomycin). Lentiviral vector of control orAnti-miR184
sequences were generated and lentivirus production was done as
described [21]. For in vitro assay, cells were plated at 0.5 × 106 cells per
well (six-well plate) and 24 h later, infected with lentivirus in the presence
of Polybrene (10mg/ml) (Sigma-Aldrich). After 48 h, green fluorescent
protein (GFP) expression was validated to assure efficient infection,
followed by sorting of GFP-positive cells.
Foreskin primary cells were grown in EpiGRO™ Human Epidermal

Keratinocyte Complete Culture Media Kit, serum-free medium optimized
for the culture of human keratinocytes, and cultured at 37 °C, 5% CO2. The
medium was supplemented with 1% penicillin/streptomycin and 150 µM
calcium.

In vitro assays
For colony formation assay, cells were seeded at 500 cells/well of 6-well
culture plates in duplicates. For β-catenin inhibitor experiments, 24 h after
seeding, cells were treated with PKF118-316 (0.1 µg/ml, Sigma) and 9 days
later, the colonies were fixed with 4% formaldehyde, stained with 0.05%
crystal violet (Sigma), counted by examination of five microscopic fields
and quantified by Image J. For trans-well migration assay, we used
modified Boyden chambers with a polycarbonate Nucleopore membrane
(Corning, Corning, NY). Filters (6.5 mm in diameter, 8 µm pore size) were
coated with fibronectin 10 µg/ml (biological industries, Israel). Cells were
maintained in serum-free media for 10 h prior to migration assay. Cells
(2 × 105) were then suspended in 200 µl of serum-free medium, seeded in
duplicates on the upper part of each chamber, and the lower compartment
was filled with 600 µl medium with 10% FCS. After overnight incubation at
37 °C in a 5% CO2 incubator, non-migrating cells on the upper surface of
the filter were wiped with a cotton swab and migrated cells on the lower
surface of the filter were fixed with 4% formaldehyde, stained with 0.05%
crystal violet (Sigma), and counted by examination of five microscopic
fields. The percentage of surface covered by migrated cells was calculated
using Image-Pro-Premier (9.3.2).

Animal models
All experiments were performed according to ethical committee approval
(IL-127-07-17). The miR-184-knockout strain (C57BL/6 N) and genotyping
are detailed in [20]. Sex and age matched control wild type (WT) mice
were purchased from Envigo. For two-stage skin carcinogenesis, the
dorsal hair of 6–7 weeks old females of each genotype (6 biological
replicates) was removed using hair shaver. One week later (7–8 weeks of
age, the resting hair growth phase) 7,12-dimethylbenz[a]-anthracene
(DMBA; Sigma; 50 mg/0.1 mL acetone) was topically applied to the shaved
area. After one additional week, 12-O-tetradecanoylphorbol-13-acetate
(TPA; Sigma; 10 µg/0.1 mL acetone) was topically applied twice weekly for
20 weeks. Notably, for this experiment, we used female mice, as we strictly
followed a well-established detailed protocol [22]. For the xenograft
model, NOD/SCID immunodeficient mice (BALB/c background) were
purchased (Envigo RMS, Israel). Stably infected (106) SCC C12C20 cells in
phosphate-buffered saline (PBS) were subcutaneously injected into the
flank of females (five biological replicates). Tumor volume was measured
twice a week using a caliber and analyzed at endpoint. We calculated the
tumor volume using the formula V= (W2 × L)/2, where V is tumor volume,
W is tumor width and L is tumor length. For staining, fresh tissues were
fixed (4% PFA in PBS) for 12 h at 4 °C, then dehydrated and stained as
described [20, 23].

