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Esophageal cancer is a highly incidence and deadly disease with a poor prognosis, especially in developing countries. Owing to the
lack of specific symptoms and early diagnostic biomarkers, most patients are diagnosed with advanced disease, leading to a 5-year
survival rate of less than 15%. Early (n= 50) and middle-advanced (n= 50) esophageal squamous cell carcinoma (ESCC) patients, as
well as 71 healthy individuals, underwent 5-hydroxymethylcytosine (5hmC) sequencing on their plasma cell-free DNA (cfDNA). A
Northern Chinese cohort of cfDNA 5hmC dataset of 150 ESCC patients and 183 healthy individuals were downloaded for validation.
A diagnostic model was developed using cfDNA 5hmC signatures and then improved by low-pass whole genome sequencing
(WGS) features of cfDNA. Conserved cfDNA 5hmC modification motifs were observed in the two independent ESCC cohorts. The
diagnostic model with 5hmC features achieved an AUC of 0.810 and 0.862 in the Southern and Northern cohorts, respectively, with
sensitivities of 69.3–74.3% and specificities of 82.4–90.7%. The performance was well maintained in Stage I to Stage IV, with
accuracy of 70–100%, but low in Stage 0, 33.3%. Low-pass WGS of cfDNA improved the AUC to 0.934 with a sensitivity of 82.4%, a
specificity of 88.2%, and an accuracy of 84.3%, particularly significantly in Stage 0, with an accuracy up to 80%. 5hmC and WGS
could efficiently differentiate very early ESCC from healthy individuals. These findings imply a non-invasive and convenient method
for ESCC detection when clinical treatments are available and may eventually prolong survival.
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INTRODUCTION
Esophageal cancer (EC) is a global problem that threatens people’s
health and life expectancy worldwide [1, 2]. Esophageal cancer
subtypes, esophageal squamous cell carcinoma (ESCC) and
esophageal adenocarcinoma (EAC), displayed distinct geographic
variations [2, 3]. ESCC is apparently higher in China and in
transitioning countries of Central Asia, East and South of Africa
[2, 3]. Due to the absence of specific symptoms, most ESCC is
found at advanced stage, limiting the clinical benefit of patients
[4]. Therefore, early detection of ESCC when clinical treatments are
available is an important way to prolong survival. Endoscopy is
currently used for esophageal cancer diagnosis and treatment, or
ESCC early detection in high-risk individuals [5, 6]. However, due
to the invasive, inconvenient, time-consuming process, and low
cost-effective for individuals aged <55 years, endoscopy is not
suitable for large-scale screening [7, 8]. Although tumor markers
such as squamous cell carcinoma antigen (SCC), carcinoembryonic
antigen (CEA), and carbohydrate antigen 19-9 (CA19-9) are
correlated with esophageal carcinogenesis, the sensitivity is less
than 42% [9, 10]. Thus, there is an urgent demand for a less
invasive, convenient, and widely available method for ESCC
screening.

Liquid biopsy refers to a non-invasive and easily repeatable
method that performed molecular and genic analysis of
circulating tumor cells (CTCs) or cell-free DNA/RNA (cfDNA/
RNA) from liquid specimens, becoming a valuable tool for
cancer screening [11, 12]. However, due to the low detection
rate and specificity of CTCs and the structural instability of
cfRNA [13, 14], cfDNA is the most referred liquid biopsy analyte
and has proved to be an approved biomarker in EC screening,
detection and monitoring [15]. 5-hydroxymethylcytosine
(5hmC) is recognized as a better biomarker to detect gene
expression and exhibit more tissue specificity [16]. 5hmC has
been used as a promising marker for cancers like early-stage
pancreatic cancer, non-small-cell lung cancer (NSCLC), hepato-
cellular carcinoma (HCC), blood and colon cancer [17–22].
Recently, Chen et al. acquired cfDNA signatures such as shorter
fragment size, special motif, and nucleosome footprint (NF)
through whole genome sequencing (WGS) and identified
cancers from healthy control accurately, providing a new
method for cancer screening [23]. Furthermore, WGS enables
the detection of variants in cancer-related genes and establish-
ment of a comprehensive picture of the tumor in comparison
with whole exon sequencing (WES) and polymerase chain
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reaction (PCR) while being the most rapid and cost-effective
method used for cancer carrier screening [15, 24].
Therefore, we performed low-pass WGS and 5hmC technology

on cfDNAs from all enrolled participants to acquire 5’ end motif,
NF, fragment and 5’ hmC signatures profiles, and constructed a
weighted diagnostic model based on the performance of these
features to identify ESCC from healthy people in this
prospective study.

