
REVIEW ARTICLE OPEN

Enhancing osteoporosis treatment with engineered
mesenchymal stem cell-derived extracellular vesicles:
mechanisms and advances
Yiman Chen1, Yuling Huang1, Jia Li1, Taiwei Jiao2✉ and Lina Yang 1,3✉

© The Author(s) 2024

As societal aging intensifies, the incidence of osteoporosis (OP) continually rises. OP is a skeletal disorder characterized by reduced
bone mass, deteriorated bone tissue microstructure, and consequently increased bone fragility and fracture susceptibility, typically
evaluated using bone mineral density (BMD) and T-score. Not only does OP diminish patients’ quality of life, but it also imposes a
substantial economic burden on society. Conventional pharmacological treatments yield limited efficacy and severe adverse
reactions. In contemporary academic discourse, mesenchymal stem cells (MSCs) derived extracellular vesicles (EVs) have surfaced as
auspicious novel therapeutic modalities for OP. EVs can convey information through the cargo they carry and have been
demonstrated to be a crucial medium for intercellular communication, playing a significant role in maintaining the homeostasis of
the bone microenvironment. Furthermore, various research findings provide evidence that engineered strategies can enhance the
therapeutic effects of EVs in OP treatment. While numerous reviews have explored the progress and potential of EVs in treating
degenerative bone diseases, research on using EVs to address OP remains in the early stages of basic experimentation. This paper
reviews advancements in utilizing MSCs and their derived EVs for OP treatment. It systematically examines the most extensively
researched MSC-derived EVs for treating OP, delving not only into the molecular mechanisms of EV-based OP therapy but also
conducting a comparative analysis of the strengths and limitations of EVs sourced from various cell origins. Additionally, the paper
emphasizes the technical and engineering strategies necessary for leveraging EVs in OP treatment, offering insights and
recommendations for future research endeavors.
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FACTS

● Mesenchymal stem cells derived extracellular vesicles (EVs)
have become a new direction for the treatment of degen-
erative orthopedic diseases.

● The information transmission function of EVs also makes them
a key part in cell interactions.

● Engineering processing has been proven to improve the
therapeutic effect of EVs.

● The development of microfluidic technology, 3D-bioprinting,
and other technologies provides a possibility for large-scale
extraction of EVs, which can be indispensable for clinical
application.

OPEN QUESTIONS

● How do transplanted mesenchymal stem cells derived EVs
influence crosstalk within the bone microenvironment?

● How can various engineering strategies be seamlessly

integrated to maximize the efficiency of EV-based therapy?
● Are current EVs products suitable for conducting clinical trials?

INTRODUCTION
Osteoporosis (OP) has emerged as an undeniable global public
health concern. According to the International Osteoporosis
Foundation (IOF), the number of high-risk individuals aged 50
and above for osteoporotic fractures worldwide was 158 million in
2010, expected to double by 2040 [1]. The economic burden of OP
is immense; in the United States alone, the annual cost of
osteoporosis-related fractures in 2005 was estimated at $17
billion, projected to rise to $25.3 billion by 2025 [2]. Functional
impacts of osteoporosis-associated fractures include pain, depen-
dency, depression, skeletal deformities, and impediments to
essential daily activities. Fractures related to OP in the hip,
vertebrae, and pelvis are common causes of morbidity and
mortality in the elderly [3]. Numerous risk factors precipitate OP,
such as aging, reduced mechanical stimulation, hormonal
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imbalance [4], and detrimental lifestyle habits [5], among others.
These factors can potentially disrupt the dynamic equilibrium
between osteoblast-mediated bone formation and osteoclast-
driven bone resorption [6], imbalances in MSCs osteogenic and
adipogenic differentiation [7], as well as oxidative stress-induced
cellular DNA damage, apoptosis, and senescence [8]. Presently,
pharmaceutical interventions predominate in the clinical treat-
ment of OP [9]. Pharmaceuticals for OP can be primarily classified
into two categories: 1. Anti-resorptive agents, such as bispho-
sphonates, denosumab, estrogens, and selective estrogen recep-
tor modulators. 2. Anabolic medications, including teriparatide, a
parathyroid hormone analog, which mitigates the risk of vertebral
and non-vertebral fractures. The majority of these medications
demonstrate a slow onset of action, and prolonged use may
engender adverse events. For instance, long-term administration
of anti-resorptive drugs may result in excessive bone hardening,
compromising bone strength and flexibility, and augmenting the
risk of non-compressive fractures [10]. Abaloparatide and teripara-
tide may elevate the risk of withdrawal due to adverse reactions
(WAEs). Sustained bisphosphonate use may increase the risk of
atypical femoral fractures (AFF) and osteonecrosis of the jaw (ONJ)
[11]. In contemporary years, MSCs have emerged as a rapidly
expanding area of investigation within the realm of regenerative
medicine. Their application has yielded encouraging safety and
efficacy profiles in the clinical management of a diverse array of
pathologies, encompassing graft-versus-host disease, traumatic
spinal cord lesions, autoimmune disorders, as well as skeletal and
cartilaginous injuries [12]. Specifically in the context of bone and
cartilage damage-associated disorders, a plethora of research has
corroborated the therapeutic promise of MSCs for addressing
orthopedic ailments via preclinical experiments and clinical
inquiries [13].
MSCs represent a highly abundant class of adult stem cells that