RNA extraction, real-time polymerase chain reactions and
sequencing
Cells were washed with PBS, lysed using TRI-Reagent (Sigma) and RNA was
extracted according to the manufacturer’s instructions. RNA of healthy
human skin was extracted from healthy foreskin derived epidermal cells.
RNA from mouse epidermis was extracted with RNeasy Micro Kit (Qiagen)
according to manufacturer recommendations. cDNA was prepared from
RNA as previously described [24]. Primers that were used for quantitative
polymerase chain reaction (qPCR) were ITGFβ4 forward 5’-CTCTCCATCG
GCAGCCAG-3’ and reverse 5’-CACCAGCAGTCAGGCGAGAG -3’, SOX2
forward 5’-TACAGCATGTCCTACTCGCAG and reverse 5’- TAGGAAGAG
GTAACCACAGGG-3’, K15 forward 5’-GACGGAGATCACAGACCTGAG-3’ and
reverse 5’-CTCCAGCCGTGTCTTTATGTC-3’, P63 forward 5’-GTCATTTGATT
CGAGTAGAGGGG-3’ and reverse 5’-CTGGGGTGGCTCATAAGGT-3’.
RNA sequencing was performed at the G-INCPM center [2, 3]. The

epidermis of newborn mice was immersed with 70% ethanol for 2 min,
twice, the skin was dissected and incubated on a culture plate (the dermis
side down) with Dispase (65 mg in 50ml PBS and 1:500 penicillin/
streptomycin (Gibco, Life Technologies) at 4 °C). Next, the epidermis was
gently separated from the dermis and RNA was extracted using RNeasy
Micro Kit (Qiagen) according to manufacturer instructions. The RNA quality
was tested using ‘Qubit’ and only samples that passed quality parameters
(OD260/280 ≥ 1.8, OD260/230 ≥ 2, RIN number ≥8) were included. Sequen-
cing libraries were prepared using mRNAseq. SR60 reads were sequenced
on 2 lane(s) of an Illumina HiSeq2500v4. The sequencing yield was ~29
million reads per sample. A single KO sample that displayed low quality
control and poor sequencing outcome was removed from the analysis.
Bioinformatics: Poly-A/T stretches and Illumina adapters were trimmed
from the reads using cut adapt; resulting reads shorter than 30 bp were
discarded. Reads were mapped to the M. musculus GRCm38 reference
genome using STAR, supplied with gene annotations downloaded from
Ensembl (and with End-to-end option and out FilterMismatchNoverLmax
was set to 0.04). Expression levels for each gene were quantified using
htseq-count, using the gtf above. Differentially expressed genes were
identified using DESeq2 with the betaPrior, cooksCutoff and independent
Filtering parameters set to False. Raw P values were adjusted for multiple
testing using the procedure of Benjamini and Hochberg. Pathway analysis,
gene ontology analysis in which the sets of differentially expressed genes
enriched were analyzed using Humanmine (https://www.humanmine.org//
humanmine/portal.do).

Western Blot analysis, immunofluorescence and
Immunohistochemistry
Cells were washed with cold PBS and lysed in RIPA lysis buffer (Tris-HCl
10mM, 10mg/ml Deoxycholate, 1% NP40, 1% SDS, 150mM NaCl, protease
inhibitors cocktail (Roche)) on ice, transferred to a new eppendorf and then
incubated for 5 min at 95°. Next, cells were sonicated for 20 s at Amp 20%.
The protein concentration was measured by DC Protein kit (Bio-Rad).
Proteins (40 µg) were separated on an 8% polyacrylamide gel in the
presence of sodium dodecyl sulfate (SDS) and transferred to nitrocellulose
membranes (Bio-Rad). The membranes were blocked with 5% milk (Bio-
Rad) and probed with one of the following antibodies diluted in blocking
solution: rabbit α-K15 (1:1000 Santa Cruz), rabbit α-NICD (1:1000 Cell
signaling), mouse α-P63 (1:1000 Santa Cruz), rabbit α-GAPDH (1:1000 Cell
signaling), rabbit α-β-catenin (1:1000 Sigma) at 4 °C over night, then
washed three times, exposed to secondary antibody (1:5000) (1 h at room
temperature) and washed three times before revealed using ECL kit
(Biological Industries).
For immunofluorescent staining, secondary antibodies were AlexaFluor