METHODS
Study participants and clinical features
All participants (aged 50–70) including ESCC (Stage 0/I, n= 50, stage II/III/
IV, n= 50) and healthy control (HC) (n= 71) were enrolled respectively
from Nanfang Hospital of Southern Medical University, with a male-to-
female gender ratio of 3:1. ESCC participants were restricted to patients
who has received initial treatments and were diagnosed with esophagus
and esophagogastric junction cancer in accordance with the eighth edition
of the AJCC/UICC cancer staging manuals at stage 0 through IV [25], and
confirmed cytopathologically and histologically. Hazard covariates like
living habits (especially hot food preference), family disease history, BMI,
smoking, drinking, etc., were kept consistent. Participants without ESCC
and other relevant diseases from the health examine center of Nanfang
Hospital were selected as HC. The other criteria were consistent with ESCC
group (ClinicalTrials.gov identifier, NCT03922230). Participants with insuffi-
cient data, sample contamination, or any other factors leading to
termination of the study were excluded.

Sample size calculation
Sample size calculation was referred to Hajian-Tilaki [26]. The required
sample size for each group of healthy control and ESCC is defined by:

N ¼
Z2

α
2
VðdAUCÞ
d2

where α can be caculated as follows and φ−1 is the inverse of standard
cumulative normal distribution (suppose the pre-determined value of
AUC= 0.934):

α ¼ φ�1 0:934ð Þ ´ 1:414 ¼ 1:5153 ´ 1:414 ¼ 2:142634

the VðdAUCÞ can be driven as follows:

V dAUC
� �

¼ 0:0099 ´ e
�α2
2

� �

´ 6α2 þ 16ð Þ

¼ ð0:0099 ´ e�2:1426342
2 Þ ´ ð6 ´ 2:1426342 þ 16Þ ¼ 0:043419

In order to estimate AUC with 95% confidence the degree of precision of
estimate about 0.05, the required sample size is obtained by inserting the
VðdAUCÞ and d= 0.05 as follows:

N ¼ 1:962 ´ 0:043419
0:052

¼ 67

which means there were 67 * 2= 134 samples needed for this study.

Blood sample preparation and cfDNA extraction
Peripheral blood samples were stored in cell-free tubes (Streck, USA) at 4 °C
for no more than 72 h before being separated into plasma. Plasma cell-free
DNA (cfDNA) was isolated using the MagMAX Cell-Free DNA Isolation Kit
(Thermo, USA) and quantified by Qubit® 4.0 Fluorometer (Life Technolo-
gies, USA), and then the DNA fragment size composition was assayed by
Fragment Analyzer (Agilent, USA).

5hmC sequencing and data processing
5hmC library construction and sequencing. 5hmC library construction was
performed according to the method previously described [27]. Briefly, 5–20 ng
cfDNA were end-repaired, A tailed (5X ER/A-Tailing Enzyme Mix, Enzymatics,
USA) and ligated with T-adaptors on both ends (WGS Ligase, Enzymatics,
USA). T-adaptors were conventional TruSeq DNA unique dual index adaptors
for the illumina sequencers. The sequences of the adaptors were as follows:
Index1 (i7) Adapters GATCGGAAGAGCACACGTCTGAACTCCAGTCAC [i7]
ATCTCGTATGCCGTCTTCTGCTTG, Index 2 (i5) Adapters AATGATACGGCG

