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Bivalent activity of super-enhancer RNA LINC02454 controls 3D
chromatin structure and regulates glioma sensitivity to
temozolomide
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Glioma cell sensitivity to temozolomide (TMZ) is critical for effective treatment and correlates with patient survival, although
mechanisms underlying this activity are unclear. Here, we reveal a new mechanism used by glioma cells to modulate TMZ
sensitivity via regulation of SORBS2 and DDR1 genes by super-enhancer RNA LINC02454. We report that LINC02454 activity increases
glioma cell TMZ sensitivity by maintaining long-range chromatin interactions between SORBS2 and the LINC02454 enhancer. By
contrast, LINC02454 activity also decreased glioma cell TMZ sensitivity by promoting DDR1 expression. Our study suggests a
bivalent function for super-enhancer RNA LINC02454 in regulating glioma cell sensitivity to TMZ.
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INTRODUCTION
Glioma is the most common malignant brain tumor [1].
Glioblastoma (GBM), which accounts for 56.6% of all gliomas,
has the highest rate of recurrence and a 5.6% 5-year survival rate
[2]. Temozolomide (TMZ) is a chemotherapy drug widely used
clinically as GBM treatment. However, development of TMZ
resistance is a major problem that severely reduces drug efficacy.
Regulation of GBM TMZ sensitivity is reportedly associated with
genome repair systems in tumor cells, including O6-methylgua-
nine-DNA methyltransferase (MGMT)-mediated demethylation,
the base excision repair (BER) system, mismatch repair (MMR)
and other activities [3, 4]. Previous studies also indicate that
activities of glioma stem cells and cell autophagy alter TMZ
sensitivity [5, 6]. Nonetheless, these discoveries have not yet been
translated into novel, clinically-relevant approaches to GBM TMZ
resistance.
Following development of chromosome conformation capture

techniques, several groups reported that gene regulation activities
based on 3D chromatin structure play a role in glioma cell
sensitivity to TMZ [7–9]. In this process, gene regulatory elements,
such as enhancers or silencers, exert long-range control of target
genes via chromatin loops. Enhancer RNAs (eRNAs) are a subset of
non-coding RNAs transcribed from an enhancer locus, and some
are defined as long non-coding RNAs (lncRNAs) based on their
length. eRNAs reportedly regulate enhancer function and thus
play important roles in control of gene expression [10–12]. Other
studies indicate that eRNAs function by increasing chromatin

accessibility and binding to transcription factors [13–15]. However,
few studies have assessed whether eRNAs function in a 3D gene
regulatory network in a way that would alter glioma cell sensitivity
to TMZ.
Super-enhancers (SEs) are large clusters of transcriptional

enhancers that drive gene expression and often play key roles
in cancer progression [16]. In this study, we identified a SE-derived
long non-coding RNA, LINC02454, that regulates glioma TMZ
sensitivity through maintenance of 3D chromatin structure. Our
findings suggest that SE activity at the LINC02454 locus increases
glioma cell sensitivity to TMZ by regulating expression of SORBS2
(Sorbin and SH3 domain containing 2) via long-range chromatin
interactions, and that LINC02454 maintains this chromatin loop. By
contrast, we also show that LINC02454 can reduce glioma cell TMZ
sensitivity by promoting expression of DDR1 (Discoidin domain
receptor 1). Although other lncRNAs have been reported to
function in glioma TMZ sensitivity [17, 18], our study reveals a new
mechanism by which LINC02454 and a corresponding SE co-
regulate glioma sensitivity to TMZ by altering 3D chromatin
structure and through bivalent LINC02454 activities.

MATERIALS AND METHODS
Cell culture
U251 and U87 human glioblastoma cell lines were obtained from the
National Infrastructure of Cell Line Resource (China). U251 and U87 cells
were cultured in Dulbecco’s Modified Eagle’s medium (DMEM, Gibco)
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containing 10% fetal bovine serum (FBS, Bioind) and 1% penicillin/
streptomycin (Gibco) at 37 °C, in 90% humidity and 5% CO2.

Chromatin Immunoprecipitation and sequencing
ChIP-seq was carried out as reported with minor modifications [19]. 107 cells
were crosslinked 10min with 1% formaldehyde (Thermo Fisher Scientific) at
room temperature and the reaction was terminated by a 5min incubation
with a solution containing glycine (0.125M) (Solarbio). After centrifugation at
4 °C, cells were washed twice with ice-cold PBS. Nuclear DNA precipitates
were harvested in Farnham lysis buffer [50mM (pH 7.5) tris-HCl, 150mM NaCl,
5mM EDTA, 0.5% NP-40, 1% Triton X-100, 1mM phenylmethylsulfonyl
fluoride and 1× protease inhibitor cocktail]. Nuclear DNA was then sonicated
as a nuclear lysate (50mM Tris-HCL,10mM EDTA,1% SDS,1× protease inhibitor
cocktail) to shear chromatin and obtain 200–500-bp DNA fragments.
Sonicated lysates were immunoprecipitated at 4 °C with H3K27ac antibody
(Abcam) and protein A/G agarose beads (Thermo Fisher Scientific) to enrich
H3K27ac-bound DNA fragments. Purified ChIP DNA was used to prepare
Illumina sequencing libraries and sequenced using an Illumina HiSeq
4000 system. Data analysis was performed using the GRCh37/hg19 reference
genome. Super-enhancers were determined according to the Rank Ordering
of Super Enhancers (ROSE) algorithm by using H3K27ac peaks [20]. In short,
we used bowtie2 [21] to align ChIP-seq data to the human hg19 reference
genome with default parameters. Then we used macs2 [22] to call peak with
parameters “-f BAMPE -g hs”. We used ROSE [20] to identify SE with
parameters “-g HG19 -s 20000 -t 2000”.