are widely investigated across the world. MSCs possess self-
renewal and multilineage differentiation capabilities, enabling
their differentiation into various cell types, such as adipocytes,
osteoblasts, and chondrocytes [14], thereby playing an instru-
mental role in sustaining the equilibrium of bone physiology.
MSCs can also suppress the proliferation and function of several
major immune cells, including T and B lymphocytes, dendritic
cells, and natural killer cells, thereby modulating immune
responses [15, 16]. MSCs primarily employ three mechanisms to
treat OP: 1. Migration and homing, whereby MSCs, upon receiving
specific signals, migrate to the site of injury to exert their tissue
repair effects [17]. 2. Induction of angiogenesis, as numerous
preclinical and clinical studies have demonstrated that MSCs
promote angiogenesis through vascular endothelial growth factor
(VEGF), hepatocyte growth factor (HGF), Fibroblast Growth Factor
2 (FGF2), and angiogenin [18]. 3. Immune modulation, where one
mechanism by which MSCs exert immunomodulatory effects is
through monocyte phagocytosis of injected MSCs, thereby
stimulating and inducing immune responses [19] (Fig. 1).
Nevertheless, the enduring propagation of MSCs poses a

heightened possibility of tumorigenesis, attributed to the
dysregulation of genes associated with the cell cycle and
increased chromosomal instability [20]. Simultaneously, challenges
such as cellular dedifferentiation and immunological rejection
further hinder the clinical implementation of MSCs [21]. Con-
temporary research has uncovered that MSCs predominantly exert
their impact on diseases via the release of EVs [22]. In contrast to
MSCs, EVs possess superior attributes, including immunological
quiescence, non-carcinogenic nature, enhanced stability, cell and
tissue-specific targeting, and lack of vascular obstruction [23]. Two
main subtypes of EVs exist—exosomes and ectosomes [24].
Exosomes are small (approximately 50–150 nm in diameter)
vesicles formed by the inward budding of the endosomal
membrane to create intraluminal vesicles (ILVs); these ILVs are
secreted as exosomes when multivesicular bodies (MVBs) fuse

with the plasma membrane [25]. Ectosomes, which range in size
from less than 100 nm to several micrometers in diameter,
encompass microvesicles, microparticles, and large vesicles.
Ectosomes are formed through the outward protrusion and
subsequent shedding of the plasma membrane into the extra-
cellular space [26]. Throughout the orchestrated progression of
programmed cell demise, apoptotic bodies originating from
cellular remnants are likewise classified as EVs. In previous
investigations, EVs have often been categorized according to
exosomes, microvesicles, and apoptotic bodies. In the ensuing
discourse, the narrative will unfold based on specific research
studies. Predominantly, EVs modulate the functionality of recipient
cells via three discrete mechanisms: (1) the interaction of
transmembrane proteins present on the EVs membrane with
corresponding receptors on the cellular membrane, consequently
initiating signaling cascades that impact target cells [27]; (2) the
amalgamation of EVs with the cell membrane, facilitating the
conveyance of bioactive constituents into the cytoplasm, thereby
modulating or altering intracellular signaling pathways; (3) the
internalization of EVs into cells through endocytosis, culminating
in the release of their cargo into designated organelles [28]. Upon
fusion, mRNA transferred via EVs can be translated into proteins,
while conveyed microRNAs (miRNAs) regulate mRNA translation
and participate in various biological processes [29], including
promoting osteogenesis, bone regeneration, and mineralization,
as well as vascular network formation [30]. In contemporary
research, EVs have emerged as crucial mediators of intercellular
communication, given their capacity to ferry not only membrane
proteins and lipids, but also RNA, cytoplasmic proteins, and a
variety of signaling molecules to the receiving cells. EVs can
paracrine-influence cell phenotypes, recruitment, proliferation,
and differentiation. EVs functions primarily depend on their cargo,
exhibiting diverse functionalities when laden with distinct
materials, such as the accumulation of age-related molecules
within the bone microenvironment potentially leading to OP [31],
or serving as vehicles for relevant drug treatments [32]. EVs’
therapeutic effects on OP mainly manifest through promoting
angiogenesis, modulating immune responses and inflammation
[33], stimulating osteoblast proliferation and differentiation, and
inhibiting osteoclast proliferation and differentiation [34] (Fig. 1).