ACCACCGAGATCTACAC[i5]ACACTCTTTCCCTACACGACGCTCTTCCGATCT.
Subsequently, ligated DNA was incubated in a 25 μl solution containing
50mM HEPES buffer (pH= 8.0), 25mM MgCl2, 60 μM UDP-6-N3-Glc (Active
Motif, USA) and 12.5 U βGT (Thermo, USA) for 2 h at 37 °C. Then, 2.5 μl DBCO-
PEG4-biotin (Click Chemistry Tools, USA) was added to the reaction mixture
and incubated for 2 h at 37 °C. Then, the DNA was purified after the ligation
with AMPure XP beads and was resuspended in Elution buffer (Qiagen,19086).
The purified DNA was incubated with 0.5 μl M270 Streptavidin beads (Life
Technologies, USA) pre-blocked with 0.67mg/mL salmon sperm DNA in
buffer 1 (5mM Tris pH 7.5, 0.5mM EDTA, 1M NaCl and 0.2% Tween 20) for
30min. The beads were shifted into the amplification reaction after washed.
Afterwards, DNA fragments containing 5hmC features were subjected to PCR
amplification, followed by the purification of the PCR products using AMPure
XP beads according to the manufacturer’s instructions. Finally, sequenced on
Illumina CN500. The whole process of cfDNA extraction, library construction
and sequencing was blinded to the investigators, except for the sample ID.
After removed adaptor and end sequence by trim_galore software (https://

github.com/FelixKrueger/TrimGalore) [28]. Acquired clean data was aligned to
the human reference genome (hg19/GRCh37) by Bowtie2 v2.2.5 (http://
bowtiebio.sourceforge.net/bowtie2/index.shtml) [29]. Picard Tools (http://
broadinstitute.github.io/picard/) and SAMtools (https://github.com/samtools/
samtools/releases/download/) [30] were used to process and filter PCR
duplicates for mapped BAM files. Reads with a duplicate ratio of less than 65%
and an enrichment efficiency over 95-fold were used for further analysis.

5hmC peak identification. 5hmC-enriched regions were identified by ChIP-
seq [31] using a q value cut-off of 0.01 and model fold of [5, 32]). Peaks
with q < 1E-12 and fold enrichment >8 were considered highly reliable
5hmC-enriched peaks. The 5hmC enrichment level was expressed as
fragments per kilobase of 5hmC-DNA per million fragments mapped
(FPKM) and the peak regions were annotated using annotatr [33]. The
genome-wide distribution of 5hmC and the metagene profile were
visualized using Integrated Genomics Viewer [34, 35] and ngsplot [36].

Differential 5hmC peak regions detection
Differential 5hmC peak regions between the HC and ESCC groups were
identified using DESeq2 [37]. De novo motif analysis among the differential
5hmC peaks was performed using HOMER. Functional gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses
were performed using Metascape [38].

5hmC biomarkers identification and performance evaluation
All samples were randomly separated into the training and test set via
python random. 5hmC candidate biomarkers were identified and
optimized based on the Wilcoxon rank-sum test (P values < 0.001) and
Recursive Feature Elimination—Cross Validation approach in the training
set. To validate our results, the remaining samples in each group and 150
esophageal cancer and 183 healthy control plasma-5hmC data download
from a published article (designated as Northern ESCC cohort) [18] were
used as the internal and external test set, respectively.
Hierarchical clustering analysis of selected differential 5hmC biomarkers was

visualized using R [39]. GridSearchCV was performed in conjunction with
cross-validation to obtain optimal parameters for the Support Vector Machine
(SVM) to ensure the model performs well. The defined 5hmC-DNA regions and
their corresponding genes were finally applied to classify the test set samples.

Low-pass whole genome sequencing and data processing
WGS library construction, sequencing, and quality control. After being
extracted from peripheral blood, 1–10 ng cfDNA were end-repaired, ligated
with T-adaptors (Berry, China). The pre-libraries were purified by Clean NGS
beads (VdoBiotech, China) quantified by the KAPA Library Quantification
Kit (Kapa Biosystems, USA). Subsequently, the size of cfDNA fragment was
confirmed using Bioanalyzer (Agilent, USA) and was then followed by
library construction. The sequencing libraries were pooled in equal amount
and then sequenced on Illumina CN500 (Illumina, San Diego, USA) with an
average coverage of 2× at Berry Oncology. The whole process of cfDNA
extraction, library construction and sequencing was blinded to the
investigators, except for the sample ID.
After the adaptor and end sequence were removed by fastp software

(https://github.com/OpenGene/fastp). Acquired clean data were aligned to
the human reference genome (hg19/GRCh37) using bwa-mem (https://
github.com/lh3/bwa). SAMtools (http://samtools.sourceforge.net/) [30]
were used to get rid of marked duplicates, unmapped reads, and low-
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quality reads. Only reads with a duplicate rate of less than 15% and a
mapping rate of more than 95% were used for further analysis.