RNA-seq and data analysis
Total RNA was extracted from glioma cells. The Illumina HiSeq 4000
platform was used to sequence barcoded RNA-seq libraries. HISAT2 [23]
was used to map clean reads to the human reference genome (GRCh37/
hg19). HTSeq [24] was used to calculate transcript abundance. DESeq2 [25]
was used for read count normalization and to regularize log transforma-
tions. DAVID [26] (Database for Annotation, Visualization and Integrated
Discovery) was used for Gene Ontology (GO) analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis.

Quantitative real-time PCR
Total RNA was extracted from glioma cells using TRIzol reagent (Life
Technologies). cDNAs were obtained using the PrimerScript™ RT reagent
Kit with gDNA Eraser (TaKaRa) for reverse transcription, according to the
manufacturer’s instructions. The qPCR reaction was performed using
HieffTM qPCR SYBR Green Master Mix (YEASEN) in the BioRad CFX Connect
Real-Time system. Target gene expression levels were normalized to
GAPDH and relative expression was quantified using the 2−ΔΔCt method
[27]. Primer sequences used in this study are shown in Table S1.

Luciferase reporter assays
We PCR-amplified regions of the LINC02454 SE showing the most
significant H3K27ac enrichment (hg19_chr12:65,995,412–65,998,341) and
cloned them into the pGL3 promoter vector (Promega). We then
transfected 293 T cells with that plasmid plus the pRL-TK Renilla luciferase
control vector (Promega) using Lipofectamine 3000 (Invitrogen). Cells were
then harvested for a luciferase assay. Luciferase activity was measured on
the SpectraMax i3x Multifunctional enzyme label instrument (Molecular
Devices) using the dual luciferase Reporter Assay System (Promega).

CRISPR/Cas9-mediated deletions
To delete the LINC02454 SE, U251 glioma cells were transfected with
plasmids containing Cas9 and guide RNAs targeting the SE region. Cell
clones were genotyped, and two clones (KO#1 and KO#2) with
homozygous deletion of the LINC02454 SE were used for analyses. sgRNA
sequences were designed using web-based tools at https://zlab.bio/guide-
design-resources and are listed in Table S2.

Lactate Dehydrogenase (LDH) assay
LDH in culture medium was evaluated using a LDH cytotoxicity kit
(Promega). Briefly after cells were treated with TMZ or transfected with
LNAs, siRNAs or overexpression plasmids, culture media were collected
and LDH activity was assayed based on the manufacturer’s instructions. OD
values at 490 nm were measured using a microplate reader. Relative TMZ
cytotoxicity of each group was calculated as a percentage of the total
amount of LDH released relative to a positive control included in the kit.

Caspase 3/7 activity measurements
A Caspase-Glo 3/7 kit (Promega) was used to evaluate caspase 3/7 activities in
U251 glioma cells based on the manufacturer’s instructions. Briefly, glioma
cells in each group were harvested and incubated with 100 μL Caspase-Glo 3/
7 reagent for 1 h in the dark. Luminescence was then measured at 485/
530 nm using a microplate reader. Relative caspase 3/7 activity was calculated
to evaluate fold-changes in samples treated with TMZ or transfected with
LNAs, siRNAs, or overexpression plasmids relative to controls.

Chromosome conformation capture (Capture-C) assay
Capture-C was performed as reported with minor modifications [28]. In
brief, U251 glioma cells (1 × 107) were harvested and used to generate a
standard 3 C library with DpnII (New England BioLabs). Then 3 C library
DNA was sheared to 200–300-bp fragments by sonication. Pre-capture
DNA libraries were prepared using the NEBNext DNA Library Kit (New
England BioLabs) according to the manufacturer’s instructions. Biotinylated
“bait” probes and streptavidin beads (Invitrogen) were used to enrich the
“bait” and linked chromatin loci. Barcoded Capture-C libraries were
sequenced as 150-bp paired-end reads using the Illumina HiSeq 4000
platform. Capture-C data were analyzed based on the pipeline proposed
by Davies et al [28]. Two biotinylated DNA oligonucleotides were designed
to match both ends of the H3K27ac enrichment region at the LINC02454
locus in U251 and U87 glioma cells with the following sequence (5′-3′):
5′-Biotin-
GATCCCGAGAGCTTCCCGTGTGGGGGCGGAGGGTGGGGCAGAGCAG-