OVERVIEW OF MSCS AND DERIVED EVS IN THE
TREATMENT OF OP
Overview of MSCs in the treatment of OP
We employed the Histcite analysis tool to conduct a statistical
analysis of literature related to MSCs and OP within the Web of
Science database. Key studies were selected for review based on
their Local Citation Score (LCS) rating. Ever since Rodríguez’s
seminal publication in 2000, which established a link between OP
and MSCs [35], there has been a significant surge in research
exploring the pathogenesis and therapeutic potential of MSCs in
the context of OP. In a groundbreaking study conducted in 2004,
Nuttall ME and Gimble JM delved into the regulatory mechanisms
governing MSC differentiation into osteoblasts or adipocytes,
employing gene silencing and overexpression techniques. Their
findings revealed that the activation of peroxisome proliferator-
activated receptors (PPARs) stimulates adipogenesis while simul-
taneously suppressing osteogenesis, thereby unveiling promising
targets for the development of future OP treatments [36]. In 2006,
Gimble JM published a review questioning the inverse relationship
hypothesis between adipocytes and osteoblasts within the bone
marrow cavity, focusing on the mechanisms of MSCs differentia-
tion and emphasizing the potential of alternative therapies for
treating OP [37]. In a 2009 scholarly investigation, elevated levels
of circulating MSCs were identified in OP patients via in vitro
assays. This observation was accompanied by a diminished
expression of Runt-related transcription factor 2 (Runx2), Sp7,
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collagen type I alpha 1 chain gene (COL1A1), secreted protein
acidic and rich in cysteine (SPARC), and SPP1 genes, further
substantiating the alterations in osteoblast differentiation that
could potentially be associated with the etiology of OP [38]. In
2010, studies began to delve deeper into the upstream pathways
regulating bone homeostasis by MSCs, discovering miR-204/211
as an essential endogenous negative regulator of Runx2, capable
of inhibiting the osteogenesis of mesenchymal progenitor cells
and bone marrow-derived mesenchymal stem cells (BMMSCs)
while promoting adipogenesis [39]. In 2011, an investigation
employed miR-138 antagonists in vitro analyses to substantiate
that the suppression of miR-138 function by anti-miR-138
facilitates the upregulation of osteoblast-specific genes, alkaline
phosphatase (ALP) activity, and matrix mineralization. This implies
that the pharmacological targeting of miR-138 through anti-miR-
138 inhibition could serve as a potential therapeutic approach for
augmenting bone formation in vivo [40]. In 2013, the research
uncovered a link between osteogenesis-regulating miRNAs and
tumor necrosis factor-alpha (TNF-α), indicating a molecular basis
for novel treatment strategies targeting OP and other inflamma-
tory bone diseases [41]. A 2016 review summarized various
upstream pathways and molecular mechanisms regulating the
differentiation of MSCs, holding significant value for better clinical
application of MSCs in tissue engineering and regenerative
medicine [42] (Fig. 2).

Overview of MSCs derived EVs in the treatment of OP
A comprehensive examination of seminal publications in recent
years concerning the management of OP utilizing EVs derived
from MSCs, as assessed by LCS rankings. In 2019, Hu’s study
revealed that intravenous administration of umbilical cord
mesenchymal stem cell derived extracellular vesicles (UCMSC-
EVs) led to improvements in age-induced osteoporotic symptoms
in mice, evidenced by increased trabecular and cortical bone
mass. The osteogenic effect of UCMSC-EVs on BMMSCs was
verified to be mediated by the highly enriched miR-3960 within

them, using specific miRNA inhibitors [43]. Despite the absence of
tissue-specific targeting in EVs, alendronate possesses the unique
ability to selectively target bone tissue via hydroxyapatite
interaction. Yayu Wang ingeniously amalgamated EVs with
alendronate, yielding Ale-EVs through the application of “click
chemistry,” which exhibited favorable therapeutic outcomes in an
ovariectomy-induced osteoporotic rat model [44]. Utilizing
sophisticated methods such as micro-positron emission tomogra-
phy (μPET)/computed tomography (CT), μCT, and optical imaging,
Cheng-Hsiu Lu meticulously examined osteoblastic activity,
microstructure, and in vivo dynamics of EVs. Additionally, RNA
sequencing was employed to scrutinize their cargo and ther-
apeutic influence on bone tissue in ovariectomized mice, offering
a comprehensive assessment of EVs’ efficacy in addressing OP and
delving into molecular targets pertinent to bone remodeling
regulation [45]. Yan Wang discovered the therapeutic effects of
EVs on OP through the interaction between miR-27a and DKK2 by
modulating the expression of miR-27a and validating the
relationship between miR-27a and DKK2 [46] (Fig. 2).
In comparison with stem cells, recent years have witnessed a

notable increase in the exploration of EV-based therapies for OP
through previous research. However, the utilization of EVs in
clinical treatment still encounters substantial challenges due to
limitations in EVs extraction techniques and the inherent
instability of natural EVs. Technological breakthroughs have
emerged in recent years, showcasing the significant efficacy of
EVs in the treatment of various diseases. This has led to
advancements in the more efficient extraction and identification
of EVs derived from cellular sources. Common methods for
extracting EVs include ultracentrifugation and polymeric precipi-
tation; however, both methods have their drawbacks. For instance,
although ultracentrifugation is straightforward, it suffers from low
yield, while precipitation methods, despite their high efficiency,
are associated with lower purity [47, 48]. In recent times, scientists
have successfully engineered a microfluidic chip capable of
recognizing specific surface antibodies. This chip facilitates the

