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RNA helicase DDX5 modulates sorafenib sensitivity in
hepatocellular carcinoma via the Wnt/
β-catenin–ferroptosis axis
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Reduced expression of the RNA helicase DDX5 associated with increased hepatocellular carcinoma (HCC) tumor grade and poor
patient survival following treatment with sorafenib. While immunotherapy is the first-line treatment for HCC, sorafenib and other
multi-tyrosine kinase inhibitors (mTKIs) are widely used when immunotherapy is contra-indicated or fails. Herein, we elucidate the
role of DDX5 in sensitizing HCC to sorafenib, offering new therapeutic strategies. Treatment of various human HCC cell lines with
sorafenib/mTKIs downregulated DDX5 in vitro and in preclinical HCC models. Conversely, DDX5 overexpression reduced the
viability of sorafenib-treated cells via ferroptosis, suggesting a role for DDX5 in sorafenib sensitivity. RNAseq of wild-type vs. DDX5-
knockdown cells treated with or without sorafenib identified a set of common genes repressed by DDX5 and upregulated by
sorafenib. This set significantly overlaps with Wnt signaling genes, including Disheveled-1 (DVL1), an indispensable Wnt activator
and prognostic indicator of poor survival for sorafenib-treated patients. DDX5-knockout (DDX5KO) HCC cells exhibited DVL1
induction, Wnt/β-catenin pathway activation, and ferroptosis upon inhibition of canonical Wnt signaling. Consistently, xenograft
HCC tumors exhibited reduced growth by inhibition of Wnt/β-catenin signaling via induction of ferroptosis. Significantly,
overexpression of DDX5 in HCC xenografts repressed DVL1 expression and increased ferroptosis, resulting in reduced tumor growth
by sorafenib. We conclude that DDX5 downregulation by sorafenib mediates adaptive resistance by activating Wnt/β-catenin
signaling, leading to ferroptosis escape. Conversely, overexpression of DDX5 in vivo enhances the anti-tumor efficacy of sorafenib
by suppressing Wnt/β-catenin activation and induction of ferroptosis. Thus, DDX5 overexpression in combination with mTKIs is a
promising therapeutic strategy for HCC.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is a primary cancer with increas-
ing global incidence [1]. Curative treatments for early-stage HCC of
all etiologies include surgical resection, liver transplantation, and
percutaneous ablation. In advanced HCCs, multi-tyrosine kinase
inhibitors (mTKIs), sorafenib [2] or lenvatinib [3], followed by
regorafenib [4], cabozantinib [5], and the anti-angiogenic mono-
clonal antibody ramucirumab [6] impact on patient survival, but
the overall benefit is limited by primary or secondary resistance.
The success of combination therapy targeting both VEGF
(bevacizumab) and PD-L1 (atezolizumab) [7] and its tolerability
[8] have led to its adoption as a first-line treatment. However,
mTKIs are still widely used in patients with advanced HCC
experiencing contra-indications to immunotherapy [9]. Elucidating

the mechanism of mTKI sensitivity will guide the development of
new therapeutic strategies to improve mTKI anti-tumor efficacy.
Various mechanisms of sorafenib resistance have been identi-

fied, including crosstalk between PI3K/AKT and JAK/STAT path-
ways, activation of hypoxia-inducible pathways, and epithelial-
mesenchymal transitions [10, 11]. Sorafenib response is associated
with evasion from ferroptosis [12, 13]. Ferroptosis, a non-apoptotic
regulated cell death mechanism, involves membrane lipid
peroxidation by ferrous iron (Fe2+) under conditions of increased
reactive oxygen species (ROS) [14]. Oxidation of polyunsaturated
fatty acid-containing phospholipids, an iron-dependent process,
results in the formation of lipid peroxidation by-products such as
malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) [15]
which are hallmarks of ferroptosis [16]. In cancer cells, glutathione
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peroxidase 4 (GPX4) converts lipid hydroperoxides to lipid
alcohols, thereby reducing lipid peroxidation, membrane oxidative
damage, and ferroptosis [17].
Dysregulation of RNA binding proteins (RBPs) has been

identified in several types of cancers [18]. The RBP DDX5 is a
DEAD-box RNA helicase [19]. DEAD box helicases unwind RNA
duplexes, displace proteins from RNA, remodel RNA-protein
complexes, and participate in all aspects of RNA biology [19, 20].
DDX5 is a transcriptional regulator with critical roles in cell growth
and differentiation [21], and exhibits diverse functions [19]. In
transformed hepatocytes, DDX5 regulates the function of the
Polycomb repressive complex 2 (PRC2) [22], and also regulates
STAT1 translation by resolving a G-quadruplex located in the
5’UTR of STAT1 mRNA [23]. HCC cell lines with stable DDX5
knockdown (DDX5KD) exhibit reduced sensitivity to sorafenib [24]
by an unknown mechanism. Herein, we present evidence that
DDX5 deficiency orchestrates the activation of Wnt/β-catenin
signaling in sorafenib-treated cells, thereby mediating escape
from ferroptosis, a mechanism linked to drug resistance in cancer
[25, 26].
Analyses of normal human liver and HCCs showed that reduced

DDX5 expression was associated with increased tumor grade and
worse overall survival of patients treated with sorafenib. Intrigu-
ingly, sorafenib reduced the expression of DDX5 in human HCC
cell lines and preclinical HCC models, while overexpression of
DDX5 in sorafenib-treated cells reduced viability by induction of
ferroptosis. Comparison of the transcriptome of wild-type (WT) vs.
DDX5-knockdown (DDX5KD) HCC cells, treated with or without
sorafenib, identified more than 300 genes mutually repressed by
DDX5 and induced by sorafenib. KEGG pathway analyses of these
common upregulated genes identified the Wnt pathway among
the top-ten predicted pathways. Wnt signaling is associated with
cancer stem cell renewal [27–29], contributing to poor prognosis
and immunosuppression [30–32]. Moreover, Wnt signaling is
involved in all aspects of liver development e.g., zonation,
regeneration, and homeostasis [33], and is relevant to HCC
pathogenesis and drug resistance [34, 35]. Recent studies have
linked Wnt/β-catenin activation to ferroptosis escape and
chemotherapy (cisplatin) resistance in gastric cancers [36].
Accordingly, we focused on the role of DDX5 and Wnt/ β-catenin
activation. We show DDX5 downregulation or DDX5-knockout
(DDX5KO) increased expression of DVL1, indispensable for Wnt
activation, and ferroptosis escape in response to sorafenib. DVL1
overexpression is associated with worse overall survival of patients
treated with sorafenib, linking our observations to clinical data.
Notably, inhibition of Wnt/ β-catenin signaling or overexpression
of DDX5 in a preclinical HCC model improved the anti-tumor
efficacy of sorafenib, reducing tumor growth. These results
identify DDX5 overexpression as a novel therapy to enhance the
anti-tumor efficacy of mTKIs in the treatment of advanced HCC.