GATGTGTGCTTGGGTTTCACTTGGAAAAAACATACATCATATTGCAATATAATT-
TACTTTGAGATTTCAATTTGG-3′
5′-Biotin-
ACAATTGGCTGGAATCACAAGTGGCTTCTTTGCTCACTCTAGCGGTACTT-

CAGCTTTCATAAACAGCCGGTTCCTGGAGCTGTAAGGTTCCAGCACATCGGG-
GATTTCCCTTTGTTAGATC-3′

Gene knock-down by LNAs (Locked Nucleic Acids)
Briefly, to knock-down LINC02454, cells were collected and placed in 6-well
plates. Cells were then transfected with LNAs (QIAGEN) using Lipofecta-
mine 3000 (Invitrogen) based on the manufacturer’s instructions. Seventy-
two hrs later, cells were collected for RNA extraction, and KD efficiency was
determined by qRT-PCR. LNA sequences are listed in Table S3.

Gene overexpression
Candidate cDNAs were cloned into the pCDH-CMV-MCS-EF1-Puro expres-
sion vector (System Biosciences), and plasmids were used to transfect
U251 cells with Lipofectamine 3000 (Invitrogen). Stably transfected cells
were selected in media containing puromycin (2.5 μg/ml), and over-
expression efficiency was determined by qRT-PCR.

Gene knock-down by siRNA
Glioma cells were transfected with target and control siRNAs using
Lipofectamine 3000 (Invitrogen) according to the manufacturer’s instruc-
tions. KD efficiency was determined by qRT-PCR 48–72 h after transfection.
siRNAs were designed and synthesized by RiboBio Biotechnology Co., LTD.,
and the sequences are shown in Table S3.

Chromatin isolation by RNA purification (ChIRP)-qPCR
ChIRP was performed as reported [29]. Antisense DNA probes comple-
mentary to LINC02454 were biotin-labeled and ordered from Sangon
Biotech. 107 cells were cross-linked and fixed with 3% formaldehyde
(Thermo Fisher Scientific), and the reaction was terminated by incubation
with a solution containing glycine (0.125M) (Solarbio). Cells were washed
twice with PBS and lysed in lysis buffer. Cell lysates were then sonicated
and incubated with biotinylated antisense DNA probes at 37 °C for 4 h.
RNA and DNA from ChIRP samples were quantitated by qRT-PCR. qRT-PCR
primer sequences are listed in Table S4, and the antisense DNA probe
sequence is listed in Table S5.

CRISPRa-mediated gene overexpression
A stable CRISPRa cell line was generated using lentiMPH v2 plasmid
(Addgene). 293 T cells were transfected with pMDG.2, psPAX2 and
lentiMPH v2 plasmid (Addgene). Lentiviral particles were then collected
and used to transduce U251 cells, which were selected in 200 μg/ml
hygromycin (Solarbio). sgRNAs were designed using an online tool
(https://portals.broadinstitute.org/gppx/crispick/public) and ordered from
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Sangon Biotech, and their sequences are shown in Table S6. sgRNAs were
cloned into lentiSAM v2 plasmid (Addgene) using BsmBI (New England
Biolabs). Lentiviral particles of pMDG.2, psPAX2 and lentiSAM v2 plasmid
were generated and used to transduce U251 cells, which were selected in
6 μg/ml blasticidin (Solarbio) for about 7 days.

Gene knock-down by shRNA
shRNAs were cloned into pSUPER-puro vector and used to transfect glioma
cells with Lipofectamine 3000 (Invitrogen), according to the manufacturer’s
instructions. Cells stably expressing shRNA were selected in puromycin
(2.5 μg/ml) and KD efficiency was determined by qRT-PCR. qPCR primer
sequences are shown in Supplementary Table S1. shRNAs were designed
using an online tool (www.invivogen.com/sirnawizard/design.php) and
synthesized by Sangon Biotech. shRNAs sequences are shown in Table S3.

Survival data analysis
Glioma patients’ survival data were obtained from TCGA, and patient
samples were divided into two groups based on gene expression levels.
Samples with expression higher or lower than the median were marked as
“high expression” or “low expression”, respectively. A p < 0.001 indicates a
significant survival difference between the two groups.

Statistical analysis
Data represent means ± S.E.M. Statistical analysis was performed using
Student’s t-test. * p < 0.05, ** p < 0.01, *** p < 0.001.

Published data used in this study
The following published datasets were used in this study. SRR444436 for
U87 H3K27ac ChIP-seq [30]; SRR13238369 and SRR13238368 for NHA
H3K27ac ChIP-seq [31]; SRR3627718 for U87 ATAC-seq [32]; SRR5583266
for U87 BRD4 ChIP-seq [33]; SRR444453 for U87 MED1 ChIP-seq [30]; and
PRJNA479416 for RNA-seq of U251 cells treated for 0, 4, 9,12, and 16 days
with TMZ [34].

