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Peripheral monocytes and neutrophils promote photoreceptor
cell death in an experimental retinal detachment model
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Photoreceptor cell death and immune cell infiltration are two major events that contribute to retinal degeneration. However, the
relationship between these two events has not been well delineated, primarily because of an inadequate understanding of the
immunological processes involved in photoreceptor degeneration, especially that of peripheral leukocytes that infiltrate the
subretinal space and retinal tissues. In this work, we characterized the role of leukocyte infiltration within the detached retina. We
observed that CD45+ CD11b+ Ly6G+ neutrophils and CD45+ CD11b+ Ly6G− Ly6C+ monocytes are the predominant peripheral
immune cell populations that infiltrate the retinal and subretinal space after detachment. Selective depletion of monocytes or
neutrophils using cell-specific targeting is neuroprotective for photoreceptors. These results indicate that peripheral innate immune
cells contribute to photoreceptor degeneration, and targeting these immune cell populations could be therapeutic during retinal
detachment.
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INTRODUCTION
The detachment of the neurosensory retina from the retinal
pigment epithelium/choriocapillaris (RPE/Ch), can occur as a
primary entity or complicate the most prevalent retinal diseases,
including age-related macular degeneration (AMD), proliferative
diabetic retinopathy (PDR), or retinopathy of prematurity (ROP).
Besides the occurrence of retinal detachment (RD) in these diverse
conditions, subretinal delivery of photoreceptor/RPE gene therapy
is a therapeutic strategy that induces a localized detachment of
the retina [1, 2]. Despite the different etiologies of RD, the
separation of the neurosensory retina from its oxygen and
nutrient supply compromises photoreceptor viability [3–6]. In
parallel, a cellular and cytokine/chemokine inflammatory immune
response occurs in the detached retina [7, 8]. Moreover, the
ongoing photoreceptor cell death and inflammation build-up
from the initial injury can further compromise visual function.
The relationship between cell death and inflammation is

intricately entwined and complex. Whether the crosstalk of these
biological pathways contributes to disease pathology has not yet
been well delineated, mostly because their corresponding roles
have been addressed unidirectionally; either from the point of
view of photoreceptor cell death causing inflammation or from
inflammation compromising photoreceptor viability. Specifically,
certain forms of cell death pathways operative in retinal
detachment, such as necroptosis, can induce inflammation and
activation of cellular immune mechanisms [7–13]. In turn,
inflammation can create a detrimental milieu by generating
reactive oxygen species, enzymes, and cytokines, which can

further compromise cell viability [7, 14]. This bidirectional
relationship has been a significant obstacle in our understanding
of photoreceptor cell death [14]. During retinal detachment,
peripheral leukocytes infiltrate the subretinal space and retinal
tissues [8, 15]. However, it remains unknown whether such
infiltration of the retina can be detrimental or protective for
photoreceptors in retinal detachment.
In this work, we aimed to study the role of innate immunity in

modulating photoreceptor cell death. Using a murine experi-
mental RD model and bone marrow transplantation, we
characterized the cellular infiltration of peripheral myeloid cells
in the retina. Selective depletion of peripheral monocyte and
neutrophil populations demonstrated that these cells are detri-
mental to photoreceptor survival in retinal detachment. These
findings will advance our understanding of the multifactorial
effects that lead to photoreceptor cell death and vision
impairment.

MATERIALS AND METHODS
All reagents used in this work are listed in Supplementary Table 1 with
their respective manufacturer and catalog number.

Animals and breeding
All animals used in experiments and breeding adhered to the statement of
the Association for Research in Vision and Ophthalmology (ARVO). Animal
protocols were reviewed and approved by the Animal Care Committee of
the Massachusetts Eye and Ear Infirmary and the University of Illinois