MATERIALS AND METHODS
Cell culture
Human HCC cell lines utilized include: WT HepAD38 [37], DDX5-
knockdown (DDX5KD)-HepAD38 [24], Dox-inducible HepaRG-FLAG-DDX5
[23], Dox-inducible Huh7-FLAG-DDX5, HepAD38-FLAG-DDX5 grown as
described [23], Dox-inducible Huh7-DVL1 and HepAD38-DVL1 cell lines;
SNU387, SNU423, Hep3B, Huh7, and HepaRG grown according to ATCC
recommendations. Cell lines were routinely tested for mycoplasma.
HepAD38 cell lines were authenticated by short tandem repeat (STR)
analysis.

CRISPR/Cas9 gene editing
Huh7 cells were used to introduce indels targeting exon 2 of the DDX5
gene, using CRISPR/Cas9 system. Ribonucleoprotein of Cas9-2NLS
(10 µmol, Synthego) and guide RNA (100 pmol, Synthego) were electro-
porated into 1.2 × 105 cells, using Neon Transfection System at 1200 V, for
20ms and four pulses (ThermoFisher Scientific), according to

manufacturer’s instructions. The incorporation of indels was determined
using genomic DNA isolated 48 h after electroporation and rapid
polyacrylamide gel electrophoresis-based (PAGE) [38]. Primers used for
the rapid PAGE genotyping method: fwd 5’-AACCTGGGTATAGCCATTTGAA-
3’, rev 5’-CCTGATGAAGCCACATGAATTTAC-3’. Validated pools of cells were
subjected to clonal selection. The genomic DNA of individual clones was
analyzed by polymerase chain reaction (PCR) and DNA sequencing of
purified PCR products.

Transfection assays
HCC cell lines (5 × 104 cells) transfected with 100 ng of Wnt-Reporter
TOPFlash (TCL/LEF-Firefly Luciferase) vector and Renilla luciferase (100 ng).
Indicated siRNAs (50 pM) transfected using RNAiMax (Life Technologies).
Luciferase activity was measured 48 h after transfection using the Dual
Luciferase Assay System, according to the manufacturer’s instructions
(Promega), and normalized to Renilla luciferase. Plasmids and siRNAs are
listed in Supplementary Table S1.

C11-BODIPY 581/591 assay
Cells were seeded into a 29mm glass bottom dish with 14mm micro-well
#1.5 cover glass and treated with DMSO (vehicle), sorafenib (15 μM), or
siRNAs transfected for 24 h, as indicated. Cells were labeled with 5.0 μM
C11-BODIPY 581/591 (Life Technologies) at 37 °C for 10min and visualized by
fluorescence microscopy at 510 nm and 590 nm.

Lipid peroxidation assays
Malondialdehyde (MDA) (ab233471) and 4-hydroxynonenal (4-HNE)
(ab238538) assays were carried out as described by manufacturer (Abcam).

Cell viability assays
HCC cells (1 × 104) seeded in 96-well plates treated with DMSO, sorafenib
(7.5–10 μM), ferrostatin (10 µM), Z-VAD-FMK (10 µM), necrosulfonamide
(4.0 µM), or transfected with siRNAs (50 pM) for 24 h. Growth inhibition was
measured at 490 nm using the CellTiter 96 AQueous One Solution Cell
Proliferation assay, a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphe-
nyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS)-based assay (Promega). Viabi-
lity (100%) refers to A490 value of DMSO-treated cells. Background
absorbance was measured in wells containing medium and MTS.

Huh7 xenografts
Tumor xenografts were established by subcutaneous injection of 5 × 106

Huh7 cells per NRG mouse. When tumors reached a mean volume of
∼70–100mm3, mice were randomized to control and treated groups, and
received vehicle (5% DMSO+ 45% PEG400) or sorafenib orally at 40 mg/kg
daily for the first 7 days, followed by 80mg/kg daily for remaining 2 weeks.
Huh7 DDX5 overexpressing tumor-bearing mice were generated using
Dox-inducible Huh7-FLAG-DDX5 cells. Doxycycline-containing H2O (1.0 µg/
ml) was fed to half the mice, 48 h prior to daily administration of sorafenib
(80mg/kg, 5 days/week), when tumor volume reached 50–70mm3.

HBx/c-Myc mice
Bi-transgenic HBx/c-Myc mice were maintained at the Cancer Research
Center of Lyon (CRCL), France. Twenty-week-old mice (4 males and 12
females) were injected with Exitron nano 6000 contrast agent (Miltenyi
Biotech), and liver tumor growth was monitored by micro-computerized
tomography (µCT) once a week. Animals with a tumor diameter of 2 mm
were randomized into sorafenib-treated or vehicle groups. Sorafenib or
vehicle administered by oral gavage five times per week. µCT monitoring
continued until the animals died. The liver nodules measured included
those that appeared after the onset of treatment. Animals were sacrificed
at 6 weeks of treatment or when the tumor diameter was more than
12mm (ethical euthanasia). Peritumor tissues and tumors are excised and
frozen at −80 °C or fixed in formalin. Sections were stained with DDX5
antibody (Supplementary Table S2) and counterstained with hematoxylin
and eosin using the CRCL pathology platform.

Nanosac preparation
Nanosacs carrying siCtrl or siβ-catenin were prepared as previously
described [39]. Nanosac-encapsulated siRNAs were administered every
48 h intra-tumorally, delivering 3.0 µg siRNA per injection. Detailed
protocol for Nanosac preparation is included in Supplementary Materials.
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Immunoblotting is performed as described in Supplementary Materials.
Antibodies used are listed in Supplementary Table S2.
Immunohistochemistry assays are performed as described [23].