RESULTS
Identification of glioma-specific SE lncRNAs associated with
glioma TMZ sensitivity
To identify enhancer lncRNAs that may regulate glioma cell TMZ
sensitivity, we focused on lncRNAs derived from glioma-specific
SEs. To identify such SEs, we used H3K27ac ChIP-seq data from
glioma lines U251 and U87 and a normal human astrocyte line
(NHA) (Fig. 1A, B). We identified 1094 and 1174 SEs in U251 and
U87 cells, respectively, and 355 of those were common to both
lines (Fig. 1C). Moreover, 34 SEs were identified in all three cell
lines (Fig. 1D). Among SEs found in glioma lines, 321 were specific
to U251 and U87 lines (Fig. 1D), while 207 SEs were specific to the
NHA line (Fig. 1D). We then used data from the Cancer Genome
Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases to
assess transcript levels of genes adjacent to glioma-specific SEs.
That analysis revealed significant changes in transcription of 52%
of glioma-specific SE-associated genes, and 42.51% of those were
significantly upregulated in glioma relative to normal brain tissue
(Fig. S1A). Analysis of glioma-specific, SE-associated genes using
the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated
enrichment in focal adhesion and MAPK pathway factors (Fig.
S1B), many previously linked to cancer cell proliferation, migration,
apoptosis and chemoresistance [35–37].
We then performed RNA-seq in TMZ-treated (1 mM, 72 h) U251

and U87 cells to monitor lncRNAs potentially associated with
glioma TMZ sensitivity. That analysis identified 712 and 1220
genes (fold-change ≥ 2, p < 0.05) significantly up-regulated (Fig.
1E, F) and 1274 and 700 genes significantly down-regulated (fold-
change ≤−2, p < 0.05) in U251 and U87 cells, respectively (Fig. 1E,
F). Eighty genes were up-regulated in both U251 and U87 lines,
while 74 were down-regulated (Fig. 1G, H). Among genes that
changed consistently in both cell lines, 14 were lncRNAs (Fig. 1I),
and 2 of those, LINC02454 and MSRB3-AS1, were located at glioma-
specific SEs (Fig. 2A). Based on data from TCGA and GTEx

databases, LINC02454 expression in GBM samples was significantly
higher than that in normal brain tissue (Fig. 2B), while MSRB3-AS1
expression was comparable in GBM samples and normal brain
samples (Fig. 2C), prompting our focus on LINC02454.
We next performed qRT-PCR analysis of U251 and U87 lines

treated 72 h with TMZ (1 mM) and untreated controls. Relative to
corresponding controls, TMZ-treated cells showed significantly
upregulated LINC02454 (Fig. 2D), consistent with RNA-seq data
(Fig. 2E, F). Moreover, analysis of patient survival indicated that
high LINC02454 expression in tumor samples was significantly
correlated with low survival probability (Fig. 2G). ChIP analysis also
showed significant enrichment of H3K27ac signals at the
LINC02454 locus in U251 and U87 glioma cells relative to NHA
astrocytes (Fig. 2H), suggesting that locus is a glioma-specific SE. In
addition, ChIP-seq showed enrichment of SE-enriched transcrip-
tional coactivators BRD4 and MED1 at the LINC02454 locus in U87
glioma cells (Fig. 2H). Finally, ATAC-seq analysis indicated an open
chromatin status of LINC02454-associated SE regions in glioma
cells (Fig. 2H).

LINC02454 knock-down increases glioma cell sensitivity to
TMZ
To assess whether LINC02454 activity regulates glioma cell
sensitivity to TMZ, we transfected U251 cells with locked nucleic
acids (LNAs) to knock-down (KD) LINC02454. qRT-PCR analysis of
control and KD cells confirmed LINC02454 downregulation to
approximately a third of levels seen in control cells (Fig. 3A). We
then evaluated lactate dehydrogenase (LDH) release and caspase
3/7 activity as indicators of cytotoxicity in both control and
LINC02454 KD U251 cells treated for various times with TMZ.
Relative to TMZ-treated controls, LINC02454 KD cells treated with
TMZ (1 mM) showed significantly increased LDH release (Fig. 3B,
C). Specifically, TMZ cytotoxicity in LINC02454 KD cells increased to
~1.6-fold that of controls at 24 h (Fig. 3B) and to ~1.9-fold of
controls at 48 h (Fig. 3C). Caspase 3/7 activities also markedly
increased in TMZ-treated LINC02454 KD relative to control glioma
cells at 48 and 72 h time points (Fig. 3D, E). By contrast, LINC02454
overexpression (OE) in U251 cells significantly decreased LDH
release by 48 h of TMZ treatment relative to TMZ-treated controls
(Fig. S2A, B). Overall, these findings suggest that LINC02454 plays a
role in TMZ sensitivity in glioma cells.
RNA-seq analysis of LINC02454 KD and OE glioma cells revealed