Fig. 1 Mechanisms of OP treatment using MSCs and EVs. a MSCs, derived from diverse tissue origins, primarily address OP through targeted
homing, angiogenesis stimulation, and immunomodulatory actions. b The therapeutic impact of secreted EVs is predominantly achieved by
fostering osteoblast proliferation, impeding osteoclast propagation, and augmenting angiogenesis. Mesenchymal stem cells and extracellular
vesicles of different origins have a positive effect on the restoration of bone density. Generated by BioRender.
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efficient collection of targeted EVs while ensuring their purity,
thereby providing technological support for expanding research
in EV-related studies [49, 50]. In addition to advancements in
extraction techniques, researchers are actively exploring alter-
native methods to enhance EVs yield and properties. This is
primarily achieved by subjecting parent cells, specifically MSCs, to
various stimuli to facilitate the secretion of EVs. For instance, the
application of appropriate mechanical stimulation has been
demonstrated to boost the secretion of osteogenesis-related EVs
[51], while activation of adipose-derived mesenchymal stem cells
(ADSCs) by pro-inflammatory factors such as interferon-γ (IFNγ)
and TNFα can exert immunosuppressive effects [52].
In addition to the advancements in extraction techniques, the

engineering modification of EVs has significantly optimized their
therapeutic efficacy. Numerous studies have confirmed that
engineered EVs exhibit enhanced therapeutic potential [53].
Primary means of engineering EVs include loading therapeutic
cargo within, surface modification, and amalgamating materials,
as well as combination therapies. Cargo loading chiefly involves
incorporating biologically active molecules with therapeutic
properties, such as proteins, small molecules, or nucleic acids
(e.g. miRNA, siRNA), into EVs through electroporation [54], plasmid
transfection [55], or incubation with permeabilizing agents [56].
Some studies have also encapsulated RNA within EVs by
generating lipid-coated RNA particles and integrating them into
purified EVs via mixing-induced distribution [57]. However, this
process slightly enlarges the size of the EVs, and whether this
impacts their functionality warrants further investigation. With the
maturation of clustered regularly interspaced short palindromic
repeat (CRISPR)-associated protein 9 (Cas9) technology, the
development of genetically engineered vesicles for disease
treatment has progressed significantly. Engineered EVs capable
of delivering specific miRNAs or small interfering RNAs (siRNAs)
have been developed for the treatment of central nervous system
disorders and cancers [58, 59]. Surface modification entails

attaching targeting ligands, such as peptides or antibodies, to
the EV surface, enabling their specific interaction with receptors
expressed on the surface of target cells (e.g. osteoblasts and
osteoclasts), thereby mitigating potential off-target effects [60].
For treating OP through EVs, common surface modification
approaches involve the incorporation of bone-targeting ligands
or bone-targeting G protein-coupled receptors onto the cell
membrane, such as C-X-C motif chemokine receptor 4 (CXCR4)
[61]. Incorporating materials can be achieved not only through the
conventional association with scaffold materials but also by
employing membrane engineering to introduce protective coat-
ings on the vesicle surface. While numerous studies have affirmed
the therapeutic efficacy of directly infusing EVs into target sites,
the limited local diffusion capacity of natural EVs results in a short
duration of action. To mitigate the risk of infection and reduce the
frequency of EVs infusion, various types of biomaterials have been
utilized in the development of scaffold systems for EVs delivery
[62]. Beyond providing structural support, these biomaterials have
been demonstrated to offer additional auxiliary signals, facilitating
osteogenesis [63, 64]. Membrane engineering refers to the
incorporation of substances such as polyethylene glycol, chitosan,
or alginate salts into EVs membranes to enhance their stability
during circulation, prolong their half-life, and facilitate more
effective delivery to target tissues [65]. While loading therapeutic
cargo onto EVs can enhance their efficacy for disease treatment,
direct administration often leads to off-target side effects [66].
Consequently, many studies concurrently perform targeted
modifications on the membrane of EVs when loading therapeutic
cargo, representing a form of combinatorial therapy. Combining
therapies refers to the integration of various engineered strategies
or the conjunction of specific technical approaches with
traditional treatment methods. In addition to commonly employ-
ing vesicles as carriers for drug transport, there is the utilization of
click chemistry techniques to combine vesicles with drugs for the
treatment of OP [44]. Alternatively, a sequential application with

Fig. 2 A review of previous articles using MSCs and EVs to treat OP based on LCS scores. Employing MSCs and EVs for addressing OP
commenced early on, with MSCs being utilized for OP treatment prior to EVs. Numerous investigations have delved into the molecular
underpinnings of these therapeutic approaches, and a multitude of preclinical trials have been conducted for validation purposes. Presently, a
growing body of research is adopting engineering techniques to enhance the efficacy of these treatments. Generated by BioRender.
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other treatment modalities is explored to amplify therapeutic
outcomes. The ensuing discussion will primarily focus on the
direct transplantation for preclinical research, exploration of
molecular mechanisms, and the application of engineering
strategies in the treatment of OP with EVs. The discussion will
no longer redundantly delve into the individual consideration of
various engineered therapeutic approaches (Fig. 3).