RNA preparation and qRT-PCR
Methods included in Supplementary Materials; primer sequences listed in
Supplementary Table S3, and reagents, chemical inhibitors, and kits in
Supplementary Table S4.

RNA-seq analysis
Detailed methods of transcriptomic analyses of WT HepAD38 [37] and
DDX5KD cells [24] treated with sorafenib are included in Supplementary
Materials. Gene set enrichment analysis (GSEA) was performed using GSEA
software [40].

Statistical analysis
Statistical analysis was performed using an unpaired t-test in GraphPad
Prism (version 6.0; GraphPad Software, San Diego, CA, USA). Differences
were considered statistically significant at p < 0.05.

RESULTS
DDX5 deficiency associated with increased HCC grade and
reduced patient survival in response to sorafenib
Our earlier studies suggested a role for DDX5 in poor prognosis
HCC [22], and that DDX5 knockdown enables HCC cells to form
hepatospheres, exhibiting growth insensitive to sorafenib [24] by
an unknown mechanism. Herein, we determined by immunohis-
tochemistry (IHC) the expression of DDX5 in human HCCs, using a
commercially available tissue microarray (US Biolab Corporation,
Inc.). In agreement with earlier results [22], HCC tumors of grade II
and III, exhibited a statistically significant reduction in the number
of hepatocytes with DDX5-positive immunostaining compared to
normal liver tissue (Fig. 1A, B and Supplementary Figs. S1A–S3).
Similarly, we analyzed DDX5 by IHC of 51 HCCs from patients
treated with sorafenib. Reduced immunostaining for DDX5 is
associated with reduced patient survival following treatment with
sorafenib (Fig. 1C and Supplementary Fig. S1B), suggesting a role
for DDX5 in the sorafenib response.

Sorafenib downregulates DDX5 in transformed hepatocytes in
vitro and in vivo
Intriguingly, we found that sorafenib treatment, 1–3 days, of
HepAD38 cells and various human liver cancer cell lines resulted in
progressive downregulation of DDX5 (Fig. 2A–E). Similarly, mTKIs
regorafenib and lenvatinib also progressively downregulated
DDX5 (Fig. 2F). To confirm these in vitro observations, we used
two preclinical models of HCC (Fig. 3). Huh7 xenografts in
immunocompromised NRG mice and the murine HCC model of
HBx/c-Myc bitransgenics [41]. HBx/c-Myc bitransgenics develop
liver tumors at 5–7 months without treatment with hepatocarci-
nogens [41], resembling human HCCs with a progenitor pheno-
type [42].
Mice bearing Huh7 tumors were treated with vehicle or

sorafenib daily for 20 days. DDX5 expression in untreated and
treated xenografts was quantified by immunoblotting (Fig. 3A)
and mRNA by qRT-PCR (Fig. 3B). Sorafenib significantly reduced
DDX5 expression in vivo, but did not significantly affect tumor
volume (Fig. 3C). Similarly, HBx/c-Myc mice (20 weeks old)
received sorafenib 5 days/week for 6 weeks. Liver tumor growth
in the HBx/c-Myc mouse model as a function of sorafenib showed,
as in Huh7 xenografts (Fig. 3C) and similar to what is observed in
HCC patients, reduction of tumor growth rate, without significant
tumor regression (Fig. 3D). IHC of DDX5 showed a higher number
of nuclei with “diffuse”/less intense DDX5 staining in sorafenib-
treated tumors than in peri-tumor (Fig. 3E), consistent with
reduced DDX5 mRNA levels in sorafenib-treated tumors (Fig. 3F,
H), but not in the peri-tumoral tissue (Fig. 3G, H).

Sorafenib-induced ferroptosis mediated by DDX5 in HCC cells
Sorafenib response in in vitro and preclinical HCC models is improved
by pharmacological induction of ferroptosis [12]. Since DDX5KD cells
are insensitive to sorafenib [24], we hypothesized that DDX5 plays a
role in ferroptosis. To test this possibility, we generated doxycycline
(Dox)-inducible DDX5 expressing cell lines (DDX5OE) in Huh7,
HepAD38, and HepaRG [23] cells, representing distinct transformation
and differentiation states. First, DDX5 protein levels were quantified
with or without sorafenib in Huh7, HepAD38, and HepaRG cells
transfected with control siRNA (siCtrl) or siRNA targeting DDX5
(siDDX5), as well as in DDX5 overexpressing (DDX5OE) cells following
Dox addition (Fig. 4A and Supplementary Fig. S4A). Employing these
DDX5 expression conditions, we quantified cell viability in response to
sorafenib. siDDX5 significantly enhanced cell viability (Supplementary
Fig. S4B, C), whereas DDX5OE significantly sensitized cells to sorafenib,
reducing cell viability in the three HCC cell lines tested (Supplemen-
tary Fig. S4D).
Next, we determined the type of regulated cell death rescued

by siDDX5 in sorafenib-treated cells. Ferroptosis inhibitor
ferrostatin-1 (Ferr-1) [14] rescued the viability of Huh7 and
HepAD38 cells as well as of the corresponding DDX5OE cells,
whereas apoptosis-specific inhibitor Z-VAD-FMK and necroptosis-
specific inhibitor necrosulfonamide did not (Fig. 4B). In addition,
siDDX5 decreased sorafenib sensitivity, independently of Ferr-1, Z-
VAD-FMK, or necrosulfonamide (Fig. 4B). Using C-11 BODIPY, a
lipid-soluble fluorescent indicator of lipid oxidation, and estab-
lished surrogate for quantifying ferroptosis [43], we observed
siDDX5 reduced, and DDX5OE increased lipid oxidation (Fig. 4C
and Supplementary Fig. S4E). To corroborate these findings by an
alternative method, we generated a DDX5-knockout (DDX5KO)
Huh7 cell line by CRISPR/Cas9 gene editing (Supplementary Fig.
S5A, B). We quantified the level of malondialdehyde (MDA), a
marker of oxidation of polyunsaturated fatty acid-containing
phospholipids and a hallmark of ferroptosis, in WT Huh7 cells,
Huh7-DDX5KO and Huh7-DDX5OE cells, with or without sorafenib
treatment [16], (Fig. 4D and Supplementary Fig. S5C). Sorafenib
increased MDA levels in WT Huh7 and Huh7-DDX5OE but not in
Huh7-DDX5KO cells, demonstrating that DDX5 loss abolished lipid
peroxidation and ferroptosis. Similar results were obtained by
quantifying the level of 4-hydroxynonenal (4-HNE) (Fig. 4E and
Supplementary Fig. S5D), also a by-product of lipid peroxidation
and a stable ferroptosis marker [16].
Since GPX4 reduces lipid peroxidation and ferroptosis [44], we

