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Single-cell RNA sequencing of cervical exfoliated cells reveals
potential biomarkers and cellular pathogenesis in cervical
carcinogenesis
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Cervical cancer (CC) is a common gynecological malignancy. Despite the current screening methods have been proved effectively
and significantly decreased CC morbidity and mortality, deficiencies still exist. Single-cell RNA sequencing (scRNA-seq) approach
can identify the complex and rare cell populations at single-cell resolution. By scRNA-seq, the heterogeneity of tumor
microenvironment across cervical carcinogenesis has been mapped and described. Whether these alterations could be detected
and applied to CC screening is unclear. Herein, we performed scRNA-seq of 56,173 cervical exfoliated cells from 15 samples,
including normal cervix, low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL), and
malignancy. The present study delineated the alteration of immune and epithelial cells derived during the cervical lesion
progression. A subset of lipid-associated macrophage was identified as a tumor-promoting element and could serve as a biomarker
for predicting the progression of LSIL into HSIL, which was then verified by immunofluorescence. Furthermore, cell–cell
communication analysis indicated the SPP1-CD44 axis might exhibit a protumor interaction between epithelial cell and
macrophage. In this study, we investigated the cervical multicellular ecosystem in cervical carcinogenesis and identified potential
biomarkers for early detection.
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INTRODUCTION
Cervical cancer (CC) is primarily caused by the persistent infection of
high-risk human papillomavirus (HPV) and ranks as the fourth most
prevalent cancer in women [1]. There will be approximately 13,960
new cases of CC and 4310 related deaths in the United States during
2023 [2]. If diagnosed at an early stage and treated promptly, CC can
be cured [1]. Throughout the past decades, CC incidence and mortality
has declined in most parts of the world because of formalized
cytology and HPV-based screening [3]. Genital HPV infection is
prevalent, with approximately 85% of females infected at some point
during their lives, but most HPV infections are transient and cleared
spontaneously [4]. Previous studies showed the majority of low-grade
squamous intraepithelial lesion (LSIL) and part of high-grade
squamous intraepithelial lesion (HSIL) would regress within 2 years
[5, 6]. Only a minority of LSIL progressed to CC [5]. Although co-testing
with cytology and HPV is effective and recommended for screening, it
is unpredictable whether an infection is transient, resulting in
spontaneous regression of abnormalities, or persistent, leading to
invasive cancer [7]. Therefore, new molecular diagnostics is warranted
to make up for the deficiencies of existing screening methods.
Tumor microenvironment (TME), which consists of malignant cells,

cancer-associated fibroblasts, and various immune cells (dendritic
cells (DCs), B lymphocytes (B cells), T lymphocytes (T cells),
monocytes, neutrophils, natural killer (NK) cells, macrophages, etc.),

innately modulates tumor progression [8, 9]. According to the
genetic and epidemiological evidence, HPV can alter the micro-
environment to produce a protumorigenic state of immune
suppression and evasion, ultimately contributing to the formation
and progression of tumors [10]. Wang et al. [11] reported that the
immune response between LSIL and HSIL was different. Particularly,
immunosuppression and evasion occurred in HSIL, which contrib-
uted to tumorigenesis.
Single-cell RNA sequencing (scRNA-seq) can realize and identify

complex cell populations and probe the molecular heterogeneity of
TME at single-cell resolution, making it an ideal tool for cancer
research [12, 13]. For instance, scRNA-seq has been conducted to
investigate the structural heterogeneity of CC, as well as alterations
in endothelial cells and fibroblasts [14–17]. At the same time, the
heterogeneity of the tumor and its microenvironment has also
been mapped and described throughout CC progression [18, 19].
Nevertheless, the possibility of detecting these alterations and
incorporating them into screening still needs more investigations.
The detection of cervical exfoliated cells is recommended as the

first step in the primary screening, by taking advantage of
convenient, easily obtained, noninvasive, and easily accepted than
cervical histopathological examinations. Thus, in this study, we
examined cervical exfoliated cells using scRNA-seq to investigate
heterogeneous and specific components of the TME in LSIL, HSIL,
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CC, as well as normal cervix (NC). Together, a comprehensive
analysis of cervical exfoliated cells was carried out using scRNA-
seq to identify potential biomarkers and molecular mechanisms
that could serve as predictors for cervical neoplasia.

RESULTS
scRNA-seq profiling of stepwise progression in CC
To reveal the changing characteristics of TME during cervical
carcinogenesis, we obtained scRNA-seq profiles from cervical
exfoliated cells, which included NC (n= 4), LSIL (n= 3), HSIL
(n= 5), and CC (n= 3) (Fig. 1). After quality control and filtering, a
total of 56,173 cells were clustered into 22 clusters and visualized
by graph-based t-distributed stochastic neighbor embedding (t-
SNE) (Fig. 2A and Fig. S1). Of these, 8443, 3671, 18,879, and 25,180
cells were from NC, LSIL, HSIL, and CC, respectively. Moreover,
distinct clustering was shown based on the per sample, which
indicated the heterogeneity of individuals (Fig. 2B), and the top
five upregulated genes of each cluster were displayed in Fig. 2C.
Eight major cell populations were identified by their expression of
known lineage markers with epithelial cells (WFDC2, DNAJB1, and
KRT17), B cells (CD79A), T cells (CD3D), NK cells (GNLY), myeloid
cells (LYZ), plasmacytoid dendritic cells (LILRA4), mast cells
(TPSAB1), and neutrophils (FCGR3B) (Fig. 2D, E and Fig. S2).
The proportion of each cell type in the 15 samples was shown in

Fig. 2F. The relative abundance of the eight major cell populations
varied greatly by group (Fig. 2G). In general, the percentage of B cells
decreased in LSIL, HSIL, and CC groups compared with NC group,
while the percentage of neutrophils increased. Interestingly, the
abundance of T cells generally reduced in the LSIL and HSIL groups
compared with the NC group, which was partly rescued in CC group.
In addition, the top five upregulated genes in each cell type were
shown in Fig. 2H. These results demonstrated that significant
immune infiltration was observed in the cervical exfoliated cells

during cervical carcinogenesis, which was consistent with fresh tissue
samples [18].