Received: 19 June 2023 Revised: 31 October 2023 Accepted: 29 November 2023

1Retina Service, Angiogenesis Lab, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA. 2Department of Ophthalmology and Visual Sciences, Illinois
Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA. 3Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA. 4Mucosal
Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA. ✉email: Demetrios_Vavvas@MEEI.HARVARD.EDU
Edited by Professor Massimiliano Agostini

www.nature.com/cddis

Official journal of CDDpress

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-023-06350-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-023-06350-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-023-06350-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-023-06350-6&domain=pdf
http://orcid.org/0000-0002-3447-4074
http://orcid.org/0000-0002-3447-4074
http://orcid.org/0000-0002-3447-4074
http://orcid.org/0000-0002-3447-4074
http://orcid.org/0000-0002-3447-4074
http://orcid.org/0000-0003-2046-3996
http://orcid.org/0000-0003-2046-3996
http://orcid.org/0000-0003-2046-3996
http://orcid.org/0000-0003-2046-3996
http://orcid.org/0000-0003-2046-3996
http://orcid.org/0000-0002-8622-6478
http://orcid.org/0000-0002-8622-6478
http://orcid.org/0000-0002-8622-6478
http://orcid.org/0000-0002-8622-6478
http://orcid.org/0000-0002-8622-6478
https://doi.org/10.1038/s41419-023-06350-6
mailto:Demetrios_Vavvas@MEEI.HARVARD.EDU
www.nature.com/cddis


Chicago. C57BL/6J, CCR2RFP/+ CX3CR1GFP/+, and C57BL/6-Tg(CAG-EGFP)
131Osb/LeySopJ (EGFP) were purchased from The Jackson Laboratories.
Eight-week-old male and female mice were used for experiments. Animals
were randomly allocated to control and experimental groups. Mice were
maintained in a standard 12-h light/dark cycle and fed a supply of standard
chow ad libitum.

Bone marrow isolation, culture, and transplantation
Three- to four-week-old recipient mice were conditioned with intraper-
itoneal busulfan injections as previously described [16, 17]. In brief, animals
received myelo-conditioning therapy with 105mg/kg of busulfan before
bone marrow transplantation (BMT) of hematopoietic precursors. Bone
marrow progenitors were injected via the tail vein (2 × 107cells). Four
weeks after BMT, we assessed immune reconstitution in the peripheral
blood samples of chimeric mice by flow cytometry. Bone marrow chimeras
with ≥95% immune reconstitution were used for experiments. For in vitro
experiments, bone marrow-derived macrophages were cultured as
previously described [18].

Experimental retinal detachment model
Eight-week-old mice were anesthetized with a mixture of 2,2,2-tribro-
moethanol and 2- methyl-2-butanol at a dose of 125mg/kg or a mixture of
ketamine (80mg/kg) and xylazine (5mg/kg) via intraperitoneal injection.
Retinal detachment was induced via subretinal injection with 1% sodium
hyaluronate, as previously described [19]. Eyes with successful RD at
endpoint were included. Eyes with hemorrhage, leakage, or cataracts were
excluded from further analysis. The investigator (DEM) was masked to the
group allocation when performing the subretinal injection.

Immunohistochemistry and imaging
Eyes were enucleated and embedded in Tissue-Tek Optimal Cutting
Temperature compound. Eyecups were sectioned to 10 µm axial cryosec-
tions starting at 800 µm from the eye and stored at −80 °C until used.
Primary antibodies were incubated overnight at 4 °C. Secondary were
incubated for 2 h at room temperature. Slides were counterstained with
DAPI and mounted with Fluoromount-G mounting medium. Terminal
deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) assay was
performed with ApopTag fluorescein direct in situ apoptosis detection kit
according to the manufacturer’s instructions. TUNEL+ cells were counted
automatedly in ImageJ (version 1.52, http://imagej.nih.gov/ij/; provided in
the public domain by the National Institutes of Health, Bethesda, MD)
using the TUNEL Cell Counter plugin [20]. 4′,6-diamidino-2-phenylindole
(DAPI) was used as a nuclear counterstaining. Antibodies were validated a
priori by immunofluorescence in spleens or lymph nodes. Sections were
imaged with a ZEISS Axio (Thornwood, NY) epifluorescence microscope or
ZEISS LSM 800 laser confocal microscope.

Flow cytometry analyses
Single-cell suspensions from the detached retina were obtained using
the Papain Dissociation System (Worthington, Columbus, OH), as
previously described. Live/dead exclusion assay (Zombie NIR, BioLegend,
San Diego, CA) and DAPI staining were used to identify nucleated live
singlets. CD11b, CD45, Ly6G, Ly6C antibodies were purchased from
BioLegend (CD11b clone M1/70, #101243), and BD Biosciences (CD45
clone 30-F11, #564279; (Ly6G clone 1A8, #560601; and Ly6C clone HK1.4,
#755194). Fluorescence-minus-one and single stain controls were
acquired for each antibody or fluorescent reporter. Samples were
analyzed with an Aurora Spectral Cytometer (Cytek Biosciences,
Fremont, CA). Data analysis was performed with Kaluza cytometry
software (Beckman Coulter, Brea, CA).