assessed GPX4 levels in WT Huh7 and Huh7-DDX5KO cells by
immunoblots. Sorafenib increased GPX4 levels in WT Huh7 cells,
and notably, Huh7-DDX5KO exhibited enhanced GPX4 levels
independent of sorafenib addition (Fig. 4F). To assess the
functional significance of GPX4 induction in Huh7-DDX5KO cells,
we quantified survival of cells treated with sorafenib in combina-
tion with the class-II ferroptosis inhibitor RSL3, which binds and
inactivates GPX4 [17]. RSL3 reduced cell survival of sorafenib-
treated WT Huh7 and Huh7-DDX5KO cells, which was restored by
ferrostatin addition (Fig. 4G). Similar results were observed in WT
and DDX5KD HepAD38 cells (Supplementary Fig. S5E-F). Moreover,
Huh7 xenograft tumors treated with sorafenib exhibited enhanced
GPX4 mRNA (Supplementary Fig. S5G). Additionally, siDDX5
further enhanced GPX4 mRNA levels upon sorafenib addition
(Supplementary Fig. S5H, I), suggesting that DDX5 exerts a role in
GPX4 transcription.
To determine the clinical relevance of these observations, we

measured DDX5 and GPX4 mRNA levels in human HCC samples
from TCGA. We found that HCCs with low DDX5 mRNA exhibited
higher GPX4 mRNA compared to HCCs with high DDX5 expression
(Fig. 4H), and importantly, elevated GPX4 mRNA levels were
associated with poor survival outcomes in sorafenib-treated HCC
patients (Fig. 4I).
Together, these results link DDX5 to ferroptosis, in response to

sorafenib. Since DDX5 is an RNA helicase, we employed Dox-
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inducible FLAG-DDX5-HepaRG cell lines, encoding WT or ATPase-
inactive K144N DDX5 mutant [22, 23] to determine whether the
enzymatic activity of DDX5 is required for ferroptosis. We found
WT DDX5 induced ferroptosis by sorafenib, while the inactive
K144N DDX5 did not affect lipid peroxidation, i.e., cells escaped
ferroptosis (Supplementary Fig. S5J). These results demonstrate
the enzymatic RNA helicase activity of DDX5 is required for
ferroptosis, by a mechanism that remains to be determined.

Sorafenib-induced DDX5 downregulation increased the
expression of Wnt/β-catenin signaling genes
To identify cellular pathways deregulated by sorafenib-induced
downregulation of DDX5, we compared transcriptomes of WT and
DDX5KD HepAD38 cells treated or not treated with sorafenib. We

identified 2,088 genes significantly induced by sorafenib, and 699
genes significantly repressed by DDX5, of which 313 genes were
shared, that is, those induced by sorafenib and repressed by DDX5
(Fig. 5A). Gene set enrichment analysis (GSEA) revealed that genes
repressed by DDX5 were enriched in genes highly expressed in
sorafenib-vs. DMSO-treated WT HepAD38 cells (Fig. 5B), suggest-
ing a significant number of sorafenib-regulated genes are also
regulated by DDX5. KEGG pathway analysis of the common 313
genes identified among the top ten associated pathways the Wnt
signaling pathway (Fig. 5C). To confirm sorafenib increased
expression of Wnt signaling genes, we analyzed RNA isolated
from WT HepAD38 cells treated with sorafenib for 3 days, using a
PCR array comprising >90 Wnt signaling genes. Sorafenib
increased the expression of many Wnt signaling genes

Fig. 1 Reduced DDX5 protein levels in human HCCs associated with increased tumor grade and poor patient survival following sorafenib
treatment. A Immunohistochemistry (IHC) with DDX5 antibody of tissue microarrays (TMA) comprised of human normal liver samples and
HCCs of grades I-III. Representative images at 20× magnification. IHC images of TMAs (24 normal samples and 30 HCCs) are shown in
Supplementary Figs. S1A and S2–S3. B Quantification of DDX5-positive cells from TMAs of normal liver and HCCs (>1000 cells were quantified
per tumor). **p < 0.01 and ***p < 0.001 by unpaired t-test. C Overall survival of patients treated with sorafenib; the red line indicates patients
with high DDX5, and the blue line indicates patients with low DDX5, quantified from IHC images using a NanoZoomer 2.0 RS Pathology slide
scanner (C10730-13, Hamamatsu) and NDP.view2 Image viewing software (U12388-01, HAMAMATSU), as described in Supplementary
Materials and Methods.
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(Supplementary Fig. S6A), including LRP5, DVL1, Wnt7B, andWnt9A
(Fig. 5D), indispensable for Wnt pathway activation.
Notably, using TCGA HCCs, we found that high DVL1 expression

was associated with poor survival of sorafenib-treated patients
(Fig. 5E). Based on this observation, we investigated the regulation
of Wnt signaling genes by DDX5 by focusing on DVL1. We
observed siDDX5 increased DVL1 mRNA and protein (Fig. 5F),
while DDX5OE fully repressed DVL1 induction (Fig. 5G and
Supplementary Fig. S6C). Sorafenib also increased DVL1 expres-
sion, and this increase was higher in siDDX5 cells (Fig. 5F and
Supplementary Fig. S6B). To demonstrate whether sorafenib-
mediated induction of DVL1 was solely via DDX5 downregulation,
we determined DVL1 expression in the Huh7-DDX5KO cell line. In
DDX5KO cells DVL1 mRNA and DVL1 protein levels increased
independently of sorafenib (Fig. 5H), thereby demonstrating that
DDX5 is an upstream negative regulator of DVL1 transcription.