Characterization of single-cell expression profiles for
epithelial cells across different cervical lesions
Then, we analyzed epithelial cells (cluster 9, 14, and 17) in four
groups (NC, LSIL, HSIL, and CC) to reveal the changing characteristics
across different cervical lesions. In cluster 9 and 14, most cells were
obtained from CC and HSIL groups, while the number of cells from
NC and LSIL was scarce. However, the proportion of cells from NC
was higher in cluster 17 compared with other clusters (Fig. 3A). To
further confirm the properties of cells in three clusters, the copy
number variations (CNVs) of epithelial cells were calculated (Fig. 3B).
We measured the relative CNV score of each epithelial cluster
compared to the non-epithelial cells. The results showed that cluster
9 had a highest variable of CNVs among the three epithelial clusters
(Fig. 3C). Next, an analysis of pseudotime trajectory was conducted
using Monocle 2 and each epithelial cell was ordered along
trajectories based on its expression and transition characteristics.
As shown in Fig. 3D, we revealed one branch of epithelial cell
subtypes and indicated that epithelial cells exhibited three
differentiation states during their development. To further clarify
the relationship between cell states and subclusters, we performed a
linear model analysis. The analysis of variance showed a significant
difference of the variable state existed among the different seurat
clusters (P< 0.05) (Fig. S3A). While Fig. 3E, F depicted the
chronological order of cell subtypes differentiation, with darker-
colored cells gradually transitioning into lighter-colored cells. It
suggested that cluster 17 cells were located at the beginning and
then differentiated into cluster 14 cells and cluster 9 cells.
Subsequently, using the BEAM function, we presented the temporal
gene expression of the distinct branch through a heatmap. By
conducting Gene Ontology (GO) enrichment analysis to explore
biological process, the results showed that one branch was mainly

Fig. 1 The schema of study design. Schematic showing the design of scRNA-seq experiment and patients information.
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Fig. 2 Single-cell atlas of cervical exfoliated cells in cervical carcinogenesis. A The t-distributed stochastic neighbor embedding (t-SNE)
plots of 22 cellular clusters identified in 56,173 cells. Each dot represented a cell. B The t‐SNE plots of cells clustered by individual samples.
C The top 5 genes were presented in each cluster. D The t‐SNE plots showed the expression and distribution of canonical cell markers. E The t‐
SNE plot identified 8 cell types in cervical exfoliated cells. F Proportions of each cell type in each sample. G Average proportion of assigned cell
types in different groups. H Bubble diagram showing the top 5 genes across distinct cell types. The X‐axis indicated the top genes of each cell
subgroup and the Y‐axis indicated distinct cell subtypes.
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associated with signal transduction by p53 class mediator, regulation
of signal transduction by p53 class mediator, DNA damage response,
and signal transduction by p53 class mediator, which represented
the triggering of p53 pathways, and the other was associated with
immune cells-related signaling pathways, such as cytokine-mediated
signaling pathway and positive regulation of cytokine production
(Fig. 3G). Importantly, the expression of malignant cell markers
(KRT17, CLEC2B, HIST1H1C, and SPRR3) and proliferation marker
(CDKN2A) progressively increased with the alteration of cell states
(Fig. 3H). Next, we employed GO and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway to discover the function under high
expressed genes in those three clusters. Top 30 GO enrichments
were shown. The genes specifically expressed in cluster 9 were
largely involved with epidermis development and cell–cell junction
(Fig. 3I). By comparison, genes expressed in cluster 14 were largely
related to unfolded protein response and ATPase activity (Fig. 3J). In
cluster 17, a great deal of enriched GO terms were activation of
innate immune response and enzyme inhibitor activity (Fig. 3K). The
KEGG enrichment analyses showed the upregulated genes in cluster
9 cells were significantly enriched in adherens junction, and tight

Fig. 3 Identification and functional characterization of epithelial cells. A Bar graph showing the cell proportion of NC, LSIL, HSIL, and CC
samples among cluster 9, 14, and 17. B Heatmap showing large-scale CNVs in single cells referenced to non-epithelial cell clusters. C Violin
plots displayed the CNV score of each epithelial cell cluster. D, E Monocle 2 trajectory analysis of the epithelial cells annotated by cell
subgroups (left panel), cell state (right panel) (D), and pseudotime (E) in cluster 9, cluster 14, and cluster 17. F Density distribution of epithelial
cells along the pseudotime trajectory. G Heatmap depicting differentially expressed genes in epithelial cells based on the pseudotime
trajectory. Color key from blue to red indicates relative expression levels from low to high. H The expression dynamics of representative genes
are differentially expressed across pseudotime. All single cells in the three subclusters are colored based on (D and E) and ordered based on
pseudotime. I–K The GO Analysis of cluster 9, cluster 14, and cluster 17. L, M The KEGG Analysis of cluster 9 and cluster 14.
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junction (Fig. 3L), while those in cluster 14 were associated with IL-17
and MAPK pathway (Fig. 3M). According to our analysis and previous
study [15], cancer cells in early phase had relatively high differentia-
tion potential, and then the cells proliferated rapidly. During the late
stages of CC growth, tumor cells demonstrated epidermis develop-
ment and cell–cell junction. These results reflected the heterogeneity
and complexity of CC.

Characterization of epithelial cells subclusters during different
cervical lesions
In order to completely understand the heterogeneity of malignant-
derived cells, a total of 4,152 cervical epithelial cells were
subclustered by t-SNE into 13 groups (Fig. 4A). Malignant cell
identification: First, subcluster 1/2/3/6/10 almost exclusively pre-
sented in the LSIL, HSIL, and CC groups, while subcluster 4 and 8
took up the majority of NC group cells (Fig. 4B). Second, during the
large-scale chromosomal CNV, subcluster 1/3/6/10 exhibited higher
variable of CNV score compared with non-epithelial cells (Fig. 4C,
D). Third, some malignant cell markers (DSG3, FABP4, SFN, FABP5,
and KRT5) were detected [20–24]. The expression of SFN, FABP5,
and KRT5 were highly expressed in subclusters 1, 6, and 10. DSG3
was highly expressed in subcluster 1 and 6, while FABP4 was highly
expressed in subcluster 6 (Fig. S3B). Based on the above evidences,
we inferred cells from subclusters 1, 6, and 10 as malignant cells.
Meanwhile, the analysis of pseudotime trajectory indicated that
epithelial cells transitioned from non-malignant cells to malignant
cells (Fig. S4A). At the same time, the cells from subcluster 4 and 8
exhibited high expression of antioncogenes, such as BPIFB1 and
MS4A8 (Fig. 4E) [25, 26]. Meanwhile, the consensus nonnegative
matrix factorization (cNMF) method was used to decompose mixed
expression profiles of single cells into a linear combination of
biologically interpretable gene expression programs (GEPs). 16
GEPs were deconvolved, which further clustered into four
consensus modules (Fig. S4B). Intriguingly, we identified several
novel genes including SRGN and HIST1H1C (Fig. 4F). The
immunohistochemistry (IHC) staining of the SRGN and HIST1H1C
in NC, LSIL, HSIL, and CC tissues was further detected. IHC scores in
our study showed that the expression of SRGN protein was
dramatically upregulated not only in CC but also in HSIL and LSIL
compared with NC, while there was no difference among HSIL, LSIL,
and CC (Fig. 4G). The expression of HIST1H1C protein was stepwise
upregulated from NC to CC group, while there was no difference
between HSIL and CC (Fig. 4H). To further evaluate the role of SRGN
and HIST1H1C during the carcinogenesis of CC, the stable SRGN and
HIST1H1C-overexpressed CC cells (SiHa and C33A) were established
by infecting with lentivirals containing SRGN-pCDH or HIST1H1C-
pCDH plasmid, respectively. The efficacy of SRGN overexpression
was verified, which showed that SRGN expression was elevated by
infecting with SRGN cDNA compared to the negative control (Fig.
S5A). The CCK-8 assay displayed that SRGN overexpression strongly
increased cell viability in both SiHa and C33A cells (Fig. S5B).
Similarly, colony-forming assay was also conducted to assess the
function of SRGN on cell proliferation, and it turned out that SRGN-
overexpressed cells formed significantly more colonies (Fig. S5C, D).
To further validate the pro-tumor function of SRGN in vivo, SiHa
cells with overexpression of SRGN and its respective empty vectors
were hypodermically injected into nude mice. Consistently, the
tumor volume and weight remarkably increased in the SRGN
overexpression groups compared to its control group, respectively
(Fig. S5E–G). Meanwhile, the HIST1H1C overexpression was also
confirmed using western blot. The transfected cells expressed a
high expression of HIST1H1C (Fig. S6A). Colony formation and cell
viability were enhanced by HIST1H1C overexpression in both SiHa
and C33A cells (Fig. S6B–D). The tumor volume and weight also
increased in the HIST1H1C overexpression groups compared to its
control group (Fig. S6E–G). These characteristics indicated SRGN
and HIST1H1C facilitated tumor growth and contributed to CC
progression.

