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CLIC3 interacts with NAT10 to inhibit N4-acetylcytidine
modification of p21 mRNA and promote bladder cancer
progression
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Chromatin accessibility plays important roles in revealing the regulatory networks of gene expression, while its application in
bladder cancer is yet to be fully elucidated. Chloride intracellular channel 3 (CLIC3) protein has been reported to be associated with
the progression of some tumors, whereas the specific mechanism of CLIC3 in tumor remains unclear. Here, we screened for key
genes in bladder cancer through the identification of transcription factor binding site clustered region (TFCR) on the basis of
chromatin accessibility and TF motif. CLIC3 was identified by joint profiling of chromatin accessibility data with TCGA database.
Clinically, CLIC3 expression was significantly elevated in bladder cancer and was negatively correlated with patient survival. CLIC3
promoted the proliferation of bladder cancer cells by reducing p21 expression in vitro and in vivo. Mechanistically, CLIC3 interacted
with NAT10 and inhibited the function of NAT10, resulting in the downregulation of ac4C modification and stability of p21 mRNA.
Overall, these findings uncover an novel mechanism of mRNA ac4C modification and CLIC3 may act as a potential therapeutic
target for bladder cancer.
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INTRODUCTION
Bladder cancer, classified as non-muscle-invasive bladder cancer
(NMIBC) and muscle-invasive bladder cancer (MIBC), is one of the
most common malignancies in the urinary system with an
estimated 81,180 new cases and 17,100 deaths in the United
States in 2022 [1, 2]. Approximately 30% of bladder cancers are
MIBC, of which 50% of patients will still die from tumor
progression within five years [3]. Therefore, it is essential to
identify the key pathogenic genes of bladder cancer and elucidate
its molecular mechanism to improve the treatment strategies for
bladder cancer patients.
Eukaryotic genome is tightly packed into chromatin, and only

open chromatin can be targeted by regulatory factors such as
transcription factors (TFs) [4]. The organization of accessible
chromatin across the genome reflects a network of permissible
physical interactions that cooperatively regulate gene expression
[5, 6]. Moreover, the assay of transposase accessible chromatin
(ATAC-seq) and DNase I-hypersensitive site sequencing (DNase-
seq) are the measurements of chromatin accessibility that capture
similar regulatory information [7, 8]. Previously, we developed a
method to identify transcription factor binding site clustered
regions (TFCRs) on the basis of chromatin accessibility and TF
motif [9]. However, TFCR-based joint profiling of chromatin

accessibility data from ATAC-seq and DNase-seq to screen for
key genes in bladder cancer is yet to be revealed.
The chloride intracellular channel (CLIC) protein family is an

important negative ion channel in the human body [10, 11] that
has also been implicated in tumor regulation [12, 13]. CLIC3, which
belongs to a member of CLIC protein family, can act as a
glutathione (GSH)-dependent oxidoreductase to promote tumor
invasion via inhibiting the ability of TGM2 [14]. Meanwhile, CLIC3
and Rab25 collaborate to promote aggressiveness of pancreatic
ductal adenocarcinoma through recycling integrin [15]. More
recently, high expression of CLIC3 is associated with the poor
clinicopathological factors and poor prognosis of bladder cancer
patients [16]. However, the role and mechanism of CLIC3 in
regulation of bladder cancer still remain unclear.
N4-acetylcytidine (ac4C) is identified as a novel mRNA

modification that acetylation of Cytidine in mRNA can promote
stability and translation [17]. Furthermore, ac4C is associated with
the occurrence and metastasis of a variety of cancers, including
gastric cancer [18], esophageal cancer [19] and colon cancer [20].
As the only known ac4C writer, the nucleolar protein
N-acetyltransferase 10 (NAT10) has both acetyltransferase and
RNA-binding functions that regulates ac4C modification of RNA
[21, 22]. Notably, recent studies suggest that NAT10 promotes the
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progression of gastric cancer via ac4C modification of COL5A1
[18]. On the other hand, NAT10 acts as a tumor suppressor that
acetylated p53 at K120 to inhibit cell proliferation in colorectal
carcinomas [23]. Therefore, elucidating the regulatory factors of
NAT10 and specific biological circumstances that determines the
divergent functionality of NAT10 are of paramount importance.
In this study, we identified the TFCRs by integrating chromatin

accessibility data of ATAC-seq and DNase-seq with TF motif, and
discovered that CLIC3 was upregulated in bladder cancer tissues.
Functionally, CLIC3 could promote the proliferation of bladder
cancer cells in vitro and in vivo. Mechanistically, CLIC3 interacted
with NAT10 and inhibited its function, resulting in the down-
regulation of ac4C modification and stability of p21 mRNA.
Collectively, we proposed a TFCR-based framework to screen for
key genes in bladder cancer, and revealed that CLIC3 could be a
regulatory factor of NAT10-catalyzed ac4C modification, elucidating
a novel mechanism for mRNA ac4C modification. Therefore, CLIC3
might act as a promising therapeutic target in bladder cancer.