WGS-based biomarkers identification and integrated model construction. To
select more effective biomarkers for distinguishing ESCC samples from
healthy controls, all samples were randomly separated into the training set
and the test set using python random. Wilcoxon rank-sum test was used to
compare biomarker features between ESCC and HC groups. The Least
Absolute Shrinkage and Selection Operator (LASSO) methods were applied
to further reduce the number of biomarkers in the training set. The
detailed selection process is as follows.

5′ end Motif: Different types of 4mer 5′ end motif were identified using
Pysam without considering chromosome Y and unidentifiable bases and then
filtered out by 1) P≥ 0.05 in the Wilcoxon rank-sum test; and 2) having a
weight of 0 via LASSO. Eventually, 120 motif types were left for further analysis.

NF: A total of 30,588 genes were recruited and filtered out by 1) more
than 10% of the samples had an NF score of 0 (NF score is calculated as: NF
Score= (background1+ background2)/2-Promotor); 2) P ≥ 0.001 in the
Wilcoxon rank-sum test; and 3) a weight of 0 via LASSO. Eventually, 170
genes were selected for further analysis.

Fragment: The whole genome, except the Y, was divided into bins of
1 M, resulting in 3055 areas. The areas with a weight of 0 were filtered out
using LASSO, and finally, 10 areas were retained.
Thereafter, SVM was utilized for model construction. Tenfold cross-

validation was applied to optimize the combination parameters in the
training set, and the cut-off value was set at the point with the best
diagnostic accuracy. To obtain the best diagnostic model, a logistic
regression model was generated using the predictive score of the four
individual models, which was calculated as follows.
Logistic Score = exp(Z)/(1+ exp(Z)), where Z=−2.57+ (3.35 × NF) +

(0.05 × Fragment)+ (0.75 ×Motif)+ (1.74 × 5hmC)
Receiver operating characteristic (ROC) curves [40] were generated to

evaluate the performance of the prediction algorithm using the pROC [41]
library in R. The sensitivity and specificity were estimated at the score cut-
off that maximizes the sum of sensitivity and specificity, using the ROCR
library in R.

RESULTS
Samples composition and study design
A total of 171 adult subjects, including patients with Early ESCC
(stages 0, IA and IB, n= 50), and middle and advanced (Mid-Ad)

Table 1. Summary of demographic and clinicopathological characteristics of all the participants in this study.

Characteristics HC (n= 71) Early ESCC (n= 50) Mid-Ad ESCC (n= 50) P value

Demographic

Gender Male 54 37 37

Female 17 13 13

Age (years) (mean, range) 58 (52–63) 60 (50–70) 59 (50–70) 0.09

BMI (mean, range) 22.9 (15.2–28.7) 22.2 (17.6–29.8) 22 (16.4–27.3) 0.28

Salted foods (like/dislike) 18 (41)a 16 (34) 25 (25) 0.074

Smoking (yes/no) 31 (28)a 30 (20) 31 (19) 0.568

Drinking (yes/no) 28 (31)a 20 (30) 29 (21) 0.194

Fresh vegetables and fruits (like/
dislike)