global changes in mRNA levels (Fig. 3F, G). Relative to controls,
LINC02454 KD cells showed significant down-regulation of 550
genes (fold-change ≤ - 2, p < 0.05) and up-regulation of 443 (fold-
change ≥ 2, p < 0.05) (Fig. 3F). Moreover, relative to controls,
LINC02454 OE cells showed significant down-regulation of 409
genes (fold-change ≤−2, p < 0.05) and up-regulation of 302 (fold-
change ≥ 2, p < 0.05) (Fig. 3G). KEGG analysis of LINC02454 KD
glioma cells indicated that genes differentially expressed in
LINC02454 KD relative to control cells were significantly enriched
in cancer progression-associated signaling pathways like MAPK
and Rap1 (Fig. 3H). MAPK signaling is reportedly associated with
regulation of glioma TMZ resistance [37]. Genes differentially
expressed in LINC02454 OE cells were significantly enriched in cell
adhesion and signaling factors associated with ECM receptor
interactions, which was found to be associated with TMZ
resistance (Fig. 3I) [38]. Overall, these results suggest that
LINC02454 functions in glioma cell sensitivity to TMZ.

Knock-out of the LINC02454 super-enhancer decreases glioma
cell sensitivity to TMZ
Previous studies have reported coordinated functions of enhan-
cers and corresponding enhancer lncRNAs in regulating physio-
logical cellular processes [39, 40]. ChIP-seq data indicated H3K27ac
enrichment at the LINC02454 locus in glioma cells, which was
identified as the LINC02454 super-enhancer (LINC02454 SE) (Fig.
4A). We then assessed enhancer activity using a luciferase reporter
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assay and found that the H3K27ac-enriched region has robust
enhancer activity (Fig. 4B).
To investigate LINC02454 SE function, we used the CRISPR/Cas9

system to knock out (KO) the H3K27ac enrichment region at that
locus in U251 cells (Fig. 4A), resulting in KO#1 and KO#2 lines (Fig.
S3A, B). We also evaluated LDH release and caspase 3/7 activity in
TMZ-treated WT controls, KO#1 and KO#2 U251 lines. Compared
with TMZ (1 mM)-treated WT controls, we observed a significant
decrease in LDH release in TMZ (1mM)-treated KO#1 and KO#2
cells (Fig. 4C, D). Specifically, TMZ cytotoxicity in KO#1 and KO#2
cells decreased to 40–50% of controls at 24 h TMZ treatment (Fig.
4C) and to 60–70% of controls at 48 h (Fig. 4D). Moreover, relative
to control TMZ-treated U251 cells, caspase 3/7 activities markedly
decreased in TMZ-treated KO#1 and KO#2 cells at 48 and 72 h
time points (Fig. 4E, F), suggesting an overall decrease in glioma
TMZ sensitivity in LINC02454 SE KO cells.
RNA-seq analysis of WT controls and KO#1 and KO#2

U251 cells indicated global changes in mRNA levels in KO

relative to control cells (Fig. 4G). Specifically, transcript levels of
332 genes significantly changed (fold-change ≥ 2 or ≤−2,
p < 0.05), including 188 down-regulated (fold-change ≤−2,
p < 0.05) and 144 up-regulated (fold-change ≥ 2, p < 0.05) in KO
relative to WT U251 cells (Fig. 4G). Gene Ontology (GO) analysis
showed down-regulated genes in cells were significantly
enriched in categories related to cell adhesion, positive
regulation of cell migration and regulation of phosphatidylino-
sitol 3-kinase signaling associated with cancer progression (Fig.
S3C). GO analysis of up-regulated genes in KO cells indicated
significant enrichment in cancer progression-associated pro-
cesses such as regulation of cell proliferation and cell death and
Ras signaling (Fig. S3D). Down-regulated genes were signifi-
cantly enriched in the PI3K-Akt signaling pathway, which is
reportedly associated with glioma TMZ resistance (Fig. S3E) [41].
These results suggest that LINC02454 SE KO induces transcrip-
tional changes in several genes associated with glioma cell
sensitivity to TMZ.
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LINC02454 SE activity increases glioma cell sensitivity to TMZ
by maintaining SORBS2 expression via 3D chromatin structure
We then performed Capture-C, using a previously reported
protocol [28], in U251 cells to define the 3D chromatin
structure-mediated gene regulation network of the LINC02454
SE, using the 972-bp H3K27ac enrichment region as Capture-C
bait (Fig. 5A). Chromatin interactions between the LINC02454 SE
and target genes are shown in Circos plots [42] (Fig. 5B), in which

lines represent interactions detected in two replicates (Fig. 5B).
This analysis identified 34 genes in chromatin interaction regions
potentially regulated by the LINC02454 SE (Fig. 5B).
Combined analysis of both Capture-C and RNA-seq data in both