488 and 593 nm (Renium). Immunohistochemistry was performed as
previously described [25]. Briefly, paraffin blocks were sectioned at 5 μm
and stained with indicated antibodies. Slides were subjected to antigen
retrieval using Dako Target Retrieval Solution and incubated for 1 h with
blocking solution (Dako). The blocked sections were incubated overnight
at 4 °C with the indicated antibodies diluted 1:200 in Dako Antibody
Diluent. Slides were then washed twice with PBS, incubated for 2 h at 25 °C
with relevant secondary antibody diluted 1:200 in Dako Antibody Diluent,
washed again with PBS, revealed with Simple Stain AEC solution
(Histofine), and counterstained with hematoxylin. Images were taken by
Nikon Eclipse NI-E upright microscope and Zeiss LSM880 confocal
microscope. For quantification, the indicated number of fields of at least
3 different biological replicates were imaged and the indicated mean
fluorescence intensity was calculated by ImageJ software. For lineage
tracing experiments, colonies were imaged (focus on basal layer), and
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ImageJ software allowed colony identification and size analysis, using 5
fields of 3 biological replicates.

Statistical analysis
Number of mice was similar to our previous experiments [25, 26]. The
estimation of the sample size was calculated using Abramson, J.H. WINPEPI
updated: computer programs for epidemiologists, and their teaching
potential [27]. The sample size relied on clinical expectations, anticipating a
25% disparity in tumor size between the research and control groups
(SD= 4). Employing a significance level of 5% (two-tailed) and a power of
80%, and maintaining an equitable 1:1 allocation ratio between the
groups, the calculated sample size comes to 4.019 mice per group,
summing up to a total of 8.033.
The error bars in all the measurements represent the means ± standard

deviation (SD). Student’s t-test (two sided) was performed to determine the
respective statistical significance. Differences were considered statistically
significant from a p‐value below 0.05.

RESULTS
miR-184-ablation leads to hyper stem cell activation and
susceptibility to cancer
miR-184 induces a commitment switch to epidermal differentia-
tion [20] and miR-184-deficient animals display epidermis
hyperplasia (Figs. 1A, S1A). We therefore hypothesized that miR-
184-knockouts may suffer from imbalanced stem cell/tissue
dynamics that may lead to higher susceptibility to cancer. To
explore that, we first established double transgenic UBC-CreERT2;
R26R-Brainbow2.1 mice on the background of Mir184 wild type
(WT) or knockout (KO). In this multi-color “Confetti” lineage tracing
system, transient exposure of adult (~2-months old) transgenic
animals to tamoxifen (3–4 days), permits the stochastic and
irreversible labeling of epidermal cells with one out of four
fluorescent protein-coding genes (i.e., cytoplasmic red (RFP) or
yellow (YFP), membrane cyan (CFP) or nuclear green (GFP))
[21, 24, 28] (Fig. 1B, C). Mice were sacrificed at different time points
post induction and tail epidermal tissues were imaged by whole
mount confocal microscopy. Efficient and comparable induction of
Confetti reporters in the basal epidermal layer was evident in both
genotypes (Fig. 1D, upper pictures, T0). Interestingly, the average
clonal size (i.e., the average number of basal cells in a clone) was
significantly higher in KO animals, suggesting that miR-184
represses stem cell proliferation and epidermal tissue turnover.
The hyper stem cell activity in KO mice implies that miR-184 may
act as a suppressor of skin cancer development. To test that, we
explored whether miR-184 expression influences the development
of tumors in the two-stage carcinogenesis model. Adult mice of
each genotype were treated with a single dose of the carcinogen
7,12-dimethylbenz[a]anthracene (DMBA) followed by exposure
(twice a week) to the tumor promoter proliferation/inflammation
inducer (TPA) for five months (Fig. 2A). Eleven weeks post-DMBA
application, visible and palpable tumors appeared in the back of
KO animals, while in the WT counterparts, tumors firstly appeared
~14 weeks post-induction (Fig. 2B, Table S1). Of note, by week 20,
miR-184-KO mice developed a significantly higher number of
tumors (Fig. 2B, Table S1), that were also larger in size (Fig. 2C, D),
compared to those formed in WT mice. Hematoxylin and eosin
(H&E) staining have shown that, as expected, most tumors
displayed features of papilloma and that in WT animals, tumors
were hallmarked by keratin pearls and cellular atypia (Fig. S1B, C).
Interestingly, the tumors of miR-184-deficient mice were larger,
and included infundibular cyst structures that penetrated the
deep dermis. This indicate that loss of miR-184 potentiates tumor
formation in the murine epidermis. To further corroborate this
hypothesis, we explored whether the levels of miR-184 are
changed during cell transformation in WT mice. Towards this aim,
RNA was extracted from healthy back skin of wild type mice, that
were not subjected to DMBA/TPA treatment (Healthy WT) or from
the DMBA/TPA induced tumors of WT mice (Tumor WT). TaqMan-