42 (17)a 38 (12) 34 (16) 0.67

Family history (with/without) 0 (59)a 10 (40) 6 (44) 0.002

Hypertension (with/without) 10 (49)a 13 (37) 7 (43) 0.275

Diabetes (with/without) 2 (57)a 6 (44) 5 (45) 0.235

Clinical

Differentiation G0 NA 27 NA

G1 NA 16 20

G2 NA 6 21

G3 NA 1 9

TNM stages 0 NA 27 NA

IA NA 3 NA

IB NA 20 NA

IIA NA NA 19

IIB NA NA 7

IIIA NA NA 1

IIIB NA NA 19

IVA NA NA 4

Surgery MATHE NA 12 NA

McKeown NA 9 24

Sweet NA 18 25

IvorLewis NA NA 1

ESD NA 11 NA

Patients were classified into three groups: HC, Early ESCC, and Mid-Ad ESCC.
HC healthy controls, Mid-Ad middle-advanced, ESCC esophageal squamous cell carcinoma, MATHE mediastinoscope-assisted transhiatal esophagectomy, ESD
endoscopic submucosal dissection, P value in chi-square test or t test.
aThere were 12 unknown findings.
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ESCC (stages II, III and IVA, n= 50), as well as HC (n= 71) were
prospectively enrolled from August 2018 to December 2020 from
Nanfang Hospital of Southern Medical University as a Southern
Chinese cohort. As illustrated in Table 1, there were no apparent
differences among the clinical information, such as gender, age,
BMI, living habits, differentiation of cancer, TNM stages and
surgery selections, and the incidences of hypertension and
diabetes (P > 0.05), except for family history (P < 0.05), which
suggested that family history might play an important role in
tumorigenesis. We further analyzed the clinicopathological
characteristics of ESCC patients and HC, found the age and
gender distributions among HC, Early ESCC and Mid-Ad ESCC
groups were unbiased (P > 0.5, Supplementary Table S1 and Fig.
S1). For biomarker screening and classifier model construction,
ESCC patients and HC individuals were randomly divided into two
groups: 2/3 as a training set and 1/3 as an internal validation set
(Fig. 1 and Supplementary Fig. S2).

Conserved 5hmC modification changes and potential
biomarkers for ESCC diagnosis
We identified 5hmC-enriched regions in each sample and found
that 5hmC peaks density exhibited a broader distribution in ESCC
group compared to HC group (Fig. 2A). The number of ESCC 5hmC
peaks was significantly higher than HC cohort (Mann-Whitney U
test, P value= 3.11 × 10−5, Supplementary Fig. S3) and signifi-
cantly increased from stage 0 to stage IV (Mann-Kendall Test, P
value= 1.65 × 10−3, Fig. 2B). Consistent with previous study [18],
the ESCC group had higher 5hmC modification levels within
promoter and gene body regions (Fig. 2C). Among 398 5hmC up-
regulated peaks and 227 5hmC down-regulated peaks in ESCC
groups, 5hmC up-regulated peaks were significantly enriched in
promoters (28.14%) and 1st intron regions (15.58%) (i.e., mainly in
the regulation regions of a gene) on the whole genome level,
while more 5hmC down-regulated peaks were located in other
introns (37.44%) and distal intergenic regions (39.21%) (Fig. 2D).
To understand the correlation of 5hmC changes with potential

binding proteins, 5hmC motif enrichment analysis was performed.
Consistent with a previous study, the ERG motif (P= 1e-5, 28.83%)
was the most significantly enriched motif in 5hmC upregulated
peaks [18], followed by ETS1 (P= 1e-4, 20.25%) and ETV2 motif
(P= 1e-3, 17.79%), all of which belong to the ETS transcription
factors family and bind to the consensus DNA sequence 5′-

AGGAA-3′ (left in Fig. 2E), most of which are downstream nuclear
targets of Ras-MAP kinase signaling, and associated with cell
development, differentiation, proliferation, apoptosis and tissue
remodeling. In contrast, the top three motifs in 5hmC down-
regulated peaks were GATA3 (P= 1e-5, 29.23%), GATA4 (P= 1e-5,
22.31%), and TRPS1 (P= 1e-4, 33.85%) (right in Fig. 2E). These are
also consistent with previous study showing that GATA motif was
identified in 5hmC-loss regions for esophageal cancer [18]. These
results showed the unique signature of plasma cfDNA 5hmC,
representing a potential biomarker for discriminating ESCC from
healthy individuals.

Screening, validation, and performance of candidate 5hmC
biomarkers and classifier
For diagnostic model construction, 925 candidate 5hmC marker
genes that derived from promoter and genebody regions were
selected by Wilcoxon rank-sum test P values < 0.001 in the training
set. Subsequently, we further identified a disease-specific panel of
273 5hmC marker genes (Supplementary Table S2), and the distinct
5hmC landscapes showed apparent separation between ESCC and
HC groups (Fig. 3A). GO and KEGG analyses showed that the function
of 273 5hmC biomarkers were enriched in pathways associated with
cancer and metastasis and mapped to tumor-related genes (Fig. 3B).
For instance, Fig. 3C exhibited the IGV plot of the high-weight
biomarker located at FOXK1 gene, which plays an oncogenic role in
the development of esophageal cancer [42]. 5hmC-based model
illustrated decent capacity for distinguishing ESCC from HC
individuals in both the internal test set (Area under curve (AUC)=
0.810 (95% CI: 0.693–0.927); sensitivity= 74.3%; specificity= 82.4%)
and the external test set (AUC= 0.862 (95% CI: 0.822–0.902);
sensitivity= 69.3%; specificity= 90.7%) (Fig. 3D, E). The performance
in the external test set was better than the internal test set, probably
caused by 27% (27/100) stage 0 patients in our cohort who might be
misclassified as HC individuals.
In order to validate, we further analyzed the prediction accuracy