Characterization of B cells in different cervical lesions
The tumor-infiltrating B cells play a crucial role in modulating the
development of tumors [27]. Nevertheless, little research has been
conducted regarding the alteration of B cells in cervical
carcinogenesis. B cells were selected and divided into 10
subgroups (Fig. 5A, B). Three major types of B cells were identified,
including follicular B cells (subcluster 0, 1, 2, 3, 4, and 6, marked by
MS4A1 and CD79A), plasma B cells (subcluster 5, 7, and 8, marked
by JCHAIN, MZB1, and IGHA1), and granzyme B‐secreting B cells
(subcluster 9, marked by GZMB) (Fig. 5C, D). Among them, follicular
B cells were predominant among all groups. There was a higher
percentage of follicular B cells in LSIL and HSIL compared to the
other groups, whereas the CC group showed the lowest
percentage. A subcluster of follicular B cells, subcluster 6, was
more abundant in the HSIL group and showed high expression of
cell motility-related genes (ACTB, ACTG1, and MYL6) (Fig. 5E).
Plasma B cells were enriched in CC group and expressed high
levels of immunoglobulins genes (such as IGHG4, IGHG3, IGHG2,
and IGHG1 etc.) (Fig. 5B, C). Granzyme B‐secreting B cells could
secrete granzyme B and were enriched in LSIL and CC groups (Fig.
5B). This suggested that B cells, especially plasma B cells and
granzyme B‐secreting B cells might be stimulated to infiltrate in
the CC and play a pivotal role in CC immunity.

Distinct subpopulations of T cells during different cervical
lesions
As T cells played an important role in tumor immunity, we
subclustered them into 15 subclusters based on their character-
izations (Fig. 5F, G). Particularly, cells from subcluster 1, 7, and 10
exhibited high levels of CD8A or CD8B, defining them as
CD8+T cells. Subcluster 0, 2, 3, 4, 5, 9, 11, and 14 showed high
levels of CD4, defining them as CD4+T cells (Fig. 5H).
Next, the subclusters with specific characteristics were analyzed.

As for CD8+T cells, subcluster 1 was characterized as effector
memory CD8+T cells due to specific expression of GZMK, GZMA,
CST7, and a variety of cytokines-related genes (CCL5 and CCL4). As
shown in Fig. 5G–I (signature genes listed in Table S1), the
percentage of effector memory CD8+T cells mainly decreased and
had a lower effector memory score in LSIL group than HSIL and
CC, suggesting that the protective effector memory CD8+T cell
immunity was not established in LSIL. Agreeing with the previous
study, our results showed the percentage of those cells increased
in HSIL, suggesting an establishment of protective T cell immunity
[18]. It was a long process to differ CD8+T cells from a naïve state
to memory CD8+T cells. Subcluster 7 exhibited a high level of
cytotoxic genes (CST7, NKG7, GZMH, and GZMB), commonly
associated with cytotoxic T cells. In the LSIL group, these cells
made up the highest percentage, whereas in the HSIL and CC
groups, they comprised a lower percentage. The CD8 cytotoxic
score in the LSIL group increased than HSIL group, and the score
in the HSIL and CC groups decreased compared with NC group
(Fig. 5G–I). Subcluster 10 was defined as exhausted CD8+T cells
with abundant expression of exhaustion marker genes (TIGIT,
PDCD1, LAG3, and HAVCR2) and antigen presentation genes (HLA-
DRA, HLA-DRB1, HLA-DPB1, and HLA-DPA1). They were mainly
enriched in CC group (Fig. 5G, H). Based on this evidence, LSIL
presented an activated immune state, whereas tumor displayed
an immunosuppressive state.
When it came to CD4+T cells, cells from subcluster 3 and 11

were considered as naïve T cells, characterized by expression of
LEF1, TCF7, and CCR7. NC and LSIL groups showed a high
percentage of subcluster 11, while HSIL and CC groups had a
lower percentage. In contrast, subcluster 3 extremely increased in
CC groups. T cells naïve scores decreased in both LSIL and HSIL
groups, while they increased in CC groups (Fig. 5G–I). Subcluster 4
was defined as regulatory T cells with expression of FOXP3, IL2RA,
and IKZF2. They were enriched in CC group and also showed an
exhaustion state (Fig. 5G, H). Based on its high expression of MKI67
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and TOP2A, subcluster 9 was classified as cycling T cells. They were
slightly increased in HSIL and CC groups (Fig. 5G, H). Additionally,
subcluster 8 also expressed effector marker genes (NKG7, CST7,
and GZMH), but not CD8, indicating that it was a natural killer T

cell. Its distribution was extremely increased in LSIL groups (Fig.
5G, H). According to above results, the immune microenvironment
gradually shifted toward immunosuppression during cervical
carcinogenesis.