real time PCR analysis of miR-184 revealed that the levels of miR-
184 were significantly (~60%) lower in the tumors as compared to
the healthy tissue (Fig. 2E). Altogether, these experiments strongly
suggest that miR-184 serves as epidermal tumor suppressor in
mice.

miR-184 inhibits neoplastic phenotype of human cutaneous
squamous cell carcinoma
To explore the function of miR-184 in human cell transformation,
we first validated the expression of miR-184 in human skin by in
situ hybridization on paraffin sections. In line with its expression in
mouse, miR-184 is undetectable in the dermis and in basal
epidermal cells, whereas it is readily detected by early committed
cells at the spinous layer (Fig. 3A). TaqMan real-time PCR analysis
confirmed that the levels of miR-184 are significantly lower in
C12C20 SCC cells compared to healthy foreskin derived epidermal
cells (Fig. 3B). While this is in agreement with the observed
reduction of miR-184 expression in DMBA/TPA tumor formation, it
can be due to different genetic background. To address the role of
miR-184 in the same cells in a controlled experiment, we stably
infected the human SCC C12C20 cells with a pLKO-H2B-GFP lenti-
viral vector that contains an antagonizing anti-miR-184 (AM184)
sequence and an empty pLKO-H2B-GFP vector was used as
control (Ctl) (Fig. S2A). The efficient infection of AM184 or Ctl
vectors was evident by the expression of GFP (Fig. S2B) that
facilitated cell purification by cell sorter (Fig. S2C). Repression of
miR-184 was validated by real-time PCR (Fig. S2D). Next, SCC
C12C20 cells stably expressing the Ctl vector (C12C20/Ctl) or the
AM antagonist (C12C20/AM) were subjected to colony formation
assay. As shown in Fig. 3C–E, a higher number of colonies that
were also larger in size was detected in C12C20/AM184 cells as
compared to the control counterparts. Next, we evaluated the
ability of SCC cells to migrate through polycarbonate membrane
in a Boyden chamber assay. As shown in Fig. 3F, G, the migration
potential of AM-infected cells was much higher, compared to the
control C12C20 SCC cells. These results suggest that miR-184
inhibits C12C20 SCC cell transformation in vitro and may play a
role as tumor suppressor in vivo. To further test the anti-
tumorigenic role of miR-184 in human C12C20 SCC cells in vivo,
we applied xenograft model. C12C20 SCC cells stably expressing
AM184 or Ctl vector were subcutaneously injected to the flank of
immune-deficient (NOD-SCID) mice and tumor growth was
followed over time. Interestingly, human C12C20 SCC cells
expressing AM184 generated significantly larger tumors (Fig.
3H), strongly suggesting that miR-184 acts as a tumor suppressor
in human SCC.