of 5hmC biomarker classifier for different clinical stages. Though
the probability of being predicted as cancer gradually increased
with the progression of cancer stage (Fig. 3F), the 5hmC score
between Early ESCC (stage 0 and I) and HC individuals displayed a
significant disparity (P value= 4.35 × 10−2, supplementary Fig. S4),
which suggested the poor capacity of the 5hmC model to
discriminate Early ESCC from HC individuals. Meanwhile, the 5hmC

Fig. 1 Sketch map of study design and research pipeline for early detection of ESCC. A 5hmC-based diagnostic model and low-pass WGS-
based diagnostic model were developed to identify ctDNA from plasma cfDNA using a machine learning approach. A total of 171 subjects
were involved as a Southern ESCC cohort, and blood samples were collected to perform 5hmC-seqeuncing and low-pass WGS, respectively.
Two-thirds of the subjects were randomly selected as a training set, and the remaining one-third of the subjects were used as an
independently internal Southern-ESCC test set to evaluate the model performance. A downloaded ESCC-5hmC dataset was used as an
independent external Northern-ESCC test set. The research pipeline details are illustrated in supplementary Fig. S2. ctDNA cell-free tumor
DNA, cfDNA cell-free DNA, HC healthy controls individuals, ESCC esophageal squamous cell carcinoma, Mid-Ad middle-advanced, 5hmC 5-
hydroxymethylcytosines, WGS whole genome sequencing.
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score accurately distinguished stage I and HC samples (P
value= 4.54 × 10−3), as well as stage 0 and stage I, II, III–IV (P
values= 4.64 × 10−2, 1.46 × 10−2 and 9.85 × 10−3, respectively,
Fig. 3F). However, in differentiating stage 0 from HC samples,
5hmC score was not the best diagnostic feature (P value= 0.40,
Fig. 3F), and the diagnostic accuracy (33.3%, Supplementary Fig.
S5B) needed to be further improved.

Integrated model based on cfDNA signatures of low-pass WGS
and 5hmC biomarkers improved diagnostic scores for
early ESCC
To explore the prediction potential of plasma cfDNA and search
for more effective biomarkers, we employed low-pass WGS to
acquire genome-wide 5′ end motif [43], NF [44] and fragmentation
[45] profiles from 71 HC and 93 ESCC samples. ESCC were clearly
separated from HC samples by differential 5′ end motif
hierarchical clustering (Fig. 4A). NF heatmap analysis indicated

that genes with differential reads coverage between promoter
and background regions (P < 0.001) held power to distinguish
ESCC from HC (Fig. 4B). The cfDNA fragment size of ESCC was
more variable and much shorter (median size < 150 bp) than HC
(Fig. 4C). Collectively, all three genome features of cfDNA showed
promising diagnostic potential for ESCC.
As illustrated in Fig. 1 and Supplementary Fig. S2, HC individuals

and patients with Early and Mid-Ad ESCC were randomly assigned
to a training set (about 2/3 of samples, including 54 HC, 30 Early
ESCC, and 29 Mid-Ad ESCC) and a validation set (the rest of the
samples). Eventually, 120 differential motif types, 170 differential
NF genes and 10 fragment areas were selected for model training
(Supplementary Tables S3A–S3C). The motif-based discrimination
model achieved an AUC value of 0.870 (95% CI: 0.769–0.972) with
sensitivity of 73.5% at specificity of 82.4% for ESCC classification in
the test set (Fig. 4D, Supplementary Fig. S5A). The NF and
fragmentation model achieved less powerful performance with an

