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SOX2 promotes vasculogenic mimicry by accelerating
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1

Vasculogenic mimicry (VM), a new model of angiogenesis, fulfills the metabolic demands of solid tumors and contributes to tumor
aggressiveness. Our previous study demonstrated the effect of SOX2 in promoting VM in colorectal cancer (CRC). However, the
underlying mechanisms behind this effect remain elusive. Here, we show that SOX2 overexpression enhanced glycolysis and
sustained VM formation via the transcriptional activation of IncRNA AC005392.2. Suppression of either glycolysis or AC005392.2
expression curbed SOX2-driven VM formation in vivo and in vitro. Mechanistically, SOX2 combined with the promoter of
AC005392.2, which decreased H3K27me3 enrichment and thus increased its transcriptional activity. Overexpression of AC005392.2
increased the stability of GLUT1 protein by enhancing its SUMOylation, leading to a decrease in the ubiquitination and degradation
of GLUT1. Accumulation of GLUT1 contributed to SOX2-mediated glycolysis and VM. Additionally, clinical analyses showed that
increased levels of AC005392.2, GLUT1, and EPHA2 expression were positively correlated with SOX2 and were also associated with
poor prognoses in patients with CRC. Our study conclusively demonstrates that the SOX2-IncRNA AC005392.2-GLUT1 signaling axis
regulates VM formation in CRC, offering a foundation for the development of new antiangiogenic drugs or new drug combination

regimens.

Cell Death and Disease (2023)14:791 ; https://doi.org/10.1038/541419-023-06274-1

INTRODUCTION

Colorectal cancer (CRQ) is the third most common malignancy
worldwide, with both high morbidity and mortality rates [1].
Metastasis is reported as a primary driver of CRC-related mortality
[2, 3]. Activation of angiogenesis is an essential hallmark of cancer,
and is required for invasive tumor growth and metastasis [4]. As
diagnostic and therapeutic strategies progress rapidly, especially
in the application of immunotherapy and anti-angiogenesis
therapy [5], the overall survival rate of CRC has improved. VEGF/
VEGFR is the primary drug target for anti-angiogenic therapeutic
applications. Unfortunately, the therapeutic benefits of anti-VEGF/
VEGFR therapy did not reach the high expectations which were
anticipated based on preclinic studies [6, 7]. In addition to the
unsatisfactory clinical efficacy, it is also associated with significant
side effects and drug resistance. Thus there is an important need
to identify novel drug targets based on undiscovered mechanisms
to try and combat tumor angiogenesis.

Vasculogenic mimicry (VM) is a new model of tumor
microcirculation that is distinct from classical tumor angiogenesis.
In VM, tumor cells form blood vessels and provide sufficient blood
supply independent of endothelial cells [8]. VM occurs in certain
highly aggressive malignancies, and is closely associated with

poor clinical prognoses. Of note, VM is VEGF-independent and
therefore capable of mediating tumor vascularization despite
VEGF-inhibition, which is likely the cause for failure in some
antiangiogenic therapy. Thus VM has become one of the more
promising potential targets for anticancer therapy. Although anti-
VM strategies are under clinical development, the fundamental
mechanisms underlying the action of VM are largely unknown.
Our previous study showed that Sex-determining region Y-box2
(SOX2), a master regulator of embryonic development, drives
tumor growth and invasion [9], promotes VM formation in CRC
[10], however, the underlying mechanism of action remains
unclear.

Glycolysis has been shown to promote angiogenesis by
satisfying the glycolytic requirements of vascular endothelial cells
and generating an acidic environment [11]. However, the
involvement of glycolysis in VM formation of CRC cells is not
well-characterized. Moreover, SOX2 is known to increase glycolysis
in prostate cancer cells [12], although the association between
glycolysis and SOX2-mediated VM formation remains unclear.
Clarification of the underlying molecular mechanism may help
identify potential diagnostic biomarkers and potential therapeutic
targets.
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Long non-coding RNAs (IncRNAs) represent a heterogeneous
class of transcripts of greater than 200 nucleotides (nt), with little
or no protein-coding potential [13]. Mounting evidence suggests
that IncRNAs play a significant role in the carcinogenesis and
progression of a wide variety of human malignancies via
regulating multiple biological processes, including metabolism,
invasion, and metastasis [14]. Moreover, IncRNAs have been
shown to participate in SOX2-induced proliferation and metastasis
in non-small-cell lung carcinoma [15]. However, the correlation
between IncRNAs and SOX2 in CRC is rarely reported and the
effect of IncRNAs on SOX2-induced VM formation remains unclear.

In this study, we unravel a molecular pathway responsible for
the SOX2-mediated promotion of VM formation in CRC cells via the
SOX2-IncRNA AC005392.2-GLUT1 signaling axis. Our findings may
help identify novel diagnostic biomarkers and provide a promising
strategy for treating VM formation through the inhibition of
glycolysis in CRC and other types of VM-associated cancers.

MATERIALS AND METHODS
The reagents of our research are listed in Table S1. A detailed method is
available in the Supplemental Materials.