miR-184-repression of Wnt/β-catenin contributes to SCC
phenotype
The predisposition of miR-184-null mice to cancer, suggests that
miR-184 represses the expression of pro-oncogenic genes and/or
enhances tumor suppressor genes. To unravel the molecular
network that is regulated by miR-184, we performed bulk RNA
sequencing (RNAseq) of the newborn epidermis of miR-184 WT
and KO mice for exposing changes that occur at early lifetime. The
epidermis of each genotype was isolated as detailed in Methods,
RNA was extracted and samples that passed the quality test were
subjected to RNA sequencing. The expected sample segregation
was according to the genotype and 216 genes were found to be
differentially expressed between WT and KO groups (fold change
>2, adjusted P > 0.05, >30 reads) (Fig. S3A). To unveil the signaling
network of miR-184, we preformed comparative analyses of
datasets based on gene lists using Metascape algorithm (https://
metascape.org/gp/index.html) (Fig. 4A, B). Interestingly, genes that
are involved in key processes of epidermal terminal differentiation
(e.g., keratinization and protein crosslinking), were significantly
down-regulated in KO mice (Fig. 4B), suggesting that miR-184 is
essential not only for early epidermal differentiation [20], but also
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Fig. 1 miR-184-deficient mice display epidermal hyperplasia and enhanced stem cell dynamics. A Paraffin sections of back skin of newborn
mice of the miR-184-wild type (WT) and knockout (KO) mice were used for hematoxylin and eosin (H&E) staining. Quantification is presented
on the right panel. B Schematic illustration of the double transgenic lineage tracing system. The Cre driver is controlled by a UBC promoter
and the Brainbow2.1 cassette contains a ubiquitously expressed CAG promoter, LoxP (black triangle)-flanked NeoR-roadblock and a head-to-tail
LoxP-flanked dimers of green (GFP), yellow (YFP), and red (RFP) and cyan (CFP) fluorescent protein coding genes. C Example of potential
rearrangement of the Brainbow2.1 cassette following tamoxifen induced Cre-recombination. D Two-month old mice of the indicated
genotypes were treated with tamoxifen for 3–4 days, mice were sacrificed at the indicated day post last treatment, and the basal layer of the
tail epidermis was imaged by confocal microscope. E Colonies were identified (dashed line) and their size was defined by imageJ analysis as
detailed in Methods. Data represents average and standard deviation from 3 biological replicates. Scale bars were 20 μm. Statistical
significance was assessed by t test (*p < 0.05; ***p < 0.001).
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Fig. 2 miR-184-knockout enhances the susceptibility to chemical-induced skin carcinogenesis in mouse. A Schematic overview of two
stage-carcinogenesis experiment applied for adult 2-month old wild type (WT) and miR-184-knockout (KO) mice. A single topical application
of the carcinogen (DMBA) was followed by topical application of the tumor prompter (TPA) twice a week. B The average number of tumors per
mouse of the indicated genotype across time. Twenty-weeks post DMBA induction, tumors were isolated and their average weight was
calculated (C) and the back skin of pictured (D). E The relative expression of miR-184 in healthy back skin of wild type mice, not subjected to
DMBA/TPA treatment (Healthy WT), versus murine tumor that developed in wild type mice (Tumor WT), indicates a decrease in miR-184
during tumorigenesis. Data represents average and standard deviation from 6 biological replicates. Scale bars were 20 μm. Statistical
significance was assessed by t test (*p < 0.05).
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for the broader processes of terminal differentiation and
cornification. Among the upregulated genes, were also genes
that are involved in hair keratinization (Fig. S3B). Importantly, a
significant enrichment of genes that play a role in pro-tumorigenic
pathways such as mesenchyme morphogenesis, epithelial to
mesenchymal transition and proliferation were upregulated in
miR-184-KO mice (Fig. 3B). Selected upregulated and down-
regulated genes were confirmed by real time PCR (Fig. 4C).
Canonical Wnt pathway was also increased in miR-184 KO
epidermis, in line with elevated levels of β-catenin protein in
miR-184 deficient cells (Fig. 4D–F).
Previous studies highlighted the role of Wnt/β-catenin signaling

in the development of cutaneous SCC [7]. To test whether there is
a link between miR-184-depletion and high β-Catenin levels in
cancer, we performed a western blot analysis on lysates of control