Peripheral monocyte/macrophage and neutrophil depletion
For peripheral monocyte/macrophage depletion, animals received an
intraperitoneal injection of 200 µL clodronate liposomes or saline 4 and
2 days prior and on the day of retinal detachment. A volume of 100 µL
clodronate liposomes or saline was injected 2-, 4- and 6 days following RD.
CD11b+ cell depletion was assessed in the subretinal space. For peripheral
neutrophil depletion, animals received an intraperitoneal injection of
400 µg InVivoPlus anti-mouse Ly6G (Clone 1A8) antibody (BioxCell,
#BP0075-1) or saline 2 days before retinal detachment, on the day of RD,
and 2, 4 and 6 days following RD. Ly6G+ cell depletion was assessed in the
subretinal space of the detached retinas.

Statistical analyses
Statistical analyses were performed with SAS Software (2016, SAS Institute
Inc., Cary, NC). Normality was assessed with the Shapiro–Wilk test. Equal
variances were assumed given group sizes. Sample size for photoreceptor
cell count was chosen based on prior work [21]. Statistical significance for
differences between groups was determined with a two-sided T-test or
Student’s T-test for two-group comparisons or one-way ANOVA with Tukey
post-hoc correction for multiple comparisons. Results are expressed as
mean ± standard error of the mean (SEM). A p-value of ≤0.05 was
considered statistically significant.

RESULTS
Retinal detachment induces early and sustained CX3CR1+ and
CCR2+ infiltration of the retina
Detachment of the neurosensory retina induces significant
neuroinflammation [8, 10, 11, 22]. However, the longitudinal local
and peripheral cellular infiltration are poorly understood. For this
purpose, we performed retinal detachments in CX3CR1GFP+

CCR2RFP+ transgenic mice to explore the longitudinal recruitment
of CD11b+ CX3CR1 and CCR2-expressing cells in the detached
retina (Fig. 1A–I). We observed that in a steady state, CX3CR1GFP +

retinal microglia have marginal CCR2 expression, as previously
described [23]. Following RD, there was a significant >6-fold
increase in the total CD11b+ retinal cellularity on day 1 (p= 0.011),
which increased to >9-fold on day 7 (p= 0.001), with ubiquitous
cellular infiltration and few acellular lacunae, which suggest
continuous infiltration from peripheral leukocytes (Fig. 1J). On day
1, we observed a predominant infiltrating population of CD11b+

CCR2RFP+ cells (116.20 ± 58.59 cells, p= 0.006), followed by
CD11b+ CC3CR1GFP+ (60.60 ± 21.06 cells, p= 0.241) and a small
subset of CD11b+ CC3CR1GFP+ CCR2RFP+ cells (26.60 ± 23.39 cells,
p= 0.777) (Fig. 1A–I, K). On day 7 after RD, the predominant
population were CD11b+ CC3CR1GFP+ CCR2RFP+ (147.40 ± 36.80
cells, p < 0.001), followed by CD11b+ CC3CR1GFP+ (129.40 ± 35.78
cells, p= 0.002), and ultimately a scarce population of CD11b+

CCR2RFP+ (9.40 ± 9.20 cells, p= 0.0.782) (Fig. 1A–I, K). Collectively,
these results indicate that the early phase of RD is characterized
by an overwhelming majority of infiltrating CCR2+ inflammatory
cells, likely from the peripheral compartment. On day 7, these
infiltrating cells continue to show an inflammatory CX3CR1+

CCR2+ signature.