MATERIALS AND METHODS
Identification of TFCRs and candidate genes
The identification of TFCR was described in detail according to previously
published paper [9]. Briefly, we regarded each transcription factor binding
site (TFBS) on the genome wide as a Gaussian distribution with a
bandwidth of 300 bp centered on this point. Each peak in the density
profile was considered as a TFCR. To characterize the features of each TFCR,
we ruled out the TFBS with Gaussian signal intensity greater than 0.1 in
each TFCR. The window for each TFCR was determined by finding the
maximum distance (in bp) from the TFCR to a contributing TF and then
adding 150 bp (one-half of the bandwidth). From these, we defined the
average score of all ATAC-seq peaks or DNase-seq peaks with overlapping
interval as the chromatin accessibility score (SC).
Based on the TFCR identification method, we identified 95 genes

(Supplementary Table 1). To filter out false positives, we screened for
genes with FPKM ≥ 5, ultimately obtaining 53 candidate genes (Supple-
mentary Table 1).

Patient tissue specimens
Eight-six pairs of bladder cancer tissues and paired adjacent normal
bladder tissues were obtained from patients suffering radical cystectomy
at Department of Urology of the Union Hospital affiliated of Tong Medical
College (Wuhan, PR China) from 2014 to 2019. All the specimens were
classified by at least two experienced clinical pathologists independently
according to the criteria of the sixth edition TNM classification of the
International Union Against Cancer. This study was approved by the ethics
review committee of Tongji Medical College of Huazhong University of
Science and Technology (Wuhan, P.R. China) and all patients received
written informed consent before the research started. These specimens
were immediately snap-frozen in liquid nitrogen, and then stored at
−80 °C. Detailed information is presented in Supplementary Table 2. All of
the patients were followed up on a regular basis, overall survival (OS) time
was determined from the date of surgery to the date of death or the date
of the last follow-up visit for survivors.

Cell lines
Human bladder cancer cell lines J82, TCCSUP, EJ, UMUC3, T24, 5637 and
RT4, human immortalized uroepithelium cell line SV-HUC-1, were
purchased from American Type Culture Collection (ATCC, USA). The
human bladder cancer cell line T24T was provided by Dr. Dan Theodorescu
(Departments of Urology, University of Virginia, Charlottesville, VA, USA) as
described in our previous studies [24]. J82 and TCCSUP cells were cultured
in MEM (Gibco, USA) supplemented with 10% FBS (Gibco, USA), 1%
penicillin/streptomycin (Gibco, USA). T24T and UMUC3 cells were cultured
in DMEM (Gibco, USA) supplemented with 10% FBS (Gibco, USA), 1%
penicillin/streptomycin (Gibco, USA). 5637, EJ, T24 and RT4 cells were
cultured in RPMI-1640 medium (Gibco, USA) supplemented with 10% FBS
(Gibco, USA), 1% penicillin/streptomycin (Gibco, USA). SV-HUC-1 were
cultured in F-12K medium (Gibco, USA) supplemented with 10% FBS
(Gibco, USA), 1% penicillin/streptomycin (Gibco, USA). Cells were cultured
in an incubator at 37 °C with humidifified atmosphere of 5% CO2. All
bladder cancer cell lines were confirmed within 6 months before use by

using a short tandem repeat profiling and were confirmed negative for
Mycoplasma contamination.

RNA preparation and qRT-PCR
Total RNA of tissue samples and cell lines were extracted by TRIzol reagent
(Invitrogen, USA) according to the manufacturer’s instructions. cDNA was
synthesized by HiScript III RT SuperMix for quantitative PCR (Vazyme,
China). The real-time PCR analyses were performed using SYBR Green
Master Mix (Vazyme, China). The primers are listed in Supplementary Table
3. The results were analyzed with the StepOne Plus Real-Time PCR System
(Applied Biosystems, USA) and 2−ΔΔCt method was used to analyzed the
results of transcript levels.

Plasmids construction and stable transfection
The short hairpin RNAs targeting CLIC3, NAT10 and p21 (Supplementary
Table 3) were synthesized by TSINGKE (Wuhan, China), and were cloned
into pLKO.1 vector (Sigma-Aldrich). Truncations of CLIC3 and NAT10 were
amplified with primers (Supplementary Table 3), and were cloned into
pcDNA3.1-3×Flag-C vector (Sigma-Aldrich). Point mutations of p21 3′-UTR
were amplified with primers (Supplementary Table 3), and were cloned
into psiCHECK-2TM vector. To construct CLIC3 overexpression plasmids,
human CLIC3 cDNAs were synthesized by TSINGKE (Wuhan, China) and
cloned into pcDNA3.1-3×Flag-C vector. Lipofectamine 2000 (Life Technol-
ogies, USA) was used for plasmid transfection according to the
manufacturer’s instructions. Stable cell lines were screened by administra-
tion of puromycin (Invitrogen).