and miR-184-depleted human and murine tumor cells. Interest-
ingly, the levels of β-catenin were consistently higher in miR-184
deficient murine tumors (Fig. 5A). Similarly, the levels of β-catenin
were significantly higher in human C12C20/AM184 SCC cells
grown in vitro or in xenografts (Fig. 5B–D), suggesting that miR-
184 repression of β-catenin is conserved between mouse and
human. Since WNT/β-catenin pathway plays a pro-oncogenic role
in human SCC, we next explored whether the tumor suppressor
function of miR-184 is mediated by repression of Wnt/β-Catenin
pathway. To test that, we performed rescue experiments using the
β-Catenin/TCF4 inhibitor, PKF118-310. As shown, the β-catenin/
TCF4 inhibitor PKF118-310 significantly attenuated the colony
formation capacity of C12C20 and A431 SCC cells. By contrary, the
AM184 enhanced colony formation, and the PKF118-310 inhibitor
reduced the number of colonies in C12C20/AM184 SCC cells (Fig.
5F, G). The same trend was also observed in A431 SCC cell line,
suggesting that this axis is broad. Here too, AM184 enhances the
colony formation of A431 SCC cells whereas PFK118-310 reverts
this effect (Fig. 5F, G). Collectively, these data suggests that the
tumor suppressor function of miR-184 is, at least partly, mediated
by the repression of WNT/β-catenin.

DISCUSSION
Previous studies have shown that aberrant expression of miRNAs,
often due to genetic or epigenetic modifications, has critical
influences on the initiation and progression of human malig-
nancies [12], or cancer stem cell activity [13]. The present study
indicates that miR-184 behaves as a tumor suppressor in the skin.
This conclusion is based on: (i) augmented formation of tumors in
the 2-stage carcinogenesis model in miR-184-deficient mice, (ii)
enhanced colony formation and cell migration in miR-184-
knocked down SCC cell lines, (iii) inhibitory effect of miR-184 on
human SCC tumor growth in vivo.
miRNAs are considered as fine-tuning molecules that are

essential for the gene expression network. Typically, the depletion
of a single miRNA would lead to mild defects with no major
abnormality unless stress was applied [29]. However, few miRNA
encoding genes were associated with human genetic diseases.
miR-184 belongs to this group of essential miRNAs as point
mutations in miR-184 were linked with abnormal eye develop-
ment and blindness [15] its ablation in mice leads to epidermal
hyperplasia [20]. Identification of the role of such key miRNAs in
human diseases and developing novel treatments based on
miRNA targeting is a new and expanding field of study. Such
miRNA-based drugs are being tested in clinical trials for targeting

Fig. 3 Down-regulation of miR-184 enhances tumorigenic hall-
marks of human SCC. A In situ hybridization of miR-184 shows high
signal in suprabasal cells of the human skin. B RNA was extracted
from human skin SCC C12C20 cells or from primary human foreskin
cells, as a control (healthy). TaqMan real time PCR assay of miR-184
shows a lower level of miR-184 in SCC. C–G Human C12C20 SCC cells
were stably infected with lenti virus that carries an anti-miR-184
specific antagonist (SCC/AM) or an empty vector as a control (SCC/
Ctl) (validation in Fig. S2). C Colony formation assay was performed
for the indicated cells, showing increased colony number and size in
SCC/AM, compared to controls. Lower panels show magnification of
the marked areas. Quantification of average colony number is
shown in (D) and average colony size is shown in (E). F Boyden
chamber migration assay demonstrating higher migration capacity
of AM infected cells compared to controls. G is quantification of (F)
(as detailed in Methods). Data represents average and standard
deviation from 3 biological replicates. Scale bars were 20 μm.
Statistical significance was assessed by t test (*p < 0.05). H Tumor
volume of C12C2O SCC cells expressing anti-miR184 (AM184) or
control vector (Ctl) injected subcutaneously to nude mice (n= 5 per
group; ****p < 0.0001).
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Fig. 4 miR-184 represses pro-oncogenic pathways. A–D In silico analysis of RNA sequencing of the epidermis of miR-184 wild type (WT) or
knockout (KO) newborns. Metascape analysis (A) and gene heatmap (B) highlight main downregulated pathways in miR-184-KO. C Real time
PCR analysis performed on RNA lysates of the epidermis of the indicated genotypes to validate the downregulation (left) or upregulation
(right) of selected genes. D Immunofluorescent staining of β-catenin performed on skin section of newborn mice of the indicated genotypes.
E Quantification of the nuclear signal (e.g., arrows in D) was performed by Image J software in 8 different fields in each of the 3 biological
replicates. Each dot represents an average of a single field. All data represents 3 biological replicates. Scale bars were 20 μm. Statistical
significance was assessed by t test (*p < 0.05).
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oncogenes and reinstating the expression of tumor
suppressor genes.
While the importance of these essential miRNAs is clear, their