Fig. 2 Genome-wide distribution of 5hmC signals in plasma cfDNA of ESCC and HC individuals. A Comparison of density distribution of
5hmC peaks number in plasma samples from 71 HC and 100 patients with ESCC. B Comparison of the total number of 5hmC peaks in HC and
ESCC patients with stage 0–I, II, III–IV. Each dot depicts an individual cfDNA sample. P value shows statistical significance by Mann-Kendall Test.
C Metagene profiles of mean values of 5hmC read counts on the regions from TSS to TES with the flanking 3000-bp in HC and ESCC samples.
D Distribution of differential 5hmC peaks in genomic elements in ESCC samples versus HC samples. E Top enriched known transcription factor
binding motifs detected in differential 5hmC peaks (left: 5hmC up-regulated; right: 5hmC down-regulated). Motif information was obtained
from the Homer motif database. The value in parenthesis represents the percentage of target sequences enriched with the binding motif of
the indicated transcription factor. HC healthy controls, ESCC esophageal squamous cell carcinoma, TSS transcription start sites, TES
transcription end site, 5hmC 5-hydroxymethylcytosines.
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AUC value of 0.813 (95% CI: 0.665–0.961) and 0.806 (95% CI:
0.677–0.936), respectively (Fig. 4D). Compared with the 5′ end
motif model, the fragmentation model demonstrated a higher
sensitivity of 79.4% at the same specificity (82.4%), and the NF
model showed excellent sensitivity of 91.2% but a lower specificity
of 70.6% (Supplementary Fig. S5A).
An integrated diagnostic model was constructed by combining

genomic features and 5hmC biomarkers, and it achieved an

excellent AUC of 0.934 (95% CI: 0.867–1.000) with a sensitivity of
82.4%, specificity of 88.2%, and accuracy of 84.3% for ESCC
classification in the test set (Fig. 4D, E). The diagnostic score
showed an increasing trend from HC to ESCC, and the scores in
stage 0 and I patients were significantly higher than those in HC (P
values= 1.10 × 10−2 and 3.31 × 10−5, respectively, Fig. 4F), imply-
ing the integrated model had great potentials for ESCC early
diagnosis. The integrated model had good but slightly reduced

Fig. 3 Development, validation and performance of 5hmC diagnostic model. A Unsupervised hierarchical clustering of 71 HC and 100 ESCC
cfDNA samples based on top 273 5hmC marker genes. B GO enrichment (left) and KEGG pathway enrichment (right) analysis of 273
biomarkers of the 5hmC classifier. C The normalized 5hmC values of FOXK1 in HC and ESCC samples. ROC curves and associated AUC values in
the internal test set (D) and the external test set (E). F Predictive probability scores based on 5hmC classifier for different clinical stages of
internal test set samples. HC healthy controls, ESCC esophageal squamous cell carcinoma, FOXK1 forkhead box K1, ROC receiver operating
characteristic, AUC area under curve, 5hmC 5-hydroxymethylcytosines.
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power to call stage III–IV patients (Fig. 4F), who are supposed to
have more complex tumorous DNA profiles. We compared the
diagnostic performance between the 5hmC model and integrated
model on each ESCC patients in the test set (Fig. 4G). The
integrated model displayed a higher prediction accuracy than the
5hmC model for early ESCC detection, especially in stage 0 (80.0%
vs 33.3%, Fig. 4G, Supplementary Fig. S5B). For advanced ESCC
patients (stage IIIB and IVA), the 5hmC model showed better
performance. These data demonstrate that genome-wide integra-
tion is a sensitive and robust approach for early-stage ESCC
screening.

DISCUSSION
Due to the absence of specific symptoms and lack of effective
curable methods, ESCC is one of the most deadly cancers worldwide.
ESCC screening mainly depends on endoscopy and tumor markers
such as SCC, CEA and CA19-9 [8, 10]. However, invasiveness and
inconvenience of the endoscopy and low sensitivity and specificity of
tumor markers limited the detection of ESCC at early stage. Recently,
liquid biopsy such as 5hmC and WGS were found to be potentially
used in cancer screening and the sensitivity and specificity of which
are up to 93.75% and 85.71%. Nonetheless, the participants either
lack stage 0 or the sensitivity of stage 0 and I ESCC detection was