Luciferase reporter assay
The p21 promoter reporter vector (pGL3-Basic vector) and p21 3′-UTR
reporter vector (psiCHECKTM−2 vector) were designed and synthesized by
TSINGKE (Wuhan, China). The p21 promoter reporter was transiently
transfected with Renilla control plasmid, concomitantly with CLIC3 shRNA
Vectors. The p21 3′-UTR reporter was transiently transfected with
CLIC3 shRNA Vectors. Dual luciferase reporter assay detection kit (Promega,
USA) was used to measure the luciferase activities according to the
manufacturer’s protocol.

Western blotting
Tissues and cell lines were collected and lysed in RIPA buffer (Thermo
Scientific) supplemented with protease inhibitor cocktail (MCE, China). The
concentration of total protein was measured by BCA protein assay kit
(HYcezmbio, China). Total protein was subjected to 10% SDS-PAGE gels
and transferred to nitrocellulose membranes (Millipore). After blocking
with 5% non-fat milk for 1 h at room temperature, membranes were
incubated with primary antibodies overnight at 4 °C. Then, membranes
were incubated in the specific horseradish peroxidase (HRP)-conjugated
secondary antibodies for an hour at room temperature. All members were
visualized by ECL substrate kit (Millipore) and the images were obtained by
Bio Spectrum 600 Imaging System (UVP). Antibodies used included
primary antibodies against ACTB (81115-1-RR, Proteintech), Tubulin
(11224-1-AP, Proteintech), H3 (17168-1-AP, Proteintech), CLIC3 (15971-1-
AP, Proteintech), NAT10 (13365-1-AP, Proteintech), p21 (10355-1-AP,
Proteintech) and Flag (ab205606, abcam); HRP-conjugated secondary goat
anti-mouse (SA00001-1, Proteintech), or goat anti-rabbit (SA00001-2,
Proteintech) antibodies.

Immunofluorescence assay
Bladder cancer cells grown on confocal dishes were fixed with 4%
paraformaldehyde for 30min at temperature and then permeabilized with
0.1% TritonX-100 for 10min. After blocking with 1% BSA for an hour at
room temperature, the dishes were incubated with antibodies specific for
CLIC3 (15971-1-AP, Proteintech) or NAT10 (13365-1-AP, Proteintech)
overnight at 4 °C. The next day, the dishes were washed with PBS and
then incubated with corresponding secondary antibody for 1 h at room
temperature, followed by sealing with parafilm containing DAPI. The
images were photographed under a Nikon A1Si Laser Scanning Confocal
Microscope (Nikon Instruments Inc., Japan).

Nuclear and cytoplasmic extraction
Nuclear and Cytoplasmic fractions were isolated by Nuclear and
Cytoplasmic Protein Extraction Kit (Beyotime, China) according to the
manufacturer’s instructions. Briefly, cells were lysed in cytoplasmic buffer
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on ice for 15min. After centrifugation at 16,000 × g for 5 min at 4 °C, the
supernatant was collected as cytoplasmic protein. Then, the pellet was
lysed in nuclear buffer on ice for 30min. After centrifugation at 16,000 × g
for 10min at 4 °C, the supernatant was collected as nuclear protein.

Cell counting kit-8 assay
Cell viability was detected by CCK-8 assay (HYcezmbio, China) following
the manufacturer’s instructions. Cells stably transfected with plasmids were
cultured in 96-well plates of 3 × 103 per well and cultured for different time
periods, respectively (0, 24, 48, and 72 h). Then, CCK-8 solution (10 μL) was
added into each well and incubated at 37 °C for 2 h. The absorbance at
450 nm was measured using an automatic microplate reader (Synergy4;
BioTek, Winooski, VT, USA).

EdU assay
Bladder cancer cells were seeded into 96-well plates at a density of 3 × 104

cells per well. The EdU assay was performed by using the 5-ethynyl-20-
deoxyuridine assay (EdU; Cell Light EdU DNA imaging Kit, Ribo Bio) as the
protocol described. EdU (100 μmol/L) was added to the medium and
incubated with the cells for 2 h. The images were photographed under
Olympus FSX100 microscope (Olympus).

Colony formation assay
Bladder cancer cells were seeded into 6-well plates at a density of 800 cells
per well and cultured for 2 weeks. The cell colonies were fixed with 4%
poly-formaldehyde for 30min and stained with 0.1% crystal violet (Sigma-
Aldrich) for another 30min at room temperature. Cell colonies with more
than 50 cells were counted.

Flow cytometry assay for the cell cycle and apoptosis
For the cell cycle assay, bladder cancer cells were seeded into a six-well
plate. Cells were harvested to analyze the proportion of cell apoptosis by
flow cytometry (Becton Dickinson) after stained with propidium iodide
buffer (BD PharMingen). The results were analyzed by the ModFit LT
software.
For the apoptosis assay, bladder cancer cells were harvested to analyze

cell apoptosis by flow cytometry (Becton Dickinson) after stained with FITC
Annexin V and propidium iodide (PI) staining (BD Pharmingen). FlowJo
software was used to analyze the results.