Fig. 4 scRNA-seq profiles 13 subgroups of the epithelial cell cluster. A Reclustering of epithelial cells, color-coded by clusters (left) or group
origin (right). B Average proportion of 13 subgroups of epithelial cell among NC, LSIL, HSIL, and CC samples. C Heatmap showing large-scale
CNVs in single cells of epithelial cells referenced to non-epithelial cell clusters. D Violin plots displayed the CNV score of each epithelial cell
subclusters. E Heatmap showing the differentially expressed genes (rows) of the epithelial cells across cluster (columns), with top genes
indicated. F t-SNE plots showing the expression and distribution of SRGN and HIST1H1C in the subcluster of epithelial cells. G, H SRGN protein
and HIST1H1C protein expression in NC, LSIL, HSIL, and CC tissues by immunohistochemistry. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Fig. 5 scRNA-seq profiles subgroups of the B cell and T cell cluster. A Reclustering of B cells, color-coded by clusters (left) or group origin
(right). B Average proportion of 10 subgroups of the B cell among NC, LSIL, HSIL, and CC samples. C Heatmap showing the differentially
expressed genes (rows) of B cells across cluster (columns), with top genes indicated. D The t‐SNE plots of the B cell biomarkers. E Expression of
cell motility-related genes (ACTB, ACTG1, and MYL6) in the subcluster of B cells. The dot size is proportional to the fraction of marker-expressing
cells in the group. F Reclustering of T cells, color-coded by clusters (left) or group origin (right). G Average proportion of 15 subgroups of the T
cell of NC, LSIL, HSIL, and CC samples. H Expression of T cell-specific markers across different clusters. The dot size is proportional to the
fraction of marker-expressing cells in the group. I Violin plots showing the scores of functional modules for four groups, using the
AddModuleScore function. *P < 0.05, **P < 0.01, ****P < 0.0001.
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Distinct subpopulations of NK cells during different cervical
lesions
The NK cell is an innate lymphoid cell that has antimicrobial and
anti-tumor properties [28]. Additionally, NK cells were further

divided into 8 subsets (Fig. 6A, B). Most of the cells had a high
level of well-defined NK-cell markers, such as CD7, NCAM1, KLRD1,
NKG7, GNLY, and B3GAT1 (Fig. 6C) [29]. Cells from subcluster 6
characterized by high expression of NCAM1 (CD56) were identified

Fig. 6 scRNA-seq profiles 8 subgroups of the NK cell cluster. A Reclustering of NK cells, color-coded by clusters (left) or group origin (right).
B Average proportion of 8 subgroups of the NK cell among NC, LSIL, HSIL, and CC samples. C Violin plots displayed the expression of NK cell-
specific markers across different clusters. D Expression of NK cell-specific markers across different clusters. The dot size is proportional to the
fraction of marker-expressing cells in the group. E The expression pattern of functional genes in NK cells. F Violin plots showing the scores of
functional modules for four groups, using the AddModuleScore function. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: not significant.
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as CD56bright NK cells. A higher percentage of CD56bright NK cells
was observed in the HSIL and LSIL groups than those in NC and
CC, while those cells expressed high levels of resting NK cells
markers, such as XCL1 and KLRC1 [30]. Cells from subcluster 0 and
1 have high level of PRF1, GZMB, GZMH, CST7, PFN1, and FCGR3A,
which were identified as terminal NK cells. Meanwhile, subcluster
0 cells displayed relatively high levels of B3GAT1 and ZEB2, which
had previously been identified as mature terminal NK. Subcluster 2
represented the adaptive NK cells and showed high expression of
KLRC2 and low expression of FCER1G. Cells from subcluster 3 were
considered as active NK cells, characterized by expression of
DUSP1, FOS, JUNB, NFKBIA, and CEBPB. Subcluster 4, 5, and 7 were
defined as NK-CAMK4, NK-THEMIS, and NK-RPL39 with special
high expression of CAMK4, THEMIS, and RPL39, respectively (Fig.
6D). Next, the function of NK cells was assessed using AddModule-
Score function (signature genes listed in Table S2). Terminal and
adaptive NK cells exhibited higher cytotoxicity score compared
with that in other subclusters. Active NK cells had a weak
cytotoxicity and a high stress score. The inflammatory score was
low in CD56bright NK and NK-RPL39. Compared with the NC group,
the cytotoxicity score decreased in LSIL and HSIL groups and
rescued in the CC group. In contrast, NK cells in HSIL group
exhibited a higher stress score and NK cells in CC group had a
lower stress score compared with the NC group (Fig. 6E, F). Taken
together, the CD56bright NK cells were in a resting state and NK
cells in LSIL had a low inflammatory score, which might contribute
to accelerate the progression of cervical lesions, but the role of NK
cells in CC was complex and unclear, which needed further
detailed experimental studies.

Characterization of myeloid cells during different cervical
lesions
In the myeloid cells, 12 subclusters were observed, including
2 subclusters (subcluster 6 and 7) of monocytes (FCN1),
3 subclusters (subcluster 4, 5, and 10) of DCs (LAMP3, CD1C,
FCER1A, XCR1, and CLEC9A), and 7 subclusters (subcluster 0, 1, 2, 3,
8, 9, and 11) of macrophages (Figs. 7A and S7A).
Subcluster 7 was special appearance in NC group, and they

faded in LSIL, HSIL, and CC groups. On the contrary, subcluster 9
gradually increased and accounted for a significant percentage of
CC group (Fig. 7B). Notably, the functional analysis revealed that
subcluster 7 was enriched in pathways related to virus response,
such as defense response, response to virus, and viral process (Fig.
S7B, C). As shown in Fig. S7D, E, the subcluster 9 was associated
with the histone deacetylase activity, which involved in the
initiation and development of cancer [31]. These alters might
accelerate the cervical carcinoma initiation.
Specifically, compared with LSIL group, cells in HSIL and CC

groups showed a relatively higher percentage of subcluster 2,
which expressed high expression of marker genes, such as APOE,
APOC1, GPNMB, SPP1, and CD163 (Fig. 7B, C, Fig. S7A, S7F). We
defined this subcluster as lipid-associated macrophages (LAMs)
according to the LAMs signatures from previous studies [32–34].
The remaining macrophages were classified as non-LAMs.
Macrophages are usually classified into pro-inflammatory (M1-

like) or anti-inflammatory (M2-like) phenotypes. In the present
study, genes and cytokines which could differ between M1 and M2-
like macrophages were detected in LAMs and non-LAMs. We found
the expression of M2-like signatures (such as MSR1, STAB1, CD68,
CD163, CCL2, and CCL18) was upregulated in LAMs. Meanwhile, the
non-LAMs expressed high levels of M1-like signatures (TNF and
IL1B) (Fig. 7D). Next, the functional phenotypes of LAMs and non-
LAMs were assessed using AddModuleScore function (signature
genes listed in Table S3). Notably, LAMs exhibited a higher M2
score, while non-LAMs expressed a higher canonical M1 score. As
expected, LAMs exhibited significantly lower phagocytosis scores,
while exhibited remarkably higher angiogenesis scores. Compared
to LAMs, non-LAMs showed notably higher phagocytosis scores,