Peripheral leukocytes progressively infiltrate the
detached retina
Next, we sought to elucidate the peripheral leukocyte contribution
to the increased cellularity in the detached retina. Given technical
limitations to identifying retinal microglia from peripheral mono-
cytes/macrophages, and that CCR2 and CX3CR1 expression cannot
separate these cells upon injury, we generated chimeric mice with
bone marrow transplantation (BMT) of EGFP+ hematopoietic
precursors (Fig. 2). Following successful immune reconstitution,
we observed a remarkable EGFP+ myeloid-derived infiltration after
RD (Fig. 2B). Laser confocal Z-plane projections in naïve eyes
confirmed the absence of peripheral infiltration of the retina in
naïve animals, which only showed EGFP+ cells at the vascular
lumen likely representing patrolling cells (Fig. 2C–E). One day after
RD, detached retinas showed incipient infiltration of EGFP+ cells in
the superficial, deep, and subretinal space layers, with a pre-
dominant ameboid phenotype within retinal layers (Fig. 2F–H, L).
Seven days following RD, detached retinas showed consistent
infiltration of EGFP+ cells at the superficial layer, but mostly at
deep retinal layers and subretinal space (Fig. 2I–K, M and N). In
contrast to day 1, infiltrated EGFP+ cells displayed a ramified
morphology at the retinal layers while a combination of ameboid
and ramified in the subretinal space. Orthogonal projection of the
detached retina showed an overwhelming majority of EGFP+ cells
in all layers on day 7, compared to day 1 after RD (Fig. 2O and P).
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Interestingly, at day 7, these predominant myeloid-derived EGFP+

cells interacted with scarce P2RY12-expressing microglia
(Fig. 2Q–T). These results indicate that peripheral myeloid cells
are a major contributor to the progressive infiltration of the
superficial, deep, and subretinal layers following retinal detach-
ment. Moreover, these results suggest that myeloid cells infiltrate
and display different morphology as a function of time and
location in the retina. Taken together, these results suggest that
peripheral myeloid cells are the predominant population in late
RD and can potentially play important roles by interacting with
tissue-resident macrophages/microglia.

Ly6G+ and Ly6C+ cells infiltrate the retina early after retinal
detachment
Given the observed leukocyte recruitment in the detached retina,
we sought to further characterize the myeloid infiltrating cells,
which can include neutrophils (Ly6G), monocytes/macrophages

(Ly6C, F4/80), and dendritic cells (CD11c). For this purpose, we
investigated the immunophenotypes in the detached retina by
spectral flow cytometry (Fig. 3A, B). We found that the total CD11b+
fold-change was less pronounced compared to that observed with
retinal wholemounts, likely due to sample processing (day 7,
p= 0.28) (Fig. 3C). We observed that CD45+ CD11b+ Ly6G+ cells
significantly increased (3.5-fold) at day 1 (p= 0.005) and returned to
similar baseline levels by day 7 (Fig. 3D). Similarly, CD45+ CD11b+

Ly6G− Ly6C+ cells significantly increased ~2-fold at day 1
(p= 0.002) and decreased beyond baseline on day 7 (p < 0.001 vs.
day 1) (Fig. 3E). These results suggest that CD45+ CD11b+ cells at
day 1 after RD likely represent Ly6G+ polymorphonuclear
neutrophils and Ly6C+ infiltrating monocytes/macrophages.
To further confirm these findings, we investigated the subretinal

space infiltration in whole-eye cryosection immunofluorescence
(Fig. 3A), since cells suspended in sodium hyaluronate may be lost
during sample isolation/processing for flow cytometry. We
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observed that CD11b+, F4/80+, and Ly6G+ cells infiltrated this
space from day 1 to day 14 following RD (Fig. 3F). We did not
observe CD3+ T-lymphocytes, B220+ B-lymphocytes, NCR1+

natural killer cells, or CD11c+ dendritic cells in the subretinal
space. Among the subretinal space infiltrating cells, Ly6G+ cells

were significantly increased on day 1 (p < 0.001) and day 3
(p < 0.001), and declined during the first week, and were absent by
day 14. In contrast, F4/80+ cells peaked at day 3 (p= 0.007), and
were consistently detected at day 5 (p= 0.007), day 7 (p= 0.004),
and day 10 (p= 0.014). As expected, the total CD11b+ cell count
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parallels the cumulative Ly6G+ and F4/80+ cell count. Interestingly,
the surface area of subretinal CD11b+ cells significantly increased
from 83.11 µm2 on day 1 to 407.50 µm2 on day 7 (p= 0.021),
571.52 µm2 on day 10 (p < 0.001), and 683.00 µm2 on day 14
(p < 0.001) (Fig. 3G–I). Moreover, the number of CD11b+ cells
>100 µm represented a minority of the subretinal pool on day 1
(24%) and shifted to a vast majority of CD11b+ cells >100 µm on
day 14 (98%) (Fig. 3J). In addition to the size increase, on day 1
following RD, the largest percent of CD11b+ cells were located
freely in the subretinal space (67%) (Fig. 3K). This proportion
reversed by day 7 and by day 10, 88% of all subretinal CD11b+ cells
were in contact with the retina. Taken together, these results
suggest that subretinal CD11b+, Ly6G+, and F4/80+ cells are the
primary infiltrating populations, most likely representing peripheral
neutrophils and monocytes/macrophages. In addition, CD11b+

cells increase their size and localize close to photoreceptors as the
detachment persists, which may reflect continuous phagocytosis of
cellular debris and photoreceptor segments. In turn, this pheno-
type may contribute to their persistence in the subretinal space.