Activation of Wnt/β-catenin is required for DDX5-mediated
ferroptosis escape of sorafenib-treated cells
Since DVL1 is a key effector of Wnt activation [45] and
dysregulated Wnt/β-catenin signaling is implicated in ferroptosis
[36], we examined the activation status of the canonical Wnt
pathway using the β-catenin-responsive TOPFlash luciferase
reporter, as well as the effect of DVL1 on Wnt-reporter expression.
As expected, Wnt signaling was activated by DDX5 down-
regulation [24] and sorafenib addition, while siβ-catenin signifi-
cantly reduced Wnt-reporter expression (Fig. 6A and
Supplementary Fig. S7A). Notably, DDX5KO cells induced Wnt-
reporter activation, independent of sorafenib addition (Fig. 6A, B),
and siDVL1 completely abolished Wnt-reporter activation (Fig. 6B
and Supplementary Fig. S7B). By contrast, DVL1 overexpression
(DVL1OE), using Dox-inducible DVL1 overexpressing cell lines
(Supplementary Fig. S7C), increased Wnt-reporter expression upon

Fig. 2 Sorafenib (SOR) downregulates DDX5 in vitro. A Immunoblots of DDX5 using lysates from WT and DDX5KD HepAD38 cells was treated
with sorafenib (SOR) (10 µM for 1 day and 7.5 µM for 3 days). Actin used as loading control B Quantification of DDX5 levels from immunoblots
by ImageJ software. Error bars represent the standard deviation (SD) from three independent experiments (n= 3). *p < 0.05, **p < 0.01 by
unpaired t-test. C Immunofluorescence microscopy of DDX5 in HepAD38 cells treated with SOR (10 µM) for 1 day. D RT-PCR quantification of
DDX5 mRNA using RNA from WT and DDX5KD HepAD38 cells treated with sorafenib (SOR) (10 µM for 1 day and 7.5 µM for 3 days). Data
expressed as mean ± standard error of the mean (SEM), n= 3. *p < 0.05, **p < 0.01 by unpaired t-test. E, F Immunoblots of DDX5 using lysates
from indicated cell lines treated with E SOR (SNU387 and SNU423: 15 µM for 1 day and 10 µM for 3 days; Huh7 and Hep3B: 10 µM for 1 day and
5 µM for 3 days), and F regorafenib (10 µM), lenvatinib (50 µM), as indicated. Shown, are representative immunoblots from n= 3. Actin is used
as a loading control.
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siDDX5 transfection or sorafenib treatment (Fig. 6C and Supple-
mentary Fig. S7D). These results demonstrate that DDX5 is an
upstream negative regulator of Wnt/β-catenin pathway activation
in hepatocytes, and significantly, activation of Wnt signaling by
sorafenib involves DVL1 induction through downregulation of
DDX5.
Since DDX5 downregulation enabled ferroptosis escape of

sorafenib-treated cells (Fig. 4B–E and Supplementary Fig. S5C,
D) and DDX5KO cells exhibited active Wnt/β-catenin signaling
(Fig. 7A), we examined whether Wnt/β-catenin activation plays
a role in ferroptosis escape. Inhibition of Wnt signaling by
siDVL1 transfection reduced viability of Huh7 cells treated with
sorafenib, while ferrostatin (Ferr-1) reversed this effect (Fig. 6D).
By contrast, DVL1 overexpression, using Dox-inducible Huh7-

DVL1OE cells, increased cell viability in the presence of
sorafenib, independent of ferrostatin (Fig. 6D). We observed
similar results with HepAD38 cells (Supplementary Fig. S7E).
Importantly, Huh7-DDX5KO cells escaped ferroptosis by sorafe-
nib, determined by cell viability (Fig. 6E, F) and C11-BODIPY
assays (Fig. 6G), whereas inhibition of Wnt/β-catenin signaling
by transfection of siDVL1 or si-β-catenin reversed this effect
(Fig. 6E–G). Similarly, in HepAD38 cells, siDVL1, siβ-catenin, or
the canonical Wnt-signaling inhibitors ICG001 and XAV939 [46]
suppressed ferroptosis escape and reduced cell viability,
respectively (Supplementary Fig. S7E–H). Thus, DDX5 deficiency
promotes HCC cell survival to sorafenib through ferroptosis
escape by induction of DVL1 and activation of Wnt/β-catenin
signaling.