Fig. 4 Development, validation and performance of the integrated diagnostic model. A Heatmap analysis of differential motifs (p
value < 0.001) between ESCC and HC samples. B Heatmap analysis of genes with differential reads coverage between gene promoter and
background regions (p values < 0.001) in ESCC and HC samples. C Frequencies comparison of different fragment sizes between ESCC and HC
samples. D ROC curves and associated AUC values in the test set. E Confusion matrices of integrated diagnostic model comparing the actual
class with the predicted class for ESCC (n= 34) and HC (n= 17) samples in the test set. F Predictive probability scores based on integrated
diagnostic model for different clinical stages of the test set samples. G Comparison of diagnostic performance between 5hmC model (blue)
and integrated model (red) on different clinical stages of the test set ESCC samples (n= 35). The blue and red dotted line represent the
thresholds of diagnostic positive of the 5hmC model and the integrated model, respectively. Positive ESCC detection is indicated by black
dots, negative ESCC detection indicated by blank. HC healthy controls, ESCC esophageal squamous cell carcinoma, ROC receiver operating
characteristic, AUC area under curve, 5hmC 5-hydroxymethylcytosines.
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unsatisfactory [7, 18], which means the availability of 5hmC or WGS
in early ESCC detection is insufficient.
In this prospective study, we employed 5hmC and WGS on ESCC

and HC participants respectively, and constructed classifiers using
5hmC biomarkers only or 5hmC combination with low-pass WGS
to perform early ESCC detection. On the utilization of 5hmC
markers, we distinguished ESCC patients from HC individuals in
both internal and external test set. The performance of 5hmC
classifier in different ESCC stages was outstanding, which is
consistent with the prediction that 5hmC has the potential to be
promising biomarkers for non-invasive detection of EC. Significant
differences of each comparable group (Early ESCC (stage 0 and I)
vs HC individuals, stage I vs HC samples, and stage 0 vs stage I/II/
III–IV) implied 5hmC may participate in tumor progress and can be
used in ESCC monitoring. However, even though we optimized
the inclusion strategy through enrolled stage 0 ESCC patients in
comparison with previous study to enhance the detection
accuracy of early ESCC from healthy [46], the accuracy of
differential stage 0 from HC is only 33.3%, which means to
identify stage 0 from HC based on 5hmC only is difficult and need
further investigation.
WGS could provide the whole genomic profile of tumor DNA

and has been widely used in cancer detection, diagnosis and
monitoring [47]. Recently, an integrated method based on the
unique genome features of cfDNA derived from WGS for HCC
diagnosis was constructed and accurately distinguish HCC from
HC [27, 48]. Considering the importance of early ESCC detection
and the deficient detection efficiency between early-stage ESCC
(stage 0) and HC samples, we establish an integrated diagnostic
classifier consisting of genome-wide 5′ end motif, NF, fragmenta-
tion profiles that derived from low pass WGS, and 5hmC
biomarkers, and achieved an excellent AUC value of 0.934 with
a sensitivity of 82.4%, specificity of 88.2%, and accuracy of 84.3%
for ESCC patient classification in the test set. It should be noted
that the diagnostic scores of ESCC patients with stage 0 and I
were significantly higher than that of HC subjects (P
values= 1.10 × 10−2 and 3.31 × 10−5, respectively). The combina-
tion of low-pass WGS cfDNA signatures and 5hmC biomarkers
improved the classifier’s efficiency from 65% to 82% of sensitivity
at the specificity of 88% on an overall level. Most importantly, for
stage 0 patients who had low disease burden, the combined
classifier significantly improved the prediction accuracy from
33.3% to 80.0%. The sensitivity of early ESCC was significantly
higher than previous study [7], which suggested a better
performance of early ESCC detection, especially in stage 0.
In general, more and more studies have shown that

integrating multi-omics detection is a promising methodology
for non-invasive early diagnosis of many types of cancer. Both
5mC and 5hmC were presumed to have an important role in
gene expression and regulation, and their modification changes
were observed in a wide range of malignant tumors, including
ESCC [32, 49–52]. Similarly, the combination of 5hmC and WGS
efficiently differentiated very early ESCC from HC either in south
or north cohort, implying curable treatment and better survival
of ESCC. Combining these epigenomics signal detection with
whole-genome-wide features was worthy of attempts to further
improving the specificity and sensitivity for early diagnosis of
different subtypes and stages of ESCC patients. Although the test
cohort population in this study was still limited, further
investigations about the stability of this model, the discriminat-
ing capabilities for different subtypes of esophageal cancer, or
the practical application values are needed to execute. The
performance of 5hmC and WGS afford a non-invasive and
convenient method for the early detection of ESCC. The
potential utilization of multi-omics provides an innovative
clinical diagnostic strategy and will ultimately bring ESCC with
positive benefits.
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