APPLICATION OF DIFFERENT MSCS-DERIVED EVS IN THE
TREATMENT OF OP
Treatment of OP by BMMSCs-derived EVs
Molecular mechanism of BMMSC-EVs for the treatment of OP.
Numerous studies have demonstrated that the direct transplanta-
tion of EVs derived from MSCs can effectively alleviate various
symptoms of OP, with most investigations delving into the
molecular mechanisms of utilizing EVs for OP treatment. Zuo’s
research discovered that the transplantation of exosomes derived
from BMMSCs mitigates bone loss in radiation-induced rat models,
exhibiting a reduction in oxidative stress, accelerated DNA damage
repair, and restoring the balance between adipogenic and
osteogenic differentiation via the promotion of β-catenin expres-
sion in BMMSCs [67]. P Zhao co-cultured BMMSC-Exos with the
osteoblastic cell line of human osteoblast-like cells (hFOB 1.19),
finding that BMMSC-Exos promote the proliferation of hFOB 1.19
cells. Further research confirmed that BMMSC-Exos improve OP by
stimulating osteoblast proliferation through the MAPK pathway

[68]. Li’s investigation revealed that EVs derived from BMMSCs can
augment osteogenesis in ovariectomized (OVX) OP rats by
transferring miR-186 via the Hippo signaling pathway [69]. Current
research on EVs predominantly focuses on exosome subtypes, with
limited attention given to other EVs. For example, studies on
apoptotic bodies for treating OP suggest that phagocytosis of
apoptotic cells may induce molecular memory in macrophages,
thus speculating that apoptotic bodies could facilitate intercellular
communication via cytokine transfer [70]. Dawei Liu and colleagues
found that systemic infusion of apoptotic bodies derived from
murine BMMSCs salvaged MSC damage, directly stimulated bone
formation, indirectly suppressed osteoclast activity, and amelio-
rated the reduced bone mass phenotype in OVX mice [71]. Yuan
Zhu delved further into the role of apoptotic bodies in BMMSCs
during osteogenesis, discovering that apoptotic bodies mitigate
bone loss induced by primary and secondary OP while stimulating
bone regeneration in defect areas. Apoptotic bodies promote
osteogenesis in target cells by releasing miR1324, which sup-
presses the expression of target gene sorting nexin 14 and
consequently activates the SMAD1/5 pathway [72]. Sylvia Weilner
and colleagues revealed that senescent endothelial cells secrete
microvesicles containing miR-31, which inhibit the osteogenic
differentiation of MSCs [73] (Table 1).

Engineering modifications of BMMSCs-derived EVs. By modifying
the contents of EVs, the therapeutic efficacy of EVs for OP can be
augmented. EVs contain an abundance of cargo, including

Fig. 3 Engineering strategies in the use of EVs for the treatment of OP. a Cargo loading, by modulating the expression of cargos within EVs
through plasmids or electroporation to act as a therapeutic OP. b Surface modification, by adding aptamers or specific peptides to the surface
of EVs it is possible to specifically target EVs to target cells and improve the efficiency of EVs therapy. c Combined biomaterials, by applying a
protective layer to the surface of EVs or loading EVs on a biological scaffold it is possible to reduce the loss of delivered EVs, control the rate of
EVs release in the release rate in vivo and improve the stability of EVs. d Combination therapy, by combining EVs with therapeutic drugs
through click chemistry to amplify the therapeutic effect. Generated by BioRender.
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hundreds to thousands of distinct proteins, unique lipids, specific
DNA, and numerous small non-coding RNAs, serving as unpar-
alleled information conveyors between cells [74]. Among the
diverse cargoes carried by exosomes, small RNAs, particularly
miRNAs, play a pivotal role in cellular communication [75]. Xu and
colleagues documented that an increase in miR-31a-5p levels
within exosomes derived from rat BMMSCs facilitates osteoclas-
togenesis, which consequently contributes to age-associated bone
deterioration. Conversely, incorporating antagomiR-31a-5p into
the bone marrow milieu attenuates osteoclast function, thereby
presenting a promising therapeutic avenue for addressing OP [76].
Murong You transfected BMMSCs with miR-21-5p mimics or
inhibitors to overexpress or knock down miR-21-5p, demonstrat-
ing that BMMSCs-derived exosomes with upregulated miR-21-5p
further enhanced the proliferative effects on hFOB1.19 cells, while
those with downregulated miR-21-5p attenuated these cellular
phenotypes. The findings suggest that BMMSCs-derived exosomal
miR-21-5p ameliorates OP by modulating KLF3 [77]. Min Qiu
injected BMMSC-Exos transfected with miR-150-3p into OVX rat
models, discovering that elevated miR-150-3p levels enhance
osteoblast apoptosis, providing novel insights for the treatment of
OP patients [78]. Long non-coding RNAs (lncRNAs) have emerged
as promising novel modulators in the osteogenic process of MSCs.
Yang’s research discovered that lncRNA MALAT1 promotes the
expression of SATB2 by interacting with miR-34c, while enhanced
SATB2 has been demonstrated to foster osteogenic differentiation
in BMMSCs of patients with osteonecrosis [79]. In addition to
nucleic acids, other cargo has also been employed to enhance
vesicular efficacy. Existing research has reported that Glycoprotein
Non-Metastatic Melanoma Protein B (GPNMB) is a multifunctional
transmembrane glycoprotein that plays a crucial role in rescuing
the decline of BMMSCs osteogenic differentiation induced by
dexamethasone (Dex) [80]. Ba Huang transfected lentiviral vectors
overexpressing GPNMB into BMMSCs, extracted GPNMB-EVs from
the conditioned medium of GPNMB-modified BMMSCs, and found
that GPNMB-EVs can stimulate BMMSC osteogenesis by activating
the Wnt/β-catenin signaling pathway, indicating the vast potential
of GPNMB-EVs as a cell-free therapy for treating OP [81].
Aptamers are frequently employed as tools for surface