Tumor xenograft assay
All procedures for the animal experiments were approved by the Animal
Care Committee of Tongji Medical College (Wuhan, PR China). Four-week-
old female BALB/c nude mice were chosen for tumor xenografts
experiments. All animals were randomized assigned to experimental or
control group (at least five mice per group), while no blinding was used in
the experiments. Bladder cancer cells (5 × 106) were subcutaneously
injected into the right axilla of the nude mice. Tumor growth rates were
monitored every other week. Tumor volume was calculated according to
the formula (Tumor volume = π/6 × length × width2). At the end of the
experiment, mice were sacrificed and tumors were excised and weighed.
All animal experiments were allowed in the light of NIH Guidelines for the
Care and Use of Laboratory Animals and approved by the Animal Care
Committee of Tongji Medical College.

RNA sequencing
Total RNA was isolated from CLIC3-knockdown bladder cancer cells and
the corresponding control cells using TRIzol reagent (Invitrogen) following
the manufacturer’s instructions. Transcriptome sequencing were accom-
plished by Novogene (Tianjin, China). Differentially expressed predicted
target genes were screened according to the criteria of |log2(FoldChange)|
≥ 4 and p value top 500. RNA Sequencing results were deposited in the
Gene Expression Omnibus database The following secure token has been
created to allow review of record GSE232965 while it remains in private
status: mfmxikyuzzqzxol.

RNA degradation assay
Bladder cancer cells were seeded into 6-well plates to get 60% confluency
after 24 h. Cells were treated with 5 μg/mL actinomycin D for 0, 2, 4, 6, 8
and 10 h and collected at the same time. The total RNA was extracted by
TRIzol reagent (Invitrogen) according to the manufacturer’s instruction and

analyzed by qRT-PCR. The turnover rate and half-life of mRNA was
estimated according to previously published paper [25].

Coimmunoprecipitation (Co-IP)
Briefly, 2 × 107 cells were lysed in 2ml Co-IP buffer (20mM Tris-HCL, pH 7.5,
150mM NaCl, 1 mM EDTA and 0.5% NP-40) supplemented with protease
inhibitor cocktail (MCE, China) for an hour on ice. Five percent of cell lysate
was used as input, remaining were divided equally into two parts and
incubated with 4 μg target or IgG antibody overnight at 4 °C, respectively.
Total protein was immunoprecipitated with antibodies against CLIC3
(WH0009022M2, Sigma-Aldrich), NAT10 (13365-1-AP, Proteintech), Flag
(ab205606, abcam), control rabbit IgG (ab172730, abcam) or control mouse
IgG (ab190475, abcam). Then Protein A/G Magnetic Beads (MCE, China)
were incubated with cell lysate for 2 h at 4 °C. After washing three times in
Co-IP buffer and boiling for 10min at 95 °C, purified proteins were
detected by Western blotting. The following secondary antibodies were
used for immunoblotting: HRP-goat anti-mouse IgG heavy chain specific
(AS064, ABclonal), anti-mouse IgG light chain specific (AS062, ABclonal) or
HRP-mouse anti-rabbit IgG conformation specific (5127, Cell Signaling
Technology).

Silver staining and mass spectrometry analysis
For the silver staining, 10% SDS-PAGE gels were treated by the PAGE Gel
Silver Staining Kit (Solarbio) after electrophoresis was completed. Mass
spectrometry analysis was performed by APTBIO (Shanghai, China). The
identification and quantification of differential proteins were accomplished
by Proteome Discoverer software (version 1.4; Thermo Fisher Scientific).

RNA immunoprecipitation assay (RIP)
RIP assay was performed according to the instructions of Magna RIPTM
RNA-Binding Protein Immunoprecipitation Kit (Millipore). In brief, approxi-
mately 1 × 107 cells were harvested and lysed to extract total protein. Total
protein was immunoprecipitated with antibodies against CLIC3
(WH0009022M2, Sigma-Aldrich), NAT10 (13365-1-AP, Proteintech), rabbit
IgG (ab172730, abcam), mouse IgG (ab190475, abcam) or Protein A/G
magnetic beads (Life Technologies). After treating with proteinase K, input
and co-immunoprecipitated RNAs were extracted with a RNeasy Mini kit
(QIAGEN, Germany) according to the manufacturer’s instructions and
analyzed by qRT-PCR.

ac4C-RIP assay
Total RNA was isolated from cells using TRIzol reagent (Invitrogen)
according to the manufacturer’s instruction. ac4C-RIP was performed using
a GenSeq ac4C-RIP kit (Cloudseq biotech) according to the manufacturer’s
instructions. Briefly, a total of 180 μg RNA was fragmented in Fragmenta-
tion Buffer for 6 min at 70 °C. We used 3 μg of RNA fragments as input,
remaining were divided equally into two parts and incubated with 4 μg
anti-ac4C (Cloudseq biotech) or IgG (Cloudseq biotech) antibody for an
hour at room temperature, respectively. After incubating with correspond-
ing magnetic beads and purification, relative ac4C modification of target
genes was detected by qRT-PCR.