Fig. 3 Sorafenib downregulates DDX5 in preclinical HCC models. A–C Huh7 xenografts. NRG mice bearing Huh7 tumors were treated daily
with 40mg/kg sorafenib (SOR) for 1 week followed by 80mg/kg SOR for 2 weeks (+) or DMSO (−) for 20 days. A DDX5 immunoblots from
Huh7 tumors ± SOR, as indicated. Quantification of DDX5 protein levels from immunoblots by ImageJ software. Error bars represent SD from
eight tumors. ***p < 0.001 by unpaired t-test. Actin is used as a loading control. B Quantification of DDX5mRNA by qRT-PCR in tumors +/- SOR.
Data are expressed as mean ± SEM from eight tumors. *p < 0.05 by unpaired t-test. C Tumor volume ± SOR normalized to day 0 of treatment.
D–H HBx/c-myc mice. D Tumor growth was monitored by µCT scanner from each group, untreated (DMSO) and SOR-treated (60mg/kg), as
indicated. E Immunohistochemistry of formalin-fixed paraffin-embedded (FFPE) tumor and peri-tumor stained with DDX5 antibody, and
counterstained with hematoxylin. F–H RT-qPCR detection of mRNA levels of DDX5 in (F, G) SOR-treated vs. untreated (DMSO) F tumors and
G peri-tumoral tissue from HBx/c-Myc mice. *p < 0.05. H DDX5 mRNA level expressed as fold change between SOR-treated and untreated
tumors and peri-tumoral tissue.
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Fig. 4 DDX5 regulates ferroptosis in sorafenib-treated cells. A Immunoblots of DDX5 in indicated cell lines. Huh7, HepAD38, and HepaRG
cell lines transfected with siCtrl or siDDX5 for 24 h, followed by addition for 24 h of SOR (10 µM for Huh7 and 15 µM for HepAD38 and HepaRG
cell lines). For DDX5OE, indicated Dox-inducible-DDX5 cell lines were grown with Dox (1.0 µg/ml) for 48 h, and SOR for the last 24 h. A
representative immunoblot is shown, n= 3 Quantification of immunoblots by ImageJ software shown in supplementary Fig. S4A. B Cell
viability of Huh7 and HepAD38 cells under conditions of siCtrl, siDDX5 or DDX5OE as described in (A), treated with SOR, ±10 µM ferrostatin-1
(Ferr-1), ±Z-VAD-FMK (10 µM) or ±necrosulfonamide (4.0 µM) for 24 h. Data expressed as mean ± SEM, n= 3. *p < 0.05, **p < 0.01 by unpaired t-
test. C Fluorescence microscopy of C11-BODIPY using Huh7 cells, under conditions of siCtrl, siDDX5, or DDX5OE as described in (A), treated
±SOR (10 µM) for 24 h. (Right panel) Quantification by ImageJ software of the ratio of oxidized (510 nm)/non-oxidized (590 nm) C11-BODIPY.
Data expressed as mean ± SEM from >1000 cells per condition. *p < 0.05, ** p < 0.01 by unpaired t-test. D MDA abundance (µM) quantified
using lysates from Huh7 wild type (WT), DDX5KO, and DDX5OE cells treated as described in (A), without (−) or with (+) SOR for 24 h. Data are
expressed as SD, n= 3. E 4-HNE abundance (µg/ml) quantified using lysates from WT, DDX5KO, and DDX5OE Huh7 cells treated as described in
(A), without (−) or with (+) SOR for 24 h. Data are expressed as SD, n= 3. F Immunoblots of GPX4 and DDX5, as indicated, using lysates from
WT and DDX5KO Huh7 cells grown without (−) or with (+) SOR for 24 h. Relative intensity is quantified vs. actin. A representative experiment is
shown from n= 3. G Cell viability of WT and DDX5KO Huh7 cells treated with SOR, RSL3 (0.5 µM) or Ferr-1 (10 µM), as indicated, for 24 h. Data
expressed as mean ± SEM, n= 3. *p < 0.05, **p < 0.01 by unpaired t-test. H Dot plots showing expression of DDX5 and GPX4 mRNAs in HCCs
from TCGA with lowest vs. highest DDX5 expression. Twenty HCCs were analyzed per group. Median highlighted, ***p < 0.001. I Kaplan–Meier
survival plots for GPX4 expression of SOR treated patients with HCC. HCC samples (n= 29) are from TCGA.
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Knockdown of β-catenin or DDX5 overexpression increased
sorafenib anti-tumor efficacy in xenograft tumors
The mechanistic links between DDX5 and sorafenib sensitivity
suggested strategies to enhance the anti-tumor efficacy of
sorafenib. First, we investigated the effect of suppressing Wnt/
β-catenin activation, utilizing an in vivo siRNA-mediated
knockdown of β-catenin mRNA. We employed the recently
developed Nanosac formulation [39] as a siRNA carrier because
Nanosac-encapsulated siRNAs offer effective cytosolic delivery

and intracellular release of siRNA without endosomal seques-
tration [39]. Nanosac-encapsulated siRNA targeting β-catenin
mRNA was effective in inducing ferroptosis of siDDX5 trans-
fected Huh7 cells treated with sorafenib. C11-BODIPY assays
displayed enhanced lipid peroxidation upon incubation with
Nanosac-siβ-catenin in comparison to Nanosac-siCtrl, in the
presence of sorafenib (Fig. 7A, B). Next, we examined the effect
of Nanosac-encapsulated siRNAs in vivo, using Huh7 xenografts
co-treated with sorafenib. Intra-tumoral injection of Nanosac-

Fig. 5 Sorafenib-induced and DDX5-repressed genes enriched in Wnt/β-catenin signaling. A Venn diagram of common genes between
SOR-induced and DDX5-repressed genes. B GSEA plot showing enrichment of genes more highly expressed in SOR vs. DMSO treated WT
HepAD38 cells, and repressed by DDX5. C Top 10-most enriched KEGG pathways associated with genes induced by SOR and repressed by
DDX5. D qRT PCR of indicated Wnt/β-catenin signaling genes using RNA from HepAD38 cells treated with sorafenib (7.5 µM) for 3 days. Data
are mean ± SEM, n= 3. *p < 0.05, **p < 0.01 by unpaired t-test. E Kaplan–Meier survival plots for DVL1 expression of SOR treated patients with
HCC. Samples are from TCGA. F–H qRT-PCR of DVL1 mRNA and immunoblots of DVL1 protein, using total RNA or lysates, respectively, isolated
from: F WT Huh7 cells transfected with siCtlr or siDDX5, G WT and DDX5OE Huh7 cells, grown as described in Fig. 4A, and H WT and DDX5KO

Huh7 cells, ±SOR (10 µM) for 24 h, as indicated. qRT-PCR data are expressed as mean ± SEM from n= 3. *p < 0.05, **p < 0.01 by unpaired t-test.
A representative DVL1 immunoblot is shown n= 3. Actin is used as a loading control.

Z. Li et al.

8

Cell Death and Disease          (2023) 14:786 



siβ-catenin in combination with sorafenib (Fig. 7C) significantly
reduced tumor weight (Fig. 7D, E) and β-catenin mRNA levels
(Fig. 7F) compared to Nanosac-siCtrl. By contrast, the level of
lipid peroxidation by-products MDA and 4-HNE, both markers of
ferroptosis [16], were significantly increased (Fig. 7G, H). Thus,
siRNA interfering with Wnt/β-catenin activation enhanced the
anti-tumor efficacy of sorafenib in vivo.
Next, we examined whether DDX5 levels modulate sorafenib

sensitivity in vivo using the Dox-inducible Huh7-DDX5 expres-
sing cell line for xenograft tumor generation. Mice bearing Dox-

inducible Huh7-DDX5 xenografts were fed or not with
doxycycline-containing H2O starting 48 h prior to sorafenib
administration for 10 days (Supplementary Fig. S8A). Xenograft
tumors from animals treated with sorafenib without Dox
administration exhibited nearly complete loss of endogenous
DDX5, while GPX4 protein levels increased. By contrast,
xenograft tumors from Dox-fed animals treated with sorafenib
exhibited sustained DDX5 protein levels, absence of GPX4
induction (Fig. 8A), and reduced tumor weight in comparison to
those without Dox administration (Fig. 8B and Supplementary