modification of EVs. As single-stranded DNA/RNA oligonucleo-
tides, aptamers possess the ability to bind target molecules with
high affinity and specificity through their three-dimensional
structures [82]. Consequently, researchers have constructed
aptamer-functionalized bone BMMSCs-derived exosomes
(BMMSC-exo-apt) by integrating BMMSC-specific aptamers with
BMMSCs-derived exosomes. Luo implemented modifications to
the 5’-UTR region of the aptamer by incorporating an aldehyde
moiety, which subsequently underwent a reaction with amino
groups present on the exosome membrane proteins. This process
led to the formation of robust Schiff base linkages, thereby
considerably enhancing the in vitro uptake of BMMSC-Exos by
BMMSCs. When the resultant BMMSC-Exo-Apt conjugate was
intravenously administered to OVX mice, an experimental model
of OP induction, there was a notable increase in bone mass and
expedited bone regeneration observed in femoral fracture
paradigms [83].
In integrating EVs with materials, the prevalent approach

involves the combined use of EVs and various natured biocompa-
tible scaffold materials for disease therapeutics. Xie’s research
discovered that EVs derived from BMMSCs promote bone
formation when combined with a demineralized bone matrix
scaffold [84]. The utilization of bioactive glass nanoparticles (BGNs)
in the regeneration of bone tissue has attracted considerable
interest owing to their distinctive osteogenic capabilities. In vivo
research has demonstrated that the combination of BGNs and
BMMSCs-EVs effectively counteracts bone deterioration in osteo-
porotic mice, restores biomechanical characteristics of the murine
femur, enhances peripheral blood biochemical markers associatedTa
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with bone metabolism, and displays negligible acute systemic
toxicity [85]. Anqi Liu developed a lyophilized delivery system of
BMMSC-OI-exo (osteogenically induced BMMSC-Exos) on multi-
level mesoporous bioactive glass (MBG) scaffolds, achieving
bioactivity maintenance and sustained release by entrapping
exosomes within the scaffold’s micropores. This approach
effectively enhanced the scaffold’s osteogenic capacity while
expediting the initiation of bone regeneration [86]. Irfan Qayoom
employed a nanocement (NC) base composed of calcium sulfate/
nano-hydroxyapatite as a carrier for recombinant human bone
morphogenetic protein-2, zoledronic acid (ZA), and BMMSC-Exos.
The results indicated that NC serves as an effective carrier for
bioactive molecules, reducing the risk of hip fractures in
osteoporotic animals [87] (Table 2).

Treatment of OP by ADSCs-derived EVs
Molecular mechanism of ADSC-EVs for the treatment of OP. In the
investigation of autologous BMMSCs transplantation for treating
OP, some researchers posit that the osteogenic differentiation
capacity of BMMSCs in OP patients is somewhat diminished [88].
Consequently, alternative research and therapeutic interventions
utilizing ADSCs, which possess comparable osteogenic differentia-
tion potential, have been initiated [89]. Exosomes originating from
adipose-derived stem cells (ADSC-Exos) demonstrate therapeutic
properties analogous to their progenitor cells due to the presence
of similar bioactive compounds. These ADSC-Exos are capable of
modulating immune reactions, inflammation, and fostering
angiogenesis, all of which contribute to sustaining bone
equilibrium [90]. Moreover, they hinder the adipogenic differ-
entiation of ADSCs by specifically activating the Hedgehog
signaling pathway [91]. Extracellular vesicles derived from ADSCs
(ADSC-EVs) are not only rich in growth factors and cytokines
involved in bone metabolism and MSCs migration but also
effectively inhibit macrophage-driven osteoclast differentiation.
Lee’s experimental research reveals that intravenous administra-
tion of ADSC-EVs counteracts bone loss in osteoporotic mice, as
receptor activator of nuclear factor-κB ligand (RANKL) natural
inhibitor and bone-preserving protein are highly concentrated
within ADSC-EVs. Additionally, miR-21-5p and let-7b-5p present in
ADSC-EVs can impede osteoclast differentiation and decrease
gene expression related to bone resorption, thereby facilitating
the migration of BMMSCs. As a result, ADSC-EVs represent a
potential acellular therapeutic approach for OP treatment [92].
Ren’s study discovered that ADSC-derived exosomes significantly
attenuated H/SD-induced MLO-Y2 cell apoptosis and osteoclasto-
genesis by upregulating the Bcl-4/Bax ratio, suggesting therapeu-
tic potential in age-related bone diseases [93]. ADSC-derived
exosomes also exhibit considerable potential for inflammation
suppression. Lei Zhang investigated the anti-osteoporotic effects
and molecular mechanisms of ADSC-derived exosomes in diabetic
OP, finding that they alleviate the condition by inhibiting NLRP3
inflammasome activation in osteoclasts [94]. In recent years, due
to excessive use of Dex, the incidence of glucocorticoid-induced
osteoporosis (GIOP) has increased, with studies now utilizing
ADSC-derived exosomes for treatment. GIOP is primarily caused
by oxidative stress and mitochondrial damage. In the study
conducted by Xue-wei Yao, it was discovered that exosomes
derived from ADSC effectively counteract the oxidative damage
induced by Dex in MC3T3-E1 cells. This is achieved through the
facilitation of Nrf2 nuclear translocation and the subsequent
activation of the downstream enzyme HO-1. Furthermore, these
exosomes serve to diminish the accumulation of Dex-induced
reactive oxygen species (ROS) and prevent the deterioration of
mitochondrial membrane potential [95] (Table 1).