SE KO cells and in LINC02454 KD or OE cells indicated SORBS2
downregulation in LINC02454 KD and LINC02454 SE KO cells and
upregulation in LINC02454 OE cells (Fig. 3F, G, Fig. 4G and Fig. 5C).
Capture-C data also indicated a long-range interaction of SORBS2,
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which is located on chromosome 4, with the LINC02454 SE (Fig.
5C). Consistent with RNA-seq results, qRT-PCR analysis confirmed
down-regulation of SORBS2 expression in LINC02454 SE KO cells
(Fig. 5D). We then transfected LINC02454 SE KO lines with SORBS2
OE vectors to establish stable lines and verified overexpression
efficiency qRT-PCR (Fig. 5E). SORBS2 OE in LINC02454 SE KO cells
significantly increased TMZ sensitivity in that line relative to

LINC02454 SE KO cells (Fig. 5E, F). We then assessed caspase 3/7
activities in TMZ-treated (1 mM, 48 h) control and LINC02454 SE KO
lines and in SE KO cells overexpressing SORBS2. Relative to the
LINC02454 SE KO line, caspase 3/7 activities markedly increased in
SORBS2-overexpressing SE KO cells (Fig. 5F). Enhancer lncRNAs
reportedly maintain interactions of corresponding enhancers with
target genes [39, 40]. Accordingly, our RNA-seq data indicated
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parallel changes in expression of SORBS2 and LINC02454 (Fig. 5C),
and qRT-PCR data showed significant SORBS2 downregulation in
LINC02454 KD cells (Fig. 5G).
We next performed ChIRP-qPCR in control and LINC02454 KD

U251 cells to assess binding of LINC02454 to the LINC02454 SE and
to the SORBS2 locus. LINC02454 RNA was effectively captured in
control cells, while LINC02454 RNA enrichment significantly
decreased in LINC02454 KD cells (Fig. 5H). LINC02454 RNA was
significantly enriched at the LINC02454 SE in control cells, while
those enrichment levels decreased in LINC02454 KD cells (Fig. 5I).
Moreover, LINC02454 RNA was significantly enriched at the
SORBS2 locus in control cells but significantly decreased in
LINC02454 KD cells (Fig. 5J). These results indicate that LINC02454
binds to the LINC02454 SE and the SORBS2 locus and suggest that
LINC02454 mediates interactions between the LINC02454 SE and
that locus. Previous studies have shown that enhancer lncRNAs
activate target genes by interacting with Mediator complexes to
create long-range chromatin loops [43, 44]. Mediator subunit
MED1 was significantly enriched at SORBS2 genomic loci interact-
ing with the LINC02454 SE (Fig. S4A), and MED1 KD decreased
SORBS2 transcript levels (Fig. S4B). These results suggest that
MED1 and LINC02454 together may mediate interaction of the
SORBS2 locus with the LINC02454 SE.
Analysis of gene expression data from TCGA and GTEx

databases showed significant downregulation of SORBS2 tran-
scripts in GBM and low grade glioma (LGG) relative to normal
control samples (Fig. S5A, B), suggesting that SORBS2 functions as
a tumor suppressor in this context, an activity reported by others
[45]. To verify SORBS2 function in regulating glioma cell sensitivity
to TMZ, we performed SORBS2 OE followed by qRT-PCR analysis
and confirmed a 170-fold upregulation in SORBS2 transcript levels
in glioma cells (Fig. S5C). We then assessed LDH release and
caspase 3/7 activity in control and SORBS2 OE glioma cells treated
with TMZ. Compared with TMZ (1mM)-treated control glioma
cells, we observed significantly increased LDH release in similarly
treated SORBS2 OE cells (Fig. S5D). TMZ cytotoxicity in SORBS2 OE
cells significantly increased by 48 h of treatment (Fig. S5D).
Consistently, caspase 3/7 activities in TMZ-treated SORBS2 OE cells
markedly increased by the 48 h time point, relative to comparably
treated control cells (Fig. S5E). These results suggest overall that
SORBS2 upregulation increases glioma cell sensitivity to TMZ.

LINC02454 functions bivalently to regulate glioma cell
sensitivity to TMZ
Knock-out of the LINC02454 SE in glioma cells downregulates
LINC02454 levels (Fig. 6A). However, LINC02454 KD in glioma
cells increased TMZ sensitivity (Fig. 3B–E), an outcome opposite
to the decrease in TMZ sensitivity seen in LINC02454 SE KO
glioma cells. These findings suggest that LINC02454 may
regulate TMZ sensitivity in glioma cells by mechanisms other
than maintaining chromatin interaction between the LINC02454
SE and SORBS2.