Statistics analysis
All in vitro experiments were repeated independently at least three times
to ensue reproducibility. All data were indicated as Mean ± SD. Statistical
analysis was performed using GraphPad Prism 8.0 software. Student t test
and ANOVA were used to assess the group difference. The Fisher’s exact
test or Chi-square test was used to analyze the relationship between CLIC3
expression and clinicopathologic characteristics. Kaplan–Meier survival
curve and log-rank test were employed to evaluate survival difference.
Pearson’s correlation test was used to analyzed the correlation between
the transcript levels of CLIC3 and those of NAT10 and p21 in human
bladder cancer samples. P < 0.05 was considered statistically significant.

RESULTS
Identification of TFCRs to screen for key genes in
bladder cancer
We performed an improved analysis to identify TFCRs and screened
for key genes in bladder cancer (Fig. 1A). Firstly, we collected ATAC-
seq data of bladder cancer tissues from previous study in Science
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[26], DNase-seq data of normal bladder tissues in ENCODE database
[27] and TF binding information in CIS-BP database [28], and
identified TFCRs by FIMO [9] (Fig. 1A). As shown in Fig. 1B, 63% of
67,844 tumor TFCRs and 54% of 81,501 normal TFCRs did not
overlap of each other, indicating that TFCRs in bladder cancer tissues
were significantly different from those in normal bladder tissues. As
previously reported that TFCRs could be characterized by TF
complexity (TC) and chromatin accessibility score (SC) [29], we
further investigated the relationship between TC and SC in bladder
cancer and normal bladder tissues. Correlation analysis indicated
that TC was positively correlated with SC when TC was less than 170
in bladder cancer tissues and TC was less than 50 in normal bladder
tissues (Fig. 1C). However, the correlation disappeared when TC was
greater than 170 in bladder cancer tissues and TC was greater than
50 in normal bladder tissues (Fig. 1C). We speculated that
transcription factor binding site (TFBSs) might reach saturation with
the increase of TC, which led TC and SC to an unbalanced state. To

further determine the relationship between TFCRs and gene
expression, we divided TC and SC into ten groups, TC0-TC9 and
SC0-SC9. Notably, highly expressed genes were more likely to be
enriched in TC9/SC9 TFCRs, especially in bladder cancer tissues
(Fig. 1D). Furthermore, we investigated the proportion of TFCRs in
regulatory elements, including promoters, enhancers, and CpG
islands. The proportion of TFCRs was observed to increase steadily
with the increase of TC and SC value (Fig. S1A). It is well accepted
that the accumulated gene mutations play important roles in
tumorigenesis [30], we next explored the mutation rates in different
TC/SC value of TFCR. The mutation rates gradually increased in
tumor and normal TFCRs with the increase of TC/SC value (Fig. S1B).
Taken together, these findings implied that highly expressed genes,
regulatory elements and accumulated mutations preferred to be
enriched near TFCRs with high TC or high SC.
To further subdivide the differences between tumor TFCRs and

normal TFCRs, we defined three concepts of TFCRs, gain-TFCR,
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Fig. 1 Identification of TFCRs to screen for key genes in bladder cancer. A Schematic diagram of our TFCR-based framework showed the
screening for key genes in bladder cancer. B Pie chart showed the differences between tumor TFCRs and normal TFCRs. C Barplot showed the
relationship between TC and SC in bladder cancer tissues. D Barplot showed the distribution of highly expressed genes in tumor TFCRs and
normal TFCRs. E The pipeline showed the identification for key genes in bladder cancer.
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lost-TFCR and stable-TFCR (Fig. 1A). Gain-TFCR and lost-TFCR
reflects the unique TFCRs of tumor tissues and normal tissues,
respectively. Stable-TFCRs reflects the overlapping TFCRs of tumor
TFCRs and normal TFCRs. As we have suggested that TFCRs with
high TC or SC may be the driver of tumorigenesis [29], we
constructed a screening formula to calculate the carcinogenic
potential γ of each gain-TFCR, and screened for genes covered by
gain-TFCRs that belong to both TC9 and SC9 (Fig. 1E). Finally, we
identified 53 candidate genes (Supplementary Table 1), which
might be involved in the development of bladder cancer and
serve as potential diagnostic markers or therapeutic targets for
bladder cancer.