Engineering modifications of ADSCs-derived EVs. Modifying or
engineering the contents of EVs can alter or enhance their
therapeutic capabilities [96]. Zhang et al. procured exosomes rich

in miR-146a from ADSCs overexpressing miR-146a to explore their
defensive properties against osteoclast-mediated inflammation.
The research outcomes indicate that ADSC-derived exosomal miR-
146a efficiently attenuates the production of pro-inflammatory
cytokines released by osteoclasts in response to elevated glucose
concentrations, provokes the deactivation of inflammasomes,
impedes bone resorption, and ultimately ameliorates bone loss in
diabetic OP rat models [97].
Empirical evidence demonstrates that ADSC-EVs can enhance

the biocompatibility of titanium (Ti) medical implants [98]. Chen
ingeniously assembled biotinylated MSC-EVs onto biotin-doped
polypyrrole titanium (Bio-Ppy-Ti) surfaces, exhibiting superior
cellular compatibility and osteoinductive properties in vitro
compared to pure titanium, thereby presenting promising clinical
applications [99]. Li et al reported the development and
assessment of a novel acellular tissue-engineered bone construct,
achieved by combining ADSC-Exos with poly (lactic-co-glycolic
acid) (PLGA) scaffolds, significantly augmenting bone regeneration
and offering a groundbreaking therapeutic paradigm for bone
tissue engineering [100] (Table 2).

Treatment of OP by EVs derived from other MSCs
UCMSC-EVs. Yang et al conducted a study utilizing the applica-
tion of EVs derived from UCMSC-EVs in disuse OP (DOP) rat
models, which were induced by hind limb unloading (HLU). The
results revealed that these EVs enhance osteogenesis, reduce
bone marrow adiposity, and diminish bone resorption, ultimately
contributing to the preservation of bone mass and the reinforce-
ment of bone strength in osteoporotic rodents [101]. Ren’s
investigation uncovered that human UCMSC-derived exosomes
enhance osteogenesis in postmenopausal OP through the AKT
signaling pathway [102] (Table 1). Hu’s research elucidated the
therapeutic efficacy of UCMSC-EVs on ovariectomy-induced
postmenopausal OP and tail suspension-induced DOP in murine
models. Proteomic assessments indicate that EVs can facilitate the
osteogenic transition of BMMSCs from adipogenic differentiation
by exogenously delivering the potent osteoinductive protein
CLEC11A (C-type lectin domain family 11, member A) [103].
Studies have demonstrated that pre-osteogenic induction can
enhance therapeutic outcomes in exosome transplantation. Ge
Yahao co-cultured varying concentrations of osteogenic cells with
UCMSC-Exos and compared the treatment results in OVX mice,
finding that exosomes induced by osteogenic differentiation
exhibited a stronger pro-osteogenic effect, albeit with diminished
capacity to promote osteoblast proliferation. The underlying
mechanisms warrant further investigation [104] (Table 2).

hiPSC – EVs. Qi and colleagues investigated the exosomes
secreted by MSCs derived from human-induced pluripotent stem
cells (hiPSCs, hiPSC-MSC-Exos) in OVX rats. They discovered that
hiPSC-MSC-Exos stimulated angiogenesis and bone regeneration
both in vivo and in vitro, exhibiting a dose-response relationship
between their efficacy and exosome concentration [105]. Zhang
and associates reached similar conclusions using a rat femoral
non-union model [106]. Recently, scientists developed a vesicular
delivery system by combining the Ser-Asp-Ser-Ser-Asp (SDSSD)
peptide with human-induced pluripotent stem cell-derived EVs,
constructing bone-targeting EVs and transferring small RNA-
siShn3 into them. These EVs were found to enhance the
expression of slit guidance ligand 3, ultimately promoting
osteogenesis, inhibiting osteoclasts, and treating OP [107].
Yongzhi Cui devised an exosome delivery system based on the
secretions of MSCs originating from iPSCs-engineered exosomes
BT-Exo-si Shn3. The modification of bone-targeting peptides
endowed BT-Exo-siShn3 with the ability to specifically deliver
siRNA to osteoblasts. The silencing of the Shn3 gene in osteoblasts
enhanced osteogenic differentiation and promoted angiogenesis,
achieving a multifaceted anti-osteoporotic effect [108] (Table 2).
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USC-EVs. Genetic and epigenetic variations may impede the
application of iPSCs [109], necessitating the identification of an
accessible, secure, and convenient alternative stem cell source for
harvesting EVs conducive to bone remodeling and regeneration.
Compared to other exosomes, urinary stem cell-derived EVs (USC-
EVs) can be effortlessly and limitlessly procured from human urine.
Chun-Yuan Chen intravenously administered USC-EVs, obtained
from healthy 28-year-old females, to OVX mice and discovered an
eight-week recovery in all altered parameters induced by OVX,
while three-point bending tests revealed that USC-EVs restored
the reduced bone strength triggered by OVX [110] (Table 2).