To identify other genes regulated by LINC02454 that govern
glioma cell sensitivity to TMZ, we analyzed RNA-seq data of
LINC02454 KD and OE U251 glioma cells and U251 glioma cells
treated with TMZ (50 µM) for 0, 4, 9,12, and 16 days [34] (Fig. 6B,
C). That analysis indicated that transcript levels of 5569 genes
changed with TMZ treatment. Among them, 11 were upregulated
in LINC02454 KD glioma cells and downregulated in LINC02454 OE
cells (Fig. 6B), while 21 were downregulated in LINC02454 KD
glioma cells and upregulated in LINC02454 OE cells (Fig. 6C).
Ranking these 32 genes based on fold-change in LINC02454 KD or
OE glioma cells, DDR1 ranked in the top 3 both in LINC02454 KD
and OE glioma cells (Fig. 6D, E).
Gene expression data from TCGA and GTEx databases showed

significant DDR1 up-regulation in GBM and LGG relative to normal
samples (Fig. S6A, B), suggesting DDR1 has an oncogenic function.
To confirm this function, we used the CRISPRa system to activate
DDR1 in U251 glioma cells. qRT-PCR data showed that CRISPRa-
induction of DDR1 significantly upregulated DDR1 transcripts in
control glioma cells and glioma cells that were transduced with
LINC02454 LNAs (Fig. 6F, G). DDR1 upregulation decreased LDH
release from glioma cells treated 48 h with TMZ (1 mM) (Fig. S6C).
DDR1 upregulation also significantly decreased caspase 3/7
activities in glioma cells treated 48 h with TMZ (1 mM) (Fig. S6D).
We then evaluated LDH release and caspase 3/7 activity in control
glioma cells and in CRISPRa glioma cells transduced with
LINC02454 LNAs and treated with TMZ. Compared with TMZ
(1mM, 48 h)-treated control glioma cells transduced with
LINC02454 LNA, we observed a significant decrease in LDH release
in TMZ (1mM, 48 h)-treated CRISPRa cells (Fig. 6H). Consistently,
caspase 3/7 activities markedly decreased in 48 h TMZ (1mM)-
treated CRISPRa cells relative to control glioma cells transduced
with LINC02454 LNA (Fig. 6I). These data indicate that DDR1
upregulation blocks the decrease in TMZ sensitivity seen in
LINC02454 KD glioma cells. ChIRP-qPCR results also showed
significant enrichment of LINC02454 at the DDR1 locus in control
but not LINC02454 KD glioma cells (Fig. 6J), suggesting that
LINC02454 binds to that locus and regulates DDR1 transcription.

DISCUSSION
There are several reports that lncRNAs play important roles in
progression of several tumor types, including glioma [46–50], and
function to regulate cancer cell proliferation, invasion, chemore-
sistance and metastasis [46, 51–53]. Some eRNAs are lncRNAs that
function with a corresponding enhancer to regulate gene
expression. Transcription of eRNAs is highly correlated with
enhancer activity and corresponding promoter-driven gene
transcription [10–12, 54]. For example, the eRNA KLK3e reportedly
promotes chromatin interaction between its enhancer locus and
KLK2 to activate KLK2 transcription in prostate cancer cells [55]. Lai
et al. found that enhancer lncRNA functioned to establish or
maintain chromatin interactions between enhancers and

Fig. 5 The LINC02454 SE maintains SORBS2 expression through 3D chromatin interactions and regulates glioma cell TMZ sensitivity.
A The 972-bp Capture-C bait region and H3K27ac signals near the bait region. B Circos plot showing genome-wide intra- and inter-chromatin
interactions, indicated by curves extending from the bait region. Intra- and inter-chromatin interactions are in blue and red, respectively.
C Counts of genes that interact with the LINC02454 SE (Capture-C), genes downregulated in LINC02454 SE KO relative to Ctrl cells (KO_down),
genes upregulated in LINC02454 OE relative to Ctrl cells (OE_up), and genes downregulated in LINC02454 KD compared with Ctrl cells
(KD_down). D qRT-PCR analysis of SORBS2 transcripts in Ctrl and LINC02454 SE KO (lines KO#1, KO#2) cells. Data represent means ± S.E.M. of
three independent experiments, ***p < 0.001 compared with Ctrl. E qRT-PCR verification of SORBS2 overexpression in LINC02454 SE KO cells.
Data represent means ± S.E.M. of three independent experiments. *p < 0.05, ***p < 0.001. F Caspase 3/7 activity in Ctrl, LINC02454 SE KO (lines
KO#1, KO#2), and SORBS2 OE/LINC02454 SE KO (SORBS2) cells treated with 1 mM TMZ for 48 h. Data represent means ± S.E.M. of three
independent experiments. *p < 0.05, ***p < 0.001. G qRT-PCR analysis of SORBS2 transcript levels in Ctrl and LINC02454 KD cells. Data represent
means ± S.E.M. of three independent experiments. ***p < 0.001 compared with Ctrl. H ChIRP-qPCR analysis of LINC02454 probe enrichment
efficiency in Ctrl and LINC02454 KD cells. Data represent means ± S.E.M. of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001.
ChIRP-qPCR analysis of LINC02454 binding to the LINC02454 SE (I) and the SORBS2 locus (J) in Ctrl and LINC02454 KD cells. Data represent
means ± S.E.M. of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001.
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promoters, and lncRNA KD eliminated chromatin loops and those
enhancer-promoter interactions [43].
Here, we show that the SE lncRNA LINC02454 has bivalent and