CLIC3 is upregulated in bladder cancer, and mainly located in
the nucleus
Following the analysis pipeline (Fig. 2A and Fig. S2A–D), CLIC3 was
identified as a key gene among 53 candidate genes. To further
confirm the clinical role of CLIC3 in bladder cancer, we analyzed
86 pairs of bladder cancer and paired normal bladder tissues.
Consistent with those identified in TCGA database, CLIC3 was
significantly upregulated in bladder cancer tissues (Fig. 2B, C).
Kaplan–Meier survival analysis revealed that high expression of
CLIC3 was remarkably associated with poor prognosis in bladder
cancer patients (Fig. 2D, E). Furthermore, CLIC3 was expressed at a
high level in bladder cancer cells compared to normal urothelial
cell SV-HUC-1, especially in J82 and TCCSUP (Fig. 2F, G).
Immunofluorescence assay and nuclear/cytoplasmic protein
extraction assay indicated that CLIC3 was mainly located in the
nucleus of J82 and TCCSUP cells (Fig. 2H, I). In summary, these
results demonstrated that CLIC3 was a key gene in bladder cancer,
which was mainly localized in the nucleus and was significantly
upregulated in bladder cancer.

CLIC3 exerts pro-carcinogenic roles in bladder cancer
To investigate the effects of CLIC3 in bladder cancer cells, two
shRNAs targeting the coding region of CLIC3 (sh-CLIC3) were
designed and stably transfected into J82 and TCCSUP cells. The
efficiency of two shRNAs in these stable transfectants was
detected by western blot and qRT-PCR (Fig. 3A). Subsequently,
we observed that knockdown of CLIC3 attenuated cell viability,
colony formation ability and cell proliferation of bladder cancer
cells (Fig. 3B–D). As determined by cell cycle assays, inhibition of
CLIC3 expression induced cell cycle arrest at G0/G1 phase (Fig. 3E).
Moreover, silence of CLIC3 had no effect on apoptosis of bladder
cancer cells (Fig. S3A). Subsequently, multiple bladder cancer cell
lines with stable overexpression of CLIC3 were constructed (Fig.
S3B). As we expected, ectopic expression of CLIC3 promoted the
proliferation of bladder cancer cells (Fig. S3C, D).
To gain further insights into the function of CLIC3 in vivo,

bladder cancer cells with stably transfected with scramble or sh-
CLIC3 were subcutaneously injected into nude mice. Consistent
with the biological roles of CLIC3 in vitro, CLIC3 knockdown led to
a significant decrease in growth and tumor weight of xenograft
tumors (Fig. 3F–H and Fig. S3E). Meanwhile, overexpression of
CLIC3 also promoted the proliferation of bladder cancer cells
in vivo (Fig. S3F). Collectively, these results impiled that CLIC3
exerted pro-carcinogenic roles in bladder cancer.

Knockdown of CLIC3 increases the stability of p21 mRNA
To determine the target genes and downstream signaling
pathways of CLIC3 in bladder cancer cells, transcriptome analysis
was performed in bladder cancer cells stably transfected with
scramble or sh-CLIC3 (Fig. 4A, B). The Gene Ontology (GO)
enrichment analysis showed that CLIC3 was highly associated with
cell growth (Fig. 4C). Meanwhile, comprehensive analysis indicated
that p21 might be the major target gene regulated by CLIC3
(Fig. 4D). Consistent with our RNA-seq results, knockdown of CLIC3
markedly increased p21 expression (Fig. 4E) and CLIC3 expression

was inversely correlated with p21 expression in bladder cancer
tissues (Fig. 4F). Furthermore, CLIC3 knockdown could enhance
the luciferase activity of p21 3′-UTR, whereas the luciferase activity
of p21 promoter was not affected (Fig. 4G). Therefore, we
speculated that CLIC3 might regulate p21 expression by promot-
ing mRNA stability, but not the activity of promoter. As expected,
RNA degradation assay demonstrated that inhibition of CLIC3
expression could increase the stability of p21 mRNA (Fig. 4H).
To confirm whether the effects of CLIC3 on cell proliferation

were mediated via p21, we knocked down p21 in CLIC3-
knockdown bladder cancer cells (Fig. 5A). As shown in Fig. 5B,
the reduction of cell viability upon CLIC3 knockdown could be
reversed by knockdown of p21. Meanwhile, inhibition of p21
expression rescued the G0/G1 cell cycle arrest (Fig. 5C–E), and
attenuated the inhibition of colony formation ability upon
knockdown of CLIC3 in bladder cancer cells (Fig. 5F). These
findings suggested that knockdown of CLIC3 could promote p21
expression though increasing its stability, and the function of
CLIC3 on cell proliferation was dependent on p21 expression.

CLIC3 interacts with NAT10 protein
We had shown that CLIC3 could reduce the stability of p21 mRNA.
However, CLIC3 is not considered to be a common RNA-binding
protein (RBP) [31]. Therefore, we speculated that CLIC3 could
influence the stability of p21 mRNA through interacting with
partners. To further verify our hypothesis, we performed Co-IP assay
and identified potential interacting proteins (Fig. 6A, B). Following
the analysis pipeline (Fig. 6C and Supplementary Table 4), NAT10
was identified as the major differential protein through mass
spectrometry (Fig. 6D). The interaction between CLIC3 and NAT10
was confirmed by Co-IP assays (Fig. 6E, F), whereas CLIC3 and NAT10
did not affect the expression of each other (Fig. S4A, C). Meanwhile,
there was no correlation between CLIC3 and NAT10 in bladder
cancer tissues (Fig. S4D). Furthermore, CLIC3 and NAT10 were
colocalized in the nuclear of bladder cancer cells (Fig. 6G). Moreover,
knockdown of NAT10 promoted the proliferation of bladder cancer
cells J82 and TCCSUP (Fig. S4E–H). However, previous studies report
that NAT10 knockdown inhibits the viability of bladder cancer cells
T24 and UMUC3 [32]. Consistently, we also verified that silence of
NAT10 could inhibit cell growth of T24 and UMUC3 (Fig. S4I–M).
To delineate the structural determinants of the interaction