Peripheral monocyte/macrophage depletion protects
photoreceptors after retinal detachment
We sought to elucidate the role of infiltrating monocytes/
macrophages in photoreceptor cell death. Given the peak of cell
death in this model on day 1 [19, 21] and the observed early
CD45+ CD11b+ Ly6G− Ly6C+ infiltration at this timepoint, we
hypothesized that monocyte/macrophages infiltration may con-
tribute to early photoreceptor cell death. For this purpose, we
depleted peripheral monocytes/macrophages with clodronate
liposomes (Fig. 4A) before RD. Of note, systemic clodronate
liposomes do not cross the blood barrier and do not deplete
retinal microglia [24–26]. Compared to baseline, monocyte/
macrophage depletion in mice showed a significant reduction of
infiltrating CD11b+ at day 1 (87%, p < 0.001) and day 7 following
RD compared to baseline (Fig. 4B). We observed a significant
reduction of TUNEL+ ONL cells on day 1 after RD in monocyte/
macrophage-depleted mice (p= 0.011) (Fig. 4C–E). Moreover,
monocyte/macrophage-depleted mice showed increased photo-
receptor survival on day 7 after RD (1032.30 ± 126.66 vs.

Fig. 2 Peripheral myeloid cell infiltration in retinal detachment. A Outline of recipients, bone marrow transplantation, and experimental
retinal detachment model (Created with BioRender.com). B Representative image of retinal wholemounts of chimeric mice at day 3 following
retinal detachment showing the attached (No RD) and detached retina (RD) separated by a white dotted line. C–E Representative confocal
image of chimeric mice at baseline. F–H Detached retina at day 1, with moderate peripheral EGFP+ BM-derived infiltration of the retina and
subretinal space. I–K Detached retina at day 7, with significant EGFP+ infiltration of the retina. L Magnification of image G (dotted box),
showing early retinal infiltration by peripheral EGFP+ cells of ameboid shape (arrows). M Magnification of image (J) (dotted box), showing
substantial retinal infiltration by EGFP+ cells with ramified phenotype (arrows). N Magnification of image (K) (dotted box), showing mixed
ameboid and ramified morphology on EGFP+ cells in the subretinal space. O and P Z-projection of confocal images showing peripheral EGFP+

cell infiltration in the detached retina and subretinal space on days 1 and 7. Q–T Scarce P2RY12+ retinal microglia surrounded by ubiquitous
myeloid-derived EGFP+ cells in the detached retina. Images are representative of ≥3 experiments. Scale bar 100 µm (A–I).

Fig. 3 Immunophenotyping of infiltrating cells in retinal detachment. A Density plots and gating strategy from single-cell suspensions of
live CD45 CD11b-infiltrating cells at baseline, days 1 and day 7 after retinal detachment. B Histogram overlays of CD45hi CD11b+ Ly6G+ and
CD45hi CD11b+ Ly6G− Ly6C+ cells. C–E Quantitative analyses of total CD11b+, CD45hi CD11b+ Ly6G+, and CD45hi CD11b+ Ly6G− Ly6C+(pooled
samples, n= 6 per replicate). F Quantitation of subretinal cells in the subretinal space of whole-eye cryosection images (n= 4 per group).
Images are representative of ≥2 experiments. G and H Representative retinal cryosection image of subretinal CD11b+ cells at day 1 and 14,
showing cell size increase (n= 4, 4). I Subretinal CD11b+ cell size ratio thorough days 1–14 after detachment. J Ratio of CD11b+ >100 µm2 area.
K Location of subretinal CD11b+ in the subretinal space (SRS) or in contact with the outer nuclear layer (ONL) (n= 4 per group). *p < 0.05.
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747.40 ± 75.80, p < 0.001) ((Fig. 4F). Collectively, these results
indicate that peripheral monocyte/macrophage depletion in mice
significantly reduces subretinal space CD11b+ infiltration and is
neuroprotective to photoreceptors in this experimental retinal
detachment model.