opposing functions in regulating glioma cell TMZ sensitivity. On
one hand, LINC02454 activity enhanced SORBS2 expression by

maintaining 3D chromatin interactions via the LINC02454 SE,
increasing glioma cell sensitivity to TMZ. On the other, LINC02454
promoted DDR1 expression to decrease glioma cell sensitivity to
TMZ. Dynamic equilibrium of both of these functions may govern
glioma progression by modulating responses to TMZ treatment,
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although further studies are needed to define LINC02454 activities
in specific contexts. Here, we also identified another lncRNA,
MSRB3-AS1, as a potential SE lncRNA associated with TMZ
sensitivity. However, MSRB3-AS1 KD in glioma cells did not
significantly alter their TMZ sensitivity (Fig. S7A–E). Compared
with control, no significant change of LDH release was detected in
MSRB3-AS1 knock-down glioma cells that were treated with TMZ
(1mM) for 24 h and 48 h (Fig. S7B, C). Similarly, no significant
change of caspase 3/7 acitivities were detected in MSRB3-AS1
knock-down glioma cells that were treated with TMZ (1mM) for
48 h and 72 h, relative to control (Fig. S7D, E).
In addition to synergizing with enhancers, lncRNAs reportedly

also inhibit enhancer/target gene chromatin interactions. The
lncRNA Haunt and its corresponding enhancer show opposing
activities in regulating HOXA genes: Haunt inhibits chromatin
interaction between its enhancer locus and the HOXA locus,
downregulating HOXA gene expression [56]. In our study, 443
transcripts were significantly upregulated in LINC02454 KD glioma
cells. However, none of their gene loci showed a robust Capture-C
signal with the LINC02454 enhancer. By contrast, the SORBS2 locus,
which encodes a gene downregulated in LINC02454 KD glioma
cells, showed significant interaction with the LINC02454 enhancer
based on Capture-C data. Although further studies are needed to
rule out the possibility that LINC02454 inhibits chromatin
interactions, our study suggests a synergistic function of
LINC02454 and the LINC02454 SE in regulating SORBS2 expression.
An important finding reported here is that SORBS2 and DDR1

are two major genes regulated by LINC02454, and that both
regulate glioma cell sensitivity to TMZ. SORBS2 encodes an RNA
binding protein that regulates the actin cytoskeleton and cell
movement [57]. SORBS2 has been reported to function as a tumor
suppressor in hepatocellular carcinoma, gastric cancer, pancreatic
cancer, clear cell renal cell carcinoma and ovarian cancer
[45, 58–61]. Mechanistically, SORBS2 protein stabilizes mRNAs
with tumor suppressor function by binding to their 3′UTR
[45, 60, 61]. Findings reported here support the idea that SORBS2
expression is regulated by LINC02454 and the LINC02454 SE
through long-range chromatin loops mediated by 3D chromatin
structure. High levels of SORBS2 protein in glioma cells may
stabilize mRNAs associated with tumor suppression and increase
glioma cell TMZ sensitivity. DDR1 is a receptor tyrosine kinase that
reportedly functions in development and progression of several
cancer types [62–64]. In addition, DDR1 reportedly regulates
tumor cell chemoresistance [65, 66]. We found that LINC02454 KD
downregulated DDR1 transcription and increased glioma cell TMZ
sensitivity, consistent with a previous study of GBM showing that
inhibition of DDR1 combined with radiochemotherapy including
TMZ increased TMZ sensitivity and prolonged patient survival [67].
DDR1 functions physiologically by activating MAPK, PI3K/Akt and
other signaling pathways [68], many of which reportedly regulate
TMZ resistance of glioma cells [37, 41]. In our study, KEGG analysis
shown that LINC02454 KD in glioma cells induced significant

changes in MAPK signaling (Fig. 3H). Thus, LINC02454 may
regulate DDR1 and alter glioma cell TMZ sensitivity through the
MAPK pathway, although further studies are required for
confirmation. Our findings also indicate that SORBS2 and DDR1
could be therapeutic targets to enhance glioma cell TMZ
sensitivity. Also, modulation of corresponding regulatory mechan-
isms, such as long-range chromatin interactions at the SORBS2
locus and via an enhancer mediated by LINC02454, could also
enhance TMZ efficacy.
In conclusion, our study shows that LINC02454 increases glioma

cell TMZ sensitivity by maintaining chromatin interactions
between the SORBS2 gene and a LINC02454 enhancer and at the
same time can decrease TMZ sensitivity of glioma cells by
promoting DDR1 expression. These represent novel mechanisms
used by LINC02454 to regulate glioma cell TMZ sensitivity in two
different contexts.
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