but significantly lower angiogenesis scores (Fig. 7E). Collectively, it
could be postulated that LAMs displayed a tumor-supporting
phenotype similar to M2-like macrophages. They increased the
ability of angiogenesis and decreased the ability of phagocytosis. To
further confirm the presence of LAMs, the H&E and multiplexed
immunofluorescence staining were performed in NC, LSIL, HSIL, and
CC tissues. The H&E staining of NC, LSIL, HSIL, and CC tissues was
showed in Fig. S7G. The marker genes of APOE and CD163 were
chosen to label the LAMs. As shown in Fig. 7F and Fig. S7H, the
number of APOE+/CD163+ macrophages was specifically enriched
in CC group, less abundant in HSIL group, and almost absent in LSIL
and NC groups. To further explore the role of APOE in macrophage,
the stable APOE overexpression in human monocyte THP-1 cells
were established by infecting with lentiviruses APOE overexpression
and control of APOE overexpression. The infection efficiency of
lentivirus was confirmed. The results of PCR and Western blot
analysis suggested that the mRNA and protein level of APOE were
upregulated in transfected THP-1 cells (Fig. S8A, B). Then, THP-1
cells were treated with phorbol-12-myristate-13-acetate (PMA) to
generate M0 macrophages. CCK-8 assay suggested that the
conditioned medium (CM) from APOE overexpression macrophages
could promote the activity of SiHa (Fig. S8C) and Caski (Fig. S8D)
cells compared with NC group. In contrast, the CM from APOE
overexpression macrophages did not alter the activity of cervical
epithelial cell (ECT) compared with NC group (Fig. S8E). Besides,
transwell experiments also showed that the CM from APOE
overexpression macrophages accelerated the migration of SiHa
(Fig. S8F) and Caski (Fig. S8G) cells. Besides, the CM from APOE
overexpression macrophages did not alter the migration of
ECT cells compared with NC group (Fig. S8H). These results further
confirmed that LAMs might be able to promote CC progression.
Recent studies indicated that the alteration of N6-

methyladenosine (m6A) in macrophage could alter its tumor
immunogenicity and anti-tumor activity [35, 36]. To determine
whether m6A modifications intrinsically affect macrophages, the
expression of m6A modification marker genes in macrophages
were examined. In macrophages, no stable changes were
observed in the expression of m6A regulators among the NC,
LSIL, HSIL, and CC groups (Fig. S9A). Intriguingly, compared to
non-LAMs, the majority of m6A regulators (WTAP, HNRNPC,
HNRNPD, etc.) were lowly expressed in LAMs (Fig. 7G). It indicated
that the changes of m6A modification in LAMs might have an
impact on its role in tumor immune microenvironment.
Next, we found that the DC subclusters were divided into two

categories, conventional DC1 (cDC1) and conventional DC2 (cDC2).
Cells from subcluster 4 and 5 expressed the classical cDC2 signatures
(CD1C and FCER1A). Additionally, they expressed antigen-presenting
genes, including HLA-DPB1, HLA-DQA1, HLA-DPA1, and HLA-DQB1
(Fig. S7A). The main function of these cells was to acquire tumor
antigen and primed the T cells to recognize it. Subcluster 4 cells also
expressed high levels of LAMP3, indicating mature DCs. The mature
DCs (subcluster 4) had also high expression levels of BIRC3, FSCN1,
CD86, CD80, and CCL22 representing an activated state (Fig. S7A).
The percentage of cDC2 cells increased in HSIL group and decreased
in CC group (Fig. 7B). Compared with cDC2 cells, subcluster 10 cells
expressed higher level of marker genes of cDC1 (XCR1 and CLEC9A).
In addition, it was found that a greater percentage of cDC1 cells
were found in the HSIL and CC groups compared to the other
groups (Fig. 7B). Those cells had a high expression level of IDO1 (Fig.
S7A), which inhibited T cell activation and induced T cell
differentiation into suppressive regulatory T cells [37]. In summary,
these above results revealed the distinct lineages and states of DC
cells in the TME of CC.

Cell–cell communication networks in NC, LSIL, HSIL, and CC
Based on the expression of ligand-receptor gene in single cells,
cell–cell interactions were investigated to show the intercellular
interactions in the cervical microenvironment (Fig. 8A). The broad
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Fig. 7 Functional states of myeloid cells in the NC, LSIL, HSIL, and CC groups. A The t‐SNE projection of myeloid cells demonstrating 12
main subclusters. B Average proportion of 12 subgroups of the myeloid cells among NC, LSIL, HSIL, and CC samples. C The t‐SNE plots
showing the expression and distribution of APOE among myeloid cells. D Differences of M1/M2-like genes and cytokines between LAM and
non-LAM. E Comparison of M1, M2, phagocytosis, and angiogenesis score between LAM and non-LAM. F Representative images for
multiplexed immunofluorescence staining of LAM in NC, LSIL, HSIL, and CC tissues (CD163, red; APOE, green). DAPI was used to highlight all
nucleus. G The expression of m6A methylation associated RNA transcripts between LAM and non-LAM. *P < 0.05, ***P < 0.001, ****P < 0.0001.
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range of molecular interactions were further demonstrated by the
identification of broadcast ligand-receptor pairs among major cell
types (Fig. 8B). Additionally, a heatmap plot function was used to
analyze the interaction of the ligand and receptor among the major
cell types (Fig. 8C). It was indicated that macrophages demonstrated
extensive communications with epithelial cells. In order to

understand the communications between macrophages and
epithelial cells, the receptor-ligand interactions were further studied.
Previous studies had found that SPP1 involved in tumor progression
by interacting with CD44 [38, 39]. In our results, a communication
through SPP1-CD44 interaction between macrophages and epithelial
cells in cervical exfoliated cells was also identified. The interaction