Peripheral neutrophil depletion protects photoreceptors after
retinal detachment
Considering that CD45+ CD11b+ Ly6G+ cells similarly infiltrate the
retinal and subretinal space early on retinal detachment, we
investigated their contribution to photoreceptor cell death. We
systemically depleted peripheral Ly6G+ cells with a monoclonal
murine anti-Ly6G antibody before RD (Fig. 5A). We used an
antibody clone (1A8) which can selectively reduce peripheral
blood neutrophils but not monocytes [27]. Preemptive and post-
RD treatment with anti-Ly6G neutralizing antibody showed a
significant depletion of subretinal Ly6G+ cells (97.93%, p < 0.001)
at day 1 following RD (Fig. 5B). CD11b+ cells showed a similar
reduction at this timepoint (99.04%, p= 0.003) (Fig. 5C). We
observed that Ly6G+ neutrophil depletion increased photorecep-
tor survival on day 7 RD (989.00 ± 1123.10 vs. 813.00 ± 110.99,
p < 0.028) (Fig. 5D–F). Taken together, these results indicate that
peripheral Ly6G+ cell depletion significantly reduces the overall
subretinal space cellular infiltration and is neuroprotective for
photoreceptors in the detached retina.

DISCUSSION
In this work, we demonstrated that peripheral leukocyte infiltra-
tion in the detached retina is a significant contributor to
photoreceptor cell death. This immune cell infiltration is
ubiquitous in the detached retina, affecting superficial, deep,
and subretinal layers. Moreover, the selective depletion of
monocytes/macrophages or neutrophils reduced the infiltrating

cells in the detached subretinal space. Finally, this work
demonstrates that modulation of these cell populations is
neuroprotective for photoreceptors in the detached retina.
The detachment of the retina induces a significant chemoat-

tractant stimulus at the retina and RPE/Choroid [28, 29]. We
observed that the phenotype of peripheral myeloid infiltrating
cells varies with time and depth in the detached retina. Uninjured
retinas showed elongated EGFP+ cells which most likely carry
patrolling functions. At 24 hours following RD, early retinal
infiltrating cells have an ameboid round morphology, most likely
due to the early transmigration from retinal capillaries [30]. This
morphology can be observed consistently at the superficial, deep,
and subretinal layers. On day 7 following RD, as monocytes
differentiate into tissue-resident macrophages, they acquire a
ramified phenotype in the superficial and deep retinal layers,
which may indicate a modulatory or resting state, as previously
described [31]. However, myeloid-derived subretinal cells were
substantially larger and adopted a round ameboid morphology,
most likely given their phagocytic function [31]. Similar morpho-
logical changes have been described by Kaneko et al. [15]. In
conclusion, peripheral cells acquire different morphology and
possibly different functions, at different retinal layers and RD
phases.
Regarding, this peripheral immune cell infiltration, as the retina

is detached, myeloid cells infiltrate the retina and subretinal space.
Kaneko et al. have shown in retinal cryosections that transplanted
peripheral bone marrow cells infiltrated exclusively around the
detached retina 4 weeks following detachment [15]. However, we
found that the attached retina showed some marginal peripheral
infiltration on day 3 (Fig. 2B). It is challenging to grasp the
potential outcomes of this early infiltration of the attached retina.
Of note, studies have suggested visual decline in macula-on RD
[32, 33]. Di Lauro et al. showed in a prospective multicentric study
that about 14.9% of macula-on RD patients experienced visual
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decline after successful reattachment surgery [33]. Despite the
pre- and intra-operative variables that may contribute to this
effect given the above-mentioned deleterious effects of peripheral
immune infiltration on photoreceptor survival, we speculate that
this marginal infiltration may contribute to photoreceptor
dysfunction and subsequent visual impairment in the attached
retina.
Using flow cytometry analysis in the detached retina, Kiang and