between CLIC3 and NAT10, we subdivided the functional domains
of CLIC3 and NAT10 based on the SMART database (Fig. 6H). Anti-
Flag Co-IP assays showed that removal of 1–94 amino acids region
of CLIC3 or 501–758 amino acids region of NAT10 abolished the
interaction between CLIC3 and NAT10 (Fig. 6I, J), indicating that
CLIC3 and NAT10 formed a protein-protein complex through the
interaction between Gluta- thione S-transferase (GST) N-terminal
domain of CLIC3 and N-acetyltransferase domain of NAT10 in
bladder cancer cells.

CLIC3/NAT10 complex regulates p21 mRNA stability by ac4C
modification in bladder cancer cells
It is previously reported that NAT10-mediated ac4C modification of
mRNA can promote its stability [22]. We found that knockdown of
NAT10 could reduce the luciferase activity of p21 3′-UTR (Fig. 7A)
and decreased p21 expression by reducing the stability of p21
mRNA (Fig. 7B, C). The interaction between NAT10 and p21 mRNA
was further validated by RIP assays (Fig. 7D). Moreover, ac4C-RIP
assays indicated that p21 mRNA could undergo ac4C modification
(Fig. 7E), and NAT10 knockdown decreased the ac4C modification
of p21 mRNA in bladder cancer cells (Fig. 7F and Fig. S5A). Given
that CLIC3 could interact with NAT10, we wondered whether CLIC3
could bind to p21 mRNA. As expected, we confirmed that CLIC3
could bind to p21 mRNA (Fig. 7G). Of note, although knockdown of
CLIC3 had no effect on the interaction between NAT10 and p21
mRNA (Fig. S5B), CLIC3 knockdown significantly promoted ac4C
modification of p21 mRNA (Fig. 7H and Fig. S5C).
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Subsequently, we predicted the putative ac4C sites in p21
mRNA by PACES with a specificity of 95% (Fig. 7I), and constructed
three recombinant luciferase reporter plasmids with mutation
sites (Cytosine to Adenine) (Fig. 7J) referring to the dbPTM

database [33]. As shown in Fig. 7K and Fig. S5D, the mutation at
10306 or 10310 resulted in decreased luciferase activity of p21 3′-
UTR but not the mutation at 10312, suggesting that Cytosines at
10306 and 10310 were the ac4C sites of p21 mRNA. Furthermore,
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gepia.cancer-pku.cn/ and http://ualcan.path.uab.edu/) were used to identify the expression levels and overall survival of candidate genes.
B The expression of CLIC3 in bladder cancer tissues compared with normal bladder tissues obtained from TCGA database. C qRT-PCR assay
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the luciferase activity of p21 3′-UTR was still influenced by CLIC3
when only the Cytosine at 10306 was mutated, whereas CLIC3
knockdown had no effect on the luciferase activity of p21 3′-UTR
with a mutated Cytosine at 10310 (Fig. 7L and Fig. S5E). These
results indicated that Cytosine at 10310 of p21 mRNA was the
potential site where CLIC3 regulated ac4C modification of p21
mRNA.
To investigate whether the effects of CLIC3 on ac4C modifica-

tion of p21 mRNA were mediated via NAT10, we constructed a
stable model of CLIC3 over-expressed in NAT10-knockdown
bladder cancer cells. Overexpression of CLIC3 had a minor effect
on p21 mRNA upon NAT10 knockdown (Fig. 7M). Furthermore,
CLIC3-mediated inhibitory effect on ac4C modification of p21
mRNA also became minimal upon knockdown of NAT10 (Fig. 7N).

In general, CLIC3 could interact with NAT10 in the nucleus, where
it inhibited NAT10-mediated ac4C modification of p21 mRNA, and
promote cell growth in bladder cancer (Fig. 7O).