Fig. 8 Cell–cell communication among all cell types in the cervical exfoliated cells microenvironment. A Circos plot showing the potential
cell interactions among ten major cell types by CellphoneDB. Node size indicates interactions; edge width represents the number of
significant ligand-receptor pairs. B Detailed view of the ligands expressed by each major cell types and the cells expressing the cognate
receptors primed to receive the signal. C Heatmap depicting the significant ligand-receptor cellular interactions in different groups (The color
bar represents the interaction counts between two different types of cells). D Dot plot indicating the ligand-receptor pairs between different
cells. E t‐SNE plots showing the expression and distribution of SPP1 in the subcluster of macrophages, and CD44 in the subcluster of
epithelial cells.
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was rarely detected in NC and LSIL groups but relatively higher
expressed in the HSIL and CC groups (Fig. 8D), suggesting that SPP1-
CD44 axis might act a critical role in cervical carcinogenesis. The level
of SPP1 in macrophages was upregulated in HSIL and CC groups
compared to NC and LSIL groups (Fig. S9B). The level of CD44 in
epithelial cells was upregulated in HSIL group compared to NC
group. Meanwhile, compared to LSIL, the level of CD44 in epithelial
cells was both upregulated in HSIL and CC groups (Fig. S9C).
According to our results, macrophages and epithelial cells might
interact through SPP1-CD44 axis, which might contribute to the
cervical carcinogenesis.
To verify the pro-tumorigenic effects of SPP1-CD44 axis, the

expression levels of SPP1 and CD44 were detected using GSE63514
dataset. The SPP1 expression was significantly higher in HSIL and CC
than that in NC, which was similar with our results, but CD44
expression was not related to the formation of CC (Fig. 9A, B).
Moreover, Chi-square test identified tumor stage, HPV type, and
tumor size were positively correlated with SPP1 expression, while
tumor size and numbers of positive nodes were related to CD44
expression in CC patients from The Cancer Genome Atlas cervical
squamous cell carcinoma (TCGA-CESC) (Fig. 9C, D and Table S4).
Furthermore, the survival data from TCGA-CESC dataset was also
analyzed to explore the correlation of SPP1 and CD44 expression with
prognosis of CC. Not surprisingly, an increase in CD44 expression had
no effect on prognosis in CC, whereas an increase of SPP1 expression
predicted a poor overall survival in CC (Fig. 9E, F). Overall, these
findings confirm that SPP1 is highly expressed in the macrophages
and interacts with epithelial cells through SPP1-CD44 axis. The
activation of SPP1-CD44 axis plays a significant role in tumorigenesis,
and is significantly associated with poor prognosis in CC.

DISCUSSION
Herein, we establish a single-cell transcriptional atlas of cervical
exfoliated cells from 15 samples ranging from NC to CC with
different histologic subtypes. This atlas has comprehensively
described the characteristics of TME, malignant cells, and
variations in cell–cell crosstalk networks during tumor progression.
The data provides a deeper insight for improving cervical
precancer diagnosis, refining patient stratification, as well as
offering valuable resources for future studies to discover
biomarkers and potential therapeutic targets.
According to previous studies, CC tissues and adjacent normal

tissues were chosen for scRNA-seq analysis to reveal the
alterations of fibroblasts and endothelial cells as well as the
heterogeneity in malignant cells [14–17]. Meanwhile, by perform-
ing scRNA-seq of normal cervical tissue, precancerous lesions, CC,
and metastatic lymph nodes, the heterogeneity of malignant cells
and TME in CC was mapped [18, 19]. In summary, previous studies
in CC focused more on samples from tissues to reveal the
heterogeneity by using scRNA-seq. In this study, for the first time,
cervical exfoliated cells were collected for scRNA-seq analysis to
explore the biomarkers for early detection of CC.
In agreement with the previous study, the evolution of

exfoliated epithelial cells was stepwise during cervical carcinogen-
esis [19]. According to scRNA-seq analyses, we found cervical
exfoliated cells were composed of epithelial cells, neutrophils,
mast cells, and immune cells. Meanwhile, we identified several
novel genes including SRGN and HIST1H1C. SRGN was recently
reported as an oncogene to promote the metastasis of
esophageal and nasopharyngeal carcinomas [40, 41]. HIST1H1C
was upregulated and promoted hepatocarcinogenesis [42].
However, the function of SRGN and HIST1H1C has not been
explored in cervical cancer. Interestingly, it could be inferred from
our investigation that SRGN and HIST1H1C might be novel
biomarkers that contribute to CC development.
Tumor microenvironments contain various immune cells, which

are crucial to tumorigenesis and tumor progression. Previous

studies have described the alterations of TME across the CC
progression through scRNA-seq [17–19]. Meanwhile, the immune
microenvironment of LSIL remains undescribed. Through scRNA-
seq of cervical exfoliated cells from LSIL, our study identified
several distinct immune cells subpopulations and described the
alterations of microenvironment of LSIL. Our research revealed
that exfoliated cells from LSIL composed a large part of cytotoxic
T cells and natural killer T cells. Additionally, the LSIL group
presented a higher CD8 cytotoxic score compared with HSIL and
tumor groups. In summary, our study showed that LSIL displayed
an activated immune state, in contrast to HSIL and tumor.
Macrophages are one of the essential components of the TME and

show a complex heterogeneity [43]. Accumulated evidence revealed
that LAMs shared a high expression of typical genes (such as APOE,
APOC1, GPNMB, TREM2, SPP1 etc.) and played a central role in tumor
immunity [32, 34]. A clinical cohort indicated that LAMs were
enriched in clear cell renal carcinoma patients with recurrences and
could serve as a prognostic biomarker as well as a candidate
therapeutic target [44]. Additionally, an APOE+/C1QB+ macrophage
was identified in intrahepatic cholangiocarcinoma, which could
reshape the chronic inflammation and predict a poor prognosis [45].
In addition, a previous scRNA-seq reported that APOE+ macrophages
were enriched in advanced CC and associated with a poor survival
[19]. These results confirmed that APOE+ macrophages existed in CC
and played a role in tumor development. The APOE+ macrophages
were found to be similar to LAMs in our study. Accordingly, our study
confirmed LAMs could be detected in the cervical exfoliated cells. At
the same time, it was indicated that LAMs played multiple roles in
tumorigenesis. Since LAMs exhibited preferential genes expression in
angiogenesis, those type of macrophages were likely to possess anti-
inflammatory properties similar to M2-like macrophages. We then
performed multiplexed immunofluorescence staining to further
confirm the enrichment of LAMs in HSIL and CC tissues. There was
a significant amount of LAMs in both the HSIL and CC groups, which
contradicted a previous finding that APOE+ macrophages were just
specifically increased in the CC group [19]. It is highly possible that
the difference is due to the fact that we used cervical exfoliated cells
instead of tissue specimens for scRNA-seq analysis. Moreover,
individual variations may also contribute to these differences.
Therefore, LAMs may act as a protumor factor to accelerate
oncogenic events and could serve as a biomarker for predicting
progression of LSIL into HSIL.
m6A is the most prevalent and reversible mRNA modification,