colleagues found that microglia and myeloid cell numbers were
significantly increased at 3 days after detachment, while not at
day 1 [34]. However, we cannot conclude that the number of
retinal microglia changes with RD, since no microglia-specific
marker or proliferation assays were presented. In a similar
experimental model, Conart et al. described a rapid infiltration
of CD11b+ CD45hi Ly6G+ and CD11b+ CD45hi Ly6G− Ly6Chi cells,
peaking at day 1 in the detached retina [35]. We observe a similar
pattern in Ly6G and Ly6C+ cells, however, we observe a sustained
infiltration of the detached retina with a significantly higher
CD11b+ population at day 7, in flow cytometry samples and
retinal wholemounts.
The cellular and molecular events triggered in retinal detach-

ment have been compared to a wound-healing response [36–38].
The cytokine cascade, leukocyte migration, and extracellular
matrix remodeling are features of both processes [38]. The
migration of peripheral leukocytes upon injury is characterized
by early infiltration of neutrophils and consecutive monocyte
migration. The neutrophil and monocyte/macrophage infiltration
evidenced in this injury model parallels this inflammatory cellular
recruitment paradigm. We observed that subretinal neutrophils
peak on day 1, whereas monocytes/macrophages on day 3 after
retinal detachment. It is interesting to note that no other cell was
found in the subretinal space, which suggests a predominant role
of the innate immune response in this model.
Systemic monocyte/macrophage depletion with clodronate

liposomes significantly reduced infiltrating CD11b+ cells on days
1 and 7. Using this approach, Drabek et al. have demonstrated
that clodronate liposomes do not cross the blood–brain barrier
[26]. Moreover, Peng et al. have shown that this approach does
not deplete microglia in the retina [24] or central nervous system
[25]. Taken together, this suggests that the observed photo-
receptor protection seen in our work corresponds to peripheral
and not spurious microglial depletion. Interestingly, monocyte/
macrophage depletion has been shown to be protective of the
outer retina in sodium iodate (NaIO3)-induced retinal degenera-
tion [39]. However, this model induces a combined outer retina
and RPE degeneration. Therefore, it is cumbersome to dissect the
effect of monocyte/macrophage depletion amid the concomitant
degeneration of the outer retina and RPE with NaIO3. In our work,
the induced experimental retinal detachment causes photorecep-
tor degeneration exclusively, without associated RPE cell death.
Altogether, this indicates that peripheral monocyte/macrophage
depletion is protective to the photoreceptors regardless of the RPE
status.
The effects of neutrophil depletion have been investigated in

other models. Kurimoto et al. have shown that neutrophils can
promote axon regeneration in an optic crush injury model, and
their depletion suppresses this process [40]. In addition, neutrophil
depletion has been studied in wound healing. Dovi et al. have
shown that epidermal wound healing was significantly faster in
neutrophil-depleted mice compared to controls [41]. In our work,
we found that despite the theoretical advantage of neutrophil-
mediated debris clearance, depletion of these cells showed
increased photoreceptor survival. We found that besides Ly6G+
cell depletion 24 hours following RD, CD11b+ cells showed a
similar reduction. It is important to note that neutrophil depletion
was performed with the anti-Ly6G antibody (clone 1A8), which
specifically depletes Ly6G+ cells, without cross-reactivity with
Ly6C+ [42]. In the bone marrow, monocytes are transiently Ly6G+,

while mature monocytes express Ly6C but not Ly6G [43].
Altogether, this suggests that the anti-Ly6G (1A8) antibody depletes
mature neutrophils and not monocytes/macrophages. Therefore,
we speculate that the protective effect of neutrophil depletion may
promote a parallel decrease in CD11b+ cell infiltration.
This work has several limitations. We used a pharmacological

approach to deplete monocytes and neutrophils. We chose this
alternative given the lack of commercially available conditional
murine models for these populations. In addition, flow cytometry
analysis showed lower fold changes compared to wholemount
analyses. This may be caused by the required sample pooling,
processing, or technical shortcomings of flow cytometry, which
may also conceal biological replicate variation.
In summary, the present work demonstrates that the peripheral

immune system plays an important role in photoreceptor
degeneration after retinal detachment. Monocyte/macrophage
and neutrophil depletion are protective for photoreceptor survival.
These findings illustrate the potential role of systemic therapeutics
to further abrogate visual loss following retinal detachment.
Further studies are needed to delineate the contribution of
monocytes/macrophages and neutrophils in retinal detachment.
Modulation of the innate immune system will likely promote
photoreceptor neuroprotection.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study will be openly available in the Open
Science Framework from the Center for Open Science at https://osf.io/umvf9/.
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