function in vivo, and their mechanism of action in skin SCC are
poorly defined. In this study, transcriptome analysis of the

epidermis of miR-184-KO mice revealed that several pro-
oncogenic pathways, including Wnt/β-catenin, epithelial-to-
mesenchymal cell transformation and cell proliferation were
upregulated. Wnt/β-catenin pathway plays an important role in
SCC, however, the upstream regulators of this pathway in skin SCC
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are not well defined. The present study suggests that miR-184
plays a role in the repression of this axis and that downregulation
of miR-184 facilitates the enhanced activity of β-catenin which in
turn increases the susceptibility to development and progression
of SCC. This suggests that a miR-184 mimic compound may target
Wnt/β-catenin, and can represent a pertinent therapeutic strategy
for skin SCC [7]. Interestingly, this study suggests that the
expression levels of miR-184 are reduced in skin carcinogenesis.
This suggests that oncogenic pathways act upstream to repress
the transcription and/or stability of miR-184.
It was previously demonstrated that miR-184 represses epithe-

lial stem cell proliferation and induces epidermal differentiation
via Notch-pathway induced epidermal [20]. The transcriptome
analysis in the present study further confirms this hypothesis and
suggests a role for miR-184 in repression of stemness and
induction of differentiation. Mechanistically, Wnt/β-catenin repres-
sion by miR-184 can be explained by activation of Notch, since
genetic ablation of Notch1 significantly induced activation of Wnt/
β-catenin [30]. Thus, this accumulating evidence suggests that
miR-184 may be regulating SCC cancer stem cells. The molecular
signature of cancer stem cells is strikingly different from that of
their healthy stem cell counterparts [31] and they possess a potent
capacity for self-renewal and differentiation, which is essential for
tumor growth [32]. Therefore, the prediction from our study would
be that a miR-184 mimic compound would allow cancer stem cell
differentiation, potentially via Notch activation and/or Wnt/
β-catenin repression to inhibit SCC tumor growth.
Finally, a better understanding of the function of key miRNAs

in vivo and specifically, in pathological conditions has ther-
apeutic implications. In the case of miR-184, point mutations in a
single allele led to a complex eye dystrophy [15]. Future studies
should examine the influence of miR-184 mutations on Wnt/
β-catenin pathway in miR-184-related eye dystrophy. In addi-
tion, while we focused on Wnt/β-catenin as a target of miR-184
in SCC, elucidating additional miR-184 targets and exploring
their role in SCC development and progression is critical for
understanding the mechanistic contribution of miR-184 in SCC.
This should be the focus of future studies. The newly developed
technologies to deliver miRNA mimics or anti-miRNA antago-
nists provides an opportunity for the development of efficient
cancer therapy as well as restoring normal function in miR-184
deficient tumors.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All relevant raw data will be freely available to any researcher wishing to use them for
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is available in the Figshare repository, link: https://figshare.com/articles/dataset/
RNAseq_miR-184_KO_epidermis_VS_WT/24556285. All other datasets generated
during the current study are available from prof. Ruby Shalom-Feuerstein or from
the corresponding author on reasonable request.
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