which regulates tumor cell in various biological processes [46].
Recently, several studies indicated that m6A could also modulate
the function of tumor-associated macrophages (TAMs) and alter
its anti-tumor responses in TME [35]. Yin et al. [36] identified
METTL3 depletion in macrophages promoted orchestrates cancer
progression. When activated by lipopolysaccharide in vitro,
METTL3-deficient macrophages could not produce the enough
tumor necrosis factor (TNF)-α and contribute to tumor growth [41].
By scRNA-seq, Dong et al. [47] demonstrated the deficiency of
METTL14 in macrophages inhibited the anti-tumor function of
CD8+ T cells and promoted tumor growth. In our study, one of the
most striking findings was that the majority of the m6A
modification marker genes were low expressed in LAMs. It was
possible that the modification of the m6A in LAMs altered their
function. However, it remains to be elucidated how m6A
methylation affects LAMs to regulate the formation of CC.
Macrophage is an important component of myeloid cells [48]. It

was identified that SPP1 acted as an oncogene involved in
carcinogenesis and CC progression, meanwhile its upregulation
decreased the sensitivity of cisplatin and predicted a poor
prognosis for HPV positive CC patients [49–51]. In a recent study,
CC patients could be clearly divided into two subclusters
according to the C1QC+ and SPP1+ TAMs gene signatures.
Compared with C1QChigh and SPP1low TAMs, patients with SPP1high

and C1QClow TAMs had a worse prognosis and lower level of
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immune cell infiltration [52]. Additionally, it had been demon-
strated that SPP1/CD44 interaction mediated crosstalk between
macrophages and glioma cells. As a result, patients with high level
of both SPP1 and CD44 had an increased macrophages infiltration
and a poor prognosis in glioma [53]. At the same time, a similar
conclusion was found in hepatocellular carcinoma (HCC), report-
ing that macrophages interacted with HCC malignant cells

through the SPP1-CD44 axis. High expression of SPP1 and CD44
indicated a worse prognosis of HCC [54]. In the present study, the
CellPhoneDB had identified multiple ligand-receptor interactions.
Furthermore, an interaction was observed between macrophages
and malignant cells through the SPP1-CD44 axis. According to our
findings, the SPP1-CD44 interaction expressed a low level in NC
and LSIL, but highly in HSIL as well as CC, suggesting that

Fig. 9 Determination of the expression and prognostic role of SPP1 and CD44 in CC. A, B the expression of SPP1 and CD44 in NC, LSIL, HSIL,
and CC from GEO database, respectively. C, D Heatmap visualizing clinical features, as well as SPP1 and CD44 expression in the TCGA-CESC
dataset. E, F Kaplan–Meier survival curve of SPP1 and CD44 in CC from TCGA-CESC database. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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macrophages derived SPP1 served as an imperative component in
the formation of CC. Combining SPP1 and CD44 can serve as an
early biomarker for cervical cancer diagnosis and prognosis.
More than 70% LSIL will regress and 10% of LSIL will progress to

HSIL [6]. In light of this, it is necessary to identify the specific
microenvironment and differences of LSIL in order to determine
the key factors affecting tumorigenesis. To our best knowledge,
there is still no relevant scRNA-seq study about it. To perform
scRNA-seq on LSIL, we selected patients with LSIL on cervical
cytology and collected the samples before the performance of
colposcopy and biopsy. Additionally, the diagnosis was further
confirmed by pathology. In the present study, novel diagnostic
biomarkers for CC based on bioinformatics analysis were
established by verifying clinical samples from our center, which
will have a tremendous clinical importance.
Nevertheless, there are still some drawbacks to the present study.

We notice that a few of subcluster 1 of epithelial cells are presented
in NC group, though the percentage of these cells is low (3%).
Agreeing with the previous study, it may be a false positive result
[55]. Our results indicated that neutrophils were the predominant
cell type in some samples. Although, we had excluded the patients
suffering the acute vulvovaginal candidiasis and bacterial vaginosis.
Our finding supported the previous reports claiming neutrophils
acted as the dominant immune cell type in the cervix [56–58]. The
percentage of neutrophils was different with samples collected from
biopsies [59]. At the same time, the tumor-associated neutrophils
would drive the progress of non-small cell lung cancer had been
revealed by scRNA-seq [60]. Hence, neutrophils were still included
for scRNA-seq in order to avoid missing information on the
relationship between neutrophils and CC. Unfortunately, we did not
find a clear connection between them. On the other hand, further
validation of our findings, including the molecular characteristics of
cells during cervical cancer development, is required.

MATERIALS AND METHODS
Patients and sample collection
During July 2021 to October 2021, patients with normal and abnormal
cervical cytology were enrolled at the Second Affiliated Hospital of Wenzhou
Medical University, whose samples of cervical exfoliated cells were collected
for scRNA-seq. Patients with abnormal cytology including LSIL, HSIL, and
squamous cell carcinoma were referred to colposcopy and biopsy in this
study. The pathological results were diagnosed by two senior pathologists,
and the histological results were classified as LSIL, HSIL, and squamous
cancer. Exclusion criteria included: (1) participants with the history of
chemotherapy or radiotherapy; (2) acute vulvovaginal candidiasis, bacterial
vaginosis, gonorrhea, or mycoplasma infections; (3) immunosuppression due
to organ transplantation or human immunodeficiency virus; (4) current
pregnancy or lactation; and (5) previous treatment for cervical lesions.

Isolation of single cells
The suspension of exfoliated cell was filtered, centrifuged, resuspended,
and then incubated with red blood cell lysis buffer. After incubation, the
dead cells among suspension were removed using a Miltenyi®Dead Cell
Removal Kit. The pellet of cells was resuspended in PBS (containing 0.04%
bovine serum albumin) and adjusted to 1000–1200 cells per liter. Trypan
blue exclusion was used to determine cell viability.

10 × Genomics library and sequencing
According to the manufacturer’s instructions previously described [61],
single-cell suspensions were loaded into 10 × Chromium to capture single
cells. Afterward, the following cDNA amplification and library construction
were conducted by LC-Bio Technology. Library sequencing was performed
on the Illumina NovaSeq sequencing system.

Quality control and cell-type identification
For quality control, Seurat (version 4.3.0) was used to count unique
molecular identifiers (UMIs) and mitochondrial genes. Cells with more than
100 UMIs and less than 25% mitochondrion-derived UMI counts were

selected. This study selected the top 20 components and first 2000 variable
genes. The “ScaleData” function was used to regress the inflow of UMIs and
the percentage of mitochondrion-derived UMI counts. Subsequently, the
main cell clusters were identified by Seurat’s “FindClusters” function.
Unbiased cell type recognition was visualized by t-SNE [62]. Cell types were
annotated based on their canonical marker genes expression via “SingleR”
function and manually checked genes from the CellMarker database and
published papers [63]. The method of cNMF was used to discover gene
expression programs in tumor samples [64].

Pseudotime trajectory analysis
The trajectory analysis was utilized by Monocle 2 package (version 2.26.0)
to reveal the cell-state transitions [65]. The “DDRTree” function was applied
to reduce the dimensions with default settings. The trajectory was
visualized by “plot_cell_trajectory” function.