DISCUSSION
With the progress of sequencing technology and bioinformatics,
the gene regulatory landscape can be measured more accurately
and intuitively, which provides strong evidence to screen for key
genes in tumor progression [5]. Quantitative analysis of chromatin
accessibility to gene expression has elucidated the gene
regulatory networks of various cancers [34–36], further identifying
previously unrecognized molecular predictors of treatment
response and cell subpopulations with durable therapeutic
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potential. Previously, we integrated chromatin accessibility data of
ATAC-seq and transcription factor binding information to assess
TFCRs and identify candidate oncogenes, obtaining 13 candidate
key genes in endometrial cancer [29]. Nevertheless, the applica-
tion of TFCR identification method in bladder cancer remains to
be elucidated. Herein, based on the reports that ATAC-seq for

mapping chromatin accessibility genome wide is highly correlated
with DNase-seq assays [37], we applied the improved TFCR
identification method to ATAC-seq data and DNase-seq data, and
obtained 42,742 gain-TFCRs in bladder cancer tissues, which is
likely to be associated with the development of cancer. Notably,
CLIC3 was identified as a key gene in bladder cancer based on the
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correlation between gene expression and overall survival. Our
findings implies that improved TFCR identification can provide a
novel insight into gene regulatory landscape and help us screen
for key genes in bladder cancer.
CLIC3 is initially reported as a member of CLIC family, which has

integral membrane forms to regulate intracellular membranes
maintenance and tubulogenesis [11]. CLIC3 also acts as a secreted
protein that drives angiogenesis and invasiveness of cancer [14].
Besides, previous studies report that CLIC3 colocalizes with Rab25
and integrin in late endosomes/lysosomes to promote the
migration and invasion of pancreatic ductal adenocarcinoma
[15]. However, we demonstrated that CLIC3, mainly located in the
nucleus, could interact with NAT10, but not with Rab25, to
promote cell proliferation in bladder cancer. Thus, we speculate
that diverse features of CLIC3 may be attributed to its differential
subcellular localization and interactions with divergent partners.
Nevertheless, more in-depth research is still needed to investigate
the role of CLIC3 in regulating cell metastasis and the sensitivity of
therapy in bladder cancer.
There are presently conflicting reports as to whether NAT10

functions primarily as a promoter or suppressor of cancer. NAT10
promotes the progression of gastric cancer [18] and pancreatic
cancer [38]. Conversely, NAT10 inhibits cell proliferation in colon
cancer [23]. Consistent with the previous study [32], we verified
that NAT10 knockdown inhibited the viability of bladder cancer
cells UMUC3 and T24. However, we also observed that knockdown
of NAT10 promoted the proliferation of bladder cancer cells J82
and TCCSUP. These two seemingly divergent biological results
may be determined by specific biological circumstances. As
previously reported that Rab25 acts as a tumor suppressor in the
absence of CLIC3, whereas Rab25 increases tumor aggressiveness
after driving CLIC3 expression [15]. Importantly, CLIC3 expressed
at a high level in J82 and TCCSUP compared with other bladder
cancer cells, including UMUC3 and T24. Therefore, we speculate
that in tumors where CLIC3 is highly expressed, NAT10 will likely
act as a tumor suppressor through interacting with CLIC3.
Moreover, it is of great significance to consider CLIC3 expression
in tumor when targeting NAT10 for therapeutic purposes. Of note,
we demonstrated that the GST N-terminal domain of CLIC3 could
bind the N-acetyltransferase domain of NAT10, which indicates
that CLIC3 may act as a molecular chaperone and possibly alter
the spatial conformation of NAT10, thereby changing the role of
NAT10 in tumor progression. However, the topological structure of
CLIC3/NAT10 complex still needs to be further characterized,

which may reveal detailed features of this interaction and unveil
whether CLIC3 plays an important role in the conformational
change of NAT10.
The ac4C is a novel mRNA modification that catalyzed by the

acetyltransferase NAT10. Transcriptome-wide mapping of ac4C
indicates that acetylated regions are mainly enriched within
coding sequences (CDS), followed by 5′-UTR and 3′-UTR [22].
Intriguingly, ac4C within CDS stimulates mRNA translation, while
5′-UTR acetylation inhibits annotated start codons and contributes
to the reduction of protein synthesis [39]. Additionally, NAT10
could increase the expression of KIF23 by up-regulating ac4C
modification of KIF23 3′-UTR in colorectal cancer [40]. Similarly, we
validated that NAT10 could catalyze ac4C modification within 3′-
UTR of p21 mRNA, thereby increasing its stability and expression.
Furthermore, we demonstrated that CLIC3 could inhibit NAT10-
catalyzed ac4C modification, but not the binding of NAT10 to p21
mRNA, which may be associated with the interaction between
CLIC3 and the N-acetyltransferase domain of NAT10. Notably,
CLIC3 could inhibit the acetylation of Cytosine at 10310, but not
Cytosine at 10306 of p21 3′-UTR. Although it is unclear how
CLIC3 specifically catalyzes the acetylation site of p21 mRNA, these
results highlight that CLIC3 can act as a regulatory factor of NAT10,
enriching the current mechanisms of mRNA ac4C modification.
In summary, our work first identified TFCRs in bladder cancer by

integrating chromatin accessibility data of ATAC-seq and DNase-
seq with TF binding information, and provided a proof of concept
for CLIC3 as a regulatory factor of NAT10 protein and of key
cellular functions relevant to mRNA ac4C modification. Remark-
ably, our study reveals that CLIC3 may act as a potential
therapeutic target for curative management of bladder cancer.
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