Fig. 6 Activation of Wnt/β-catenin signaling mediates ferroptosis escape of DDX5 deficient cells by sorafenib. Wnt-reporter (TOPFlash)
and Renilla-luciferase plasmids (100 ng each per 12-well plate) co-transfected in WT and DDX5KO (A, B) and DDX5OE (C) Huh7 cells with siRNAs
(50 pM each) siCtrl, siβ-catenin, siDVL1 and siDDX5, as indicated, treated ±SOR (10 µM) for 24 h. Data expressed as mean ± SEM, n= 3.
**p < 0.01 ***p < 0.001 by unpaired t-test. Cell viability assays of Huh7 and DVL1OE (D), and DDX5KO (E) cells transfected with indicated siRNAs,
treated with SOR (10 µM), ±Ferr-1 (10 µM) for 24 h. Data expressed as mean ± SEM, n= 3. **p < 0.01, ***p < 0.001 by unpaired t-test.
F Fluorescence microscopy of C11-BODIPY using WT and DDX5KO Huh7 cells transfected with siCtrl, siDVL1 or si-β-catenin treated ±SOR
(10 µM) for 24 h. Quantification by ImageJ software of the ratio of oxidized (510 nm)/non-oxidized (590 nm) C11-BODIPY. Data are expressed as
mean ± SEM from >1000 cells per condition. *p < 0.05, **p < 0.01 by unpaired t-test.
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Fig. S8B). Consistently, xenograft tumors from Dox-treated
animals had significantly increased MDA and 4-HNE levels,
indicative of ferroptosis in vivo (Fig. 8C, D). Notably, DDX5
overexpression (+ Dox) did not affect tumor growth in the
absence of sorafenib (Fig. 8B and Supplementary Fig. S8B). In
agreement with our in vitro results (Fig. 5E–H), in the absence of
ectopic DDX5 expression (-Dox) sorafenib induced DVL1 mRNA

expression, whereas DDX5 overexpression (+Dox) abolished
DVL1 induction (Fig. 8E). In further support of this inverse
relationship between DDX5 and DVL1 expression, we used the
TMA employed in Fig. 1A, B and determined by IHC the
expression of DVL1. HCCs exhibiting DDX5-positive immunos-
taining lacked DVL1 expression. By contrast, reduced DDX5
immunostaining is associated with positive DVL1 expression

Fig. 7 Nanosac-encapsulated siRNA (siβ-catenin) enhances the anti-tumor efficacy of sorafenib. A Fluorescence microscopy of C11-BODIPY
using Huh7 cells transfected with siDDX5 and incubated with Nanosac-encapsulated siCtrl or siβ-catenin for 24 h, followed by the addition of
SOR (10 μM) for 24 h. B Quantification by ImageJ software of ratio of oxidized (510 nm)/non-oxidized (590 nm) C11-BODIPY. Data are shown as
mean ± SEM from 500 cells. *p < 0.05, **p < 0.01 by unpaired t-test. C Diagram illustrates treatment groups and timetable of intra-tumoral
injection of Nanosac-encapsulated siRNAs. D Images of Huh7 xenograft tumors excised on day 19, following three intra-tumoral injections/
week of indicated Nanosac-encapsulated siRNAs (3.0 µg siRNA/injection), and daily administration of SOR (80 mg/kg). E Tumor weight from
indicated treatment groups, from eight tumors. *p < 0.05 by unpaired t-test. F RT-PCR quantification of β-catenin mRNA using total RNA
isolated from Huh7 tumors treated with indicated Nanosac-encapsulated siRNAs +SOR. Data are expressed as mean ± SEM from eight
tumors.*<p.05 by unpaired t-test. Quantification of; G MDA (nmole/mg tissue) and H 4-HNE (µg/mg tissue) using Huh7 xenograft tumors
treated as indicated. Data are expressed as mean ± SEM from eight tumors. ***p < 0.001 by unpaired t-test.
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(Fig. 8F). These findings support our in vitro mechanistic results
that DDX5 is an upstream negative regulator of DVL1
expression. We conclude that DDX5 determines the sorafenib
response, via DVL1 induction and Wnt/β-catenin pathway
activation.

DISCUSSION
Herein, we provide clinical, in vitro, and in vivo evidence of the
role of DDX5 in mTKI/sorafenib response. In clinical HCC samples
reduced expression of DDX5 was associated with advanced tumor
grade, and worst patient survival following treatment with

Fig. 8 DDX5 overexpression enhances anti-tumor efficacy of sorafenib in Huh7 xenograft tumors. A DDX5 and GPX4 immunoblots of
lysates from Dox-inducible Huh7-DDX5 tumors, ±Dox and SOR administration, as indicated (80mg/kg, 5 days per week). Actin is used as a
loading control. B Tumor weight for each treatment group from the indicated number of tumors. **p < 0.01 by unpaired t-test. Quantification
of: C MDA (nmoles/mg tissue) and D 4-HNE (µg/mg tissue) using Huh7 xenograft tumors treated with ±DOX and SOR, as indicated. Data are
expressed as mean ± SEM from eight tumors. *p < 0.05, ***p < 0.001 by unpaired t-test. (E) RT-PCR quantification of DVL1 mRNA using total
RNA isolated from Dox-inducible Huh7-DDX5 tumors, ±Dox and SOR, as indicated. Data expressed as mean ± SEM from the indicated number
of tumors in each group. *p < 0.05, **p < 0.01 by unpaired t-test. F Immunohistochemistry (IHC) of indicated HCCs from TMA described in Fig.
1, with DDX5 and DVL1 antibodies (Numbers indicate tumor position in TMA, Fig. S8B). Representative images at 20× magnification.
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sorafenib (Fig. 1). In liver cancer cell lines and preclinical HCC
models sorafenib and mTKIs downregulate DDX5 (Figs. 2 and 3),
and DDX5KD cell lines exhibit reduced sensitivity to sorafenib [24].
Together, these observations suggested that DDX5 downregula-
tion by sorafenib might be a contributing factor to sorafenib
sensitivity. Here, we explored this hypothesis and identified its
underlying mechanism.