Copy number alteration inference
The CNV was evaluated by “infercnv” R package (version 1.12.0) to
differentiate between malignant and non-malignant cells [66]. The
different genomic locations of CNVs were presented.

Differently expressed genes (DEGs) identification and function
annotation
The DEGs between subcluster 7 and subcluster 9 from myeloid cells were
calculated via “FindMarkers” in Seurat package with default parameters.
GO and KEGG analysis of marker genes and DEGs were performed using
cluster Profiler R-package. According to GO terms, it included three
categories: molecular function, cellular component, and biological process.

Calculation of functional module scores
The functional module scores were calculated to evaluate the functions of
specific cell clusters, using “AddModuleScore” function in Seurat. The
related gene lists for T cell, NK cell, and macrophage were presented
respectively in Tables S1, S2, and S3, respectively.

Cell culture
THP-1, ECT, CC cell lines (SiHa, Caski, and C33A) and 293T cells were
obtained from Type Culture Collection of China Center and incubated at
5% CO2 at 37 °C. All cells were cultured in DMEM or 1640 medium (BI, USA)
supplemented with 10% fetal bovine serum (FBS, GIBCO, USA) and
authenticated by short tandem repeat.

Virus production, cell transfection, and macrophage
generation
The Youbio Biosciences Inc provided the SRGN and HIST1H1C cDNA
expression vector. By transfecting lentivectors with psPAX2 and pMD2.G,
lentivector particles were produced in 293T. The lentiviruses APOE
overexpression and control were obtained from Shanghai GeneChem
Co., Ltd. According to the manufacturer’s protocol, cells were transfected.
Puromycin was added to select the infected cells after the virus was
produced and infected the target cells. The efficacy was verified by
western blot after transfection. THP-1 cells were pretreated with PMA for
24 h to generate M0 macrophages. Then, M0 macrophages were cultured
with 1640 medium containing 10% FBS. After 48 h, the CM was collected
for further analysis.

Western blot
Western blot experiments were performed as previously [67]. Anti-SRGN
(1:100, sc-374657, Santa Cruz Biotechnology), Anti-HIST1H1C (1:1000,
ab4086, abcam), Anti-APOE (1:1000, #13366, Cell Signaling Technology),
anti-Tubulin (1:5000, #T0023, Affinity Biosciences) and anti-β-Actin (1:4000,
#T0022, Affinity Biosciences) were used as primary antibodies. The blots
were imaged with the ChemiScope System (Clinx, China).

Colony formation assay and CCK-8
Colony formation assays were performed with SiHa (300 cells/well) and
C33A (1000 cells/well) cells being seeded into 6-well plate and cultured in
standard cell media until cell colonies were formed. After washed by PBS,
the colonies were fixed in paraformaldehyde and then stained with crystal
violet for visualization. The colonies with more than 50 cells were analyzed.
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Cells were seeded into 96-well plate with 10% FBS media or CM, and then
incubated for indicated time. After each well had been incubated at 37 °C
for 2 h with 10 μl of CCK-8 reagent (Meilunbio, China), the optical density
(OD) of each well was determined using a microplate reader.

Tumor xenograft experiment
Female BALB/C nude mice (4-week old) were purchased by the Animal
Experiment Center of Wenzhou Medical University and randomly divided
into four groups. SiHa cells (3 × 106 stably transfected with SRGN
overexpression, HIST1H1C overexpression, their corresponding control
vector) were subcutaneously injected into the flank of mice. Tumor sizes
were calculated by the formula: Volume = width2 × length/2. This assay
was approved by the Experimental Animal Center of Wenzhou Medical
University (wydw2023-0459).

Migration assay
The migration assay was performed as previously [68]. The CM from
macrophages were added into the bottom chambers. SiHa, Caski, and
ECT cells were seeded in upper chambers with serum-free medium and co-
culture with CM for 24 h. Then, the upper chambers underwent the fixing
process and staining. The cells were photographed and counted.

H&E, IHC, and multiplexed immunofluorescence staining
Tissue slices including NC, LSIL, HSIL, and CC were obtained from the
Second Affiliated Hospital of Wenzhou Medical University. After underwent
deparaffinization, the tissue sections were performed H&E staining. For
IHC, the tissue sections underwent deparaffinization and subsequent
antigen retrieval via microwave heating with sodium citrate. Subsequently,
the sections were stained with rabbit anti-human SRGN (ABclonal Cat#
A6951, RRID:AB_2767509) or rabbit anti-human HIST1H1C (Proteintech
Cat# 19649-1-AP, RRID:AB_10694432) at 4 °C for 12 h. On the following day,
goat anti-rabbit secondary antibody (ZSGB-BIO, China) was used. The
sections were then subjected to hematoxylin counter-staining and 3,3’-
Diaminobenzidine staining. For multiplexed immunofluorescence staining,
the 5 μm tissue sections were deparaffinized and antigen retrieval as
above, and then stained with rabbit anti-human CD163 (Proteintech Cat#
16646-1-AP, RRID:AB_2756528) and mouse anti-human APOE (Proteintech
Cat# 66830-1-Ig, RRID:AB_2882173) together at 4 °C for 12 h. Subsequently,
the tissues were stained with anti-mouse Alexa488 (1:250, Invitrogen) and
anti-rabbit Alexa594 (1:250, Invitrogen) conjugated secondary antibodies
for 1 h. After that, DAPI was used to stain nucleus. The slides were imaged
using a microscope.

Online data processing
GSE63514 was utilized to obtain expression profile of 24 normal cervical
epithelium, 14 LSIL, 40 HSIL, and 28 cervical squamous epithelial cancer
[69]. In addition, the expression levels and clinical information of 304
patients with cervical cancer were downloaded from TCGA-CESC database.

Cell–cell communication analysis
The CellPhoneDB (version 4.0.0) software was used to analyze intercellular
communications between different cell types from single-cell transcrip-
tome data. All counts had been logarithmically transformed, quantile
normalized, and performed as the previous report [18]. The ligands and
receptors expressed in more than 10% of the cells in the specific cluster
were chosen and analyzed. Then, pairwise comparisons between all cell
types were performed, and the false-positive interaction was filtered. Only
interactions of ligand-receptor with P < 0.05 were considered significant.

Statistical analysis
The normality of data was tested. Continuous variables were presented as
means and SDs if normally distributed and medians and IQRs if not. An
unpaired Student’s t-test or Wilcoxon test was conducted using R as
appropriate. P-values were adjusted for multiple testing, and P-values <
0.05 were considered statistically significant.

DATA AVAILABILITY
The data supporting the findings of this study are available from the corresponding
author on reasonable request.
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