CONCLUSIONS AND PROSPECTS
Cell therapies, exemplified by MSCs, and cell-free therapies,
represented by EVs, have emerged as paramount subjects in the
field of regenerative medicine. Some nations have already
incorporated stem cell-related therapeutic products into their
medical insurance coverage. As a pivotal component in the
therapeutic effects exerted by MSCs, EVs overcome various
limitations associated with cell therapies and traditional therapies.
They not only participate in intercellular crosstalk, regulating the
homeostasis of diverse microenvironments, but also demonstrate
immunomodulatory and angiogenic functions. Remarkable ther-
apeutic outcomes have been observed in clinical treatments of
degenerative bone diseases such as osteoarthritis and degen-
erative disc disease within the orthopedic domain. According to
data from www.clinicaltrials.gov as of December 2023, 92 global
clinical studies have focused on EVs, with 4 reaching clinical
phases 3 and 4. While clinical experiments utilizing EVs for OP are
yet to be conducted, numerous studies have substantiated the
outstanding therapeutic efficacy of MSC-EVs through animal and
cell experiments. Among the various precursor cells in the bone
microenvironment, BMMSCs have garnered the most research
attention in OP treatment. Current investigations not only delve
into the mechanistic role of exosomes from BMMSCs in treating
OP but also explore the intricate mechanisms of apoptotic bodies
and microvesicles derived from these cells in OP. Compared to
BMMSCs, ADSCs offer a more facile extraction process. Addition-
ally, they exhibit sustained osteogenic differentiation capabilities
[111], rendering them a popular subject of investigation for
treating OP. Additionally, EVs derived from other types of MSCs
are progressively investigated for OP treatment, including UCMSCs
with immunological advantages, ethically uncontentious hiPSCs,
and cost-effective USCs. This article not only categorically
discusses the molecular mechanisms of EVs from various sources
for OP treatment but also highlights the application of engineer-
ing strategies in enhancing the therapeutic effects of these EVs.
This dual focus deepens our understanding of the pathogenesis of
OP and provides empirical and theoretical support for advancing
clinical trials using MSC-EVs for OP.
Challenges persist in utilizing cell-derived vesicles for OP

treatment. Firstly, the definition and quality control of EVs remain
imperfect. While extraction and characterization techniques
advance, issues persist regarding the definition of EVs and the
impact of different extraction methods. Classifying EVs by size or
biological origin has sparked significant debate, offering insights
into their standardized application despite not being the focus of
this study. EVs from different stem cell sources exhibit substantial
variations, and even those from the same source may undergo
physicochemical changes at different stages or following diverse
treatments. Discrepancies in storage methods may also influence
subsequent experiments. Thus, establishing stringent standards
for the extraction, storage, and application dosage of EVs is crucial
for regulating related research. Secondly, the ongoing monitoring
of combination therapy techniques’ development and application
is essential. While some studies have combined EV-based
treatment with traditional approaches or employed various

engineered strategies for OP therapy, comprehensive evaluations
of the safety, efficacy duration of vesicle products, and the impact
of different engineering strategies and long-term use are pending
further scrutiny. Besides the discussed influence of cargo loading
on vesicle physiological performance, concerns arise about
potential interference with the original contents of EVs after
genetic engineering or drug loading. Furthermore, assessing the
compatibility between engineered materials and EVs is essential.
Differentiating engineered treatments for various EVs aims to
maximize therapeutic effects, constituting the primary objective of
combined therapy. Lastly, a thorough comparative assessment of
vesicle product sources, dosages, delivery methods, and applica-
tion models is needed. Various animal models are currently
employed to study OP, with different laboratories utilizing distinct
vesicle sources, dosages, and administration methods. Numerous
reference indicators exist for assessing treatment efficacy.
Through meticulous comparison and selection, developing the
most suitable EVs treatment plan tailored to different types of OP
is a crucial prerequisite for future clinical translation.
With advancements in extraction and identification technolo-

gies, the physiological roles and functional mechanisms of
apoptotic bodies and microvesicles are gradually being uncov-
ered, presenting potential research avenues for understanding the
pathogenesis, diagnosis, and treatment of OP. The pathogenic
mechanisms of OP are intricate, varying among different types,
and as research on various types of EVs deepens, the mechanisms
of various vesicles in the signaling pathways leading to OP will
become clearer. This is crucial for the precise development of
therapeutic targets. Currently, the focus of using MSC-EVs for OP
treatment is largely concentrated on small animal models such as
mice and rabbits, often employing the OVX modeling approach.
While these models offer vital insights for preclinical research,
notable disparities exist between the pathophysiology and
immunological disorders of experimental animals and human
diseases. Many therapeutic effects observed in animal studies do
not translate into significant results during clinical trials. Moreover,
with the advancements in biomimetic materials and synthetic
technologies, exosome-like nanovesicles have become a current
research focal point. Optimizing vesicle performance through a
synthesis of diverse engineered strategies to develop safe, reliable,
and cost-effective vesicle-based products for alleviating and
treating OP represents a primary research objective for the future.
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