DDX5 promotes ferroptosis in sorafenib treated cells
Since sorafenib downregulates DDX5, we reasoned, that the
viability of sorafenib-treated cells would be affected by DDX5
downregulation (siDDX5) or overexpression (DDX5OE). Indeed,
siDDX5 increased whereas DDX5OE significantly reduced cell
viability in response to sorafenib (Fig. 4). Only the ferroptosis
inhibitor ferrostatin rescued the effect of DDX5OE on sorafenib-
treated cells (Fig. 4), indicating DDX5 promotes ferroptosis. Using
Dox-inducible cell lines that overexpress WT and ATPase-inactive
DDX5, we found the RNA helicase activity of DDX5 is required for
ferroptosis (Fig. S5), suggesting functionally active DDX5 represses
expression of genes and pathways involved in ferroptosis.

DDX5 downregulation activates Wnt/β-catenin signaling
required for ferroptosis escape by sorafenib
The transcriptomic comparisons between WT and DDX5KD cells
treated ±sorafenib identified more than 300 genes mutually
induced by sorafenib and repressed by DDX5 (Fig. 5). One of the
top-ten predicted pathways associated with these upregulated,
common genes is the Wnt pathway (Fig. 5), involved in every
aspect of liver development [33] and HCC pathogenesis [46].
Upregulated Wnt signaling genes include among others Wnt9A,
Wnt7B, and DVL1 (Fig. 5). Recent studies link Wnt9A polymorphism
to HCC risk [47], Wnt7B to sorafenib resistance [48], and DVL1 to
Wnt activation [45] and poor prognosis liver cancer [29]. Clinical
data from TCGA also link DVL1 overexpression to poor survival of
HCC patients treated with sorafenib (Fig. 5). Importantly, the
Huh7-DDX5KO cell line conclusively demonstrates that the
increased transcription of DVL1 is DDX5-dependent, i.e., DDX5 is
an upstream negative regulator of DVL1 transcription, and in turn,
of Wnt/β-catenin pathway activation (Fig. 6 and Supplementary
Fig. S7). Together, our results show that overexpression of DDX5
induces ferroptosis (Fig. 4) and suppresses activation of Wnt/
β-catenin signaling (Fig. 5). Conversely, DDX5 downregulation
activates Wnt/β-catenin signaling required for enhanced cell
viability and ferroptosis escape of HCC cells treated with sorafenib
(Fig. 6). Interestingly, Wnt/β-catenin activation due to over-
expression of Wnt receptor FZD10 was associated with levantinib
resistance [49]; also, Wnt/β-catenin activation induced GPX4
expression and ferroptosis resistance in gastric cancer [36]. Our
results show enhanced GPX4 expression and Wnt/β-catenin
activation in DDX5KO cells, as well as enhanced GPX4 expression
in HCCs with low DDX5 mRNA (Fig. 4). Further studies are required
to determine whether there is a link between GPX4 induction and
activation of Wnt/β-catenin signaling by sorafenib in HCC.
How DDX5 represses transcription of many Wnt signaling

genes, including LRP5, Wnt7B, Wnt9a, and DVL1 among others,
and how the RNA helicase activity of DDX5 regulates this process,
is currently under investigation. Our preliminary data suggest that
DDX5, as an RNA helicase, recruits a repressive epigenetic complex
via interaction with a specific RNA. Since RNA hubs demarcate
specific territories in the nucleus [50], we speculate that DDX5
recognizes and binds to specific RNAs/RNA secondary structures
and recruits epigenetic effector complexes forming biomolecular
condensates [51] that, in turn, modify the nearby chromatin.

DDX5 overexpression enhances anti-tumor efficacy of
sorafenib/mTKIs in vivo
Based on the mechanistic understanding of the role of DDX5 in
sorafenib sensitivity presented herein, we identified two new

approaches to improve the anti-tumor effectiveness of sorafe-
nib/mTKIs. Firstly, Nanosac-encapsulated siRNA targeting
β-catenin potentiates the anti-tumor activity of sorafenib in
Huh7 xenografts (Fig. 7). The Nanosac-siRNA delivery approach
served as proof-of-principle for demonstrating the significance
of Wnt/β-catenin activation in the sorafenib response. Clinically,
the use of lipid nanoparticles (LNPs) is a well-established
approach to efficiently deliver siRNAs to hepatocytes [52].
Secondly, in sorafenib-treated Huh7 xenografts overexpression
of DDX5 suppressed tumor growth and DVL1 expression
required for Wnt/β-catenin activation, inducing ferroptosis
(Fig. 8). Thus, enhanced sorafenib anti-tumor efficacy is
achieved either by inhibiting the Wnt/β-catenin pathway
activated by DDX5 loss (Fig. 7) or by overexpression of DDX5
(Fig. 8). Moreover, human HCCs display an inverse relationship
between low expression levels of DDX5 (Fig. 1A, B) and high
expression of DVL1(Fig. 8F). High DVL1 levels are linked to poor
prognosis HCC [29]. Also, the extrachromosomal circular
miR17–92 amplicon [53], encoding the mir17-92 miRNA cluster
that downregulates various tumor suppressors including DDX5
[24], was shown to be linked to poor prognosis HCC.
Interestingly, nonalcoholic steatohepatitis (NASH), a condition
leading to HCC, is also linked to the downregulation of DDX5
mRNA levels by an unknown mechanism [54]. Given these
independent studies that support the role of DDX5 deficiency in
poor prognosis HCC [29, 53, 54], our observation that sorafenib
targets the downregulation of DDX5 is novel. Specifically, it
establishes a novel link between the progressive loss of DDX5
and the adaptive resistance mechanisms of HCCs to sorafenib.
How sorafenib downregulates DDX5 mRNA levels remains to be
determined.
Since Wnt activation, in addition to ferroptosis escape by

sorafenib, also regulates other oncogenic processes, including
proliferation, survival, metabolism, immune tolerance, and angio-
genesis [33], we propose that DDX5 overexpression in liver tumors
could reverse or stall HCC progression [29], a promising
therapeutic approach considering the recent success of RNA
therapeutics [52, 55]. LNP-mediated siβ-catenin delivery or LNP-
mediated overexpression of DDX5 mRNA could be developed as
novel therapies to suppress Wnt/β-catenin activation and DVL1
overexpression. Also, the recent identification of phytochemicals
that enhance DDX5 protein stability [54] offers another feasible
therapeutic strategy for improving the anti-tumor efficacy of
sorafenib/mTKIs.

DATA AVAILABILITY
All sequencing data are available from the NCBI Gene Expression Omnibus (GEO)
database (accession number GSE199092).
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