RESULTS
SOX2 promotes VM by enhancing glycolysis in CRC cells
Our previous study revealed that SOX2 promotes VM formation in
CRC cells [10], while more recent studies have reported that
inhibition of glycolysis suppressed VM formation in nasopharyngeal
carcinoma [16]. This prompted us to explore whether glycolysis was
involved in SOX2-induced VM in CRC cells. We first investigated the
regulation of SOX2 on glycolysis in CRC cells. Gene set enrichment
analysis (GSEA) indicated that high expression of SOX2 was
positively correlated with “HALLMARK_GLYCOLYSIS” and “REAC-
TOM_ GLYCOLYSIS” gene signatures in CRC (GSE17538, n=177)
(Fig. 1a). Gene Ontology (GO) analysis of differential expression
mRNA impaired by SOX2 illustrated that genes regulated by SOX2
overexpression were enriched in the glycolytic process, indicating
there is an interaction between SOX2 expression and glycolysis (Fig.
S1a). Then, gRT-PCR and western blotting were performed to
evaluate the expressions of SOX2 in four human CRC cell lines,
namely, HCT116, RKO, SW620 and LOVO. The results revealed that
SOX2 was markedly elevated in SW620 cells and depressed in
HCT116 cells at both the mRNA and protein levels (Fig. S1b). Of note,
overexpression of SOX2 increased the expression of glycolytic
molecules (Figs. 1b and S1c), glucose consumption (Fig. 1¢), and
lactate production (Fig. 1d) in HCT116 cells, while knockdown of
SOX2 led to the opposite results in SW620 cells. Importantly, the
results of the extracellular acidification rate (ECAR) assay further
validated that SOX2 overexpression effectively enhanced glycolysis,
whereas SOX2 depletion did the opposite (Fig. 1e). Taken together,
these data demonstrate that SOX2 enhances glycolysis in CRC cells.
We then sought to investigate whether glycolysis functioned as
a downstream component of SOX2 to promote VM in CRC cells.
SOX2-overexpressing HCT116 cells were treated with 2-DG, an
inhibitor of glycolysis. The results showed that inhibition of
glycolysis partially abrogated SOX2-induced upregulation of VM-
related molecules, including VE-cadherin and EPHA2 (Fig. 1f).
Blockage of glycolysis impaired SOX2-mediated migration and VM
formation in CRC cells (Figs. 1g and S1d). Overall, these findings
demonstrate that SOX2 promotes VM formation in a glycolysis-
dependent manner in CRC cells.

SOX2-induced glycolysis facilitates VM formation in vivo

To further validate the involvement of glycolysis in SOX2-induced
VM in vivo, xenograft models were established by subcutaneous
inoculation with three types of stably transfected HCT116 cells or
SW620 cells into the groin of 5-week-old nude mice. We
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consistently found that overexpression of SOX2 resulted in
significant increases in tumor volume and weight, which was
effectively abrogated by treatment with the glycolysis inhibitor,
2-DG (Fig. 1h, i). Moreover, Micro-PET imaging showed that
overexpression of SOX2 led to increased uptake of
'8F-Fluorodeoxyglucose (*®F-FDG) and increased SUVmax, while
a marked suppression was observed in mice treated with 2-DG
(Fig. 1j). Xenograft tissues analyzed using immunohistochemistry
(IHQ) staining and western blotting revealed that SOX2 over-
expression significantly increased the expression of VM-related
molecules and VM formation in vivo, which was also effectively
impaired by 2-DG treatment (Figs. 1k, | and Sle). Accordingly,
either SOX2 depletion or inhibition of glycolysis by 2-DG led to a
significant decrease in the tumor volume, tumor weight, uptake of
'8F-FDG and SUVmax of xenografts, as well as VM formation
in vivo (Figs. Th—j, | and S1e). However, no significant difference
was found between SOX2 depletion and inhibition of glycolysis.
Collectively, these findings indicate that glycolysis is involved in
SOX2-mediated VM formation in vivo.

SOX2 enhances glycolysis by upregulating AC005392.2
expression in CRC cells

An increasing number of studies have demonstrated that IncRNAs
play critical roles in tumor progression by regulating multiple
biological processes, including glycolysis [17]. To investigate
whether the potential IncRNAs contribute to SOX2-driven
glycolysis and VM formation, IncRNA microarray analysis was
performed in HCT116 cells before or after SOX2 overexpression.
The results displayed significant differences in the gene expres-
sion profile in both cohorts (Fig. 2a). gRT-PCR was subsequently
utilized to identify the top ten most significantly differential
expression IncRNAs. Notably, IncRNA AC005392.2 was found to be
markedly elevated in SOX2-overexpressing cells (Fig. 2b). Next,
xenograft tissues were analyzed using fluorescence in situ
hybridization (FISH), confirming the regulation of AC005392.2 by
SOX2 in vivo (Fig. 2c). To further explore whether AC005392.2
potentiates SOX2-driven glycolysis and VM formation, we reversed
AC005392.2 expression in HCT116 and SW620 cells stably
transfected with SOX2 clone vector or SOX2 shRNA (Fig. S2a, b).
The results revealed that reversing AC005392.2 expression partly
blocked the effect of SOX2 on glycolytic molecules expression,
glucose consumption, lactate production, and ECAR (Fig. 2d-g).
Importantly, the expression of VM-related molecules and VM
formation driven by SOX2 were also impaired by AC005392.2
dysregulation (Fig. 2d, h, i). Overall, these data prove that SOX2
promotes glycolysis and VM formation, at least partially relying on
the upregulation of IncRNA AC005392.2 in CRC.

SOX2 transcriptionally promotes IncRNA AC005392.2
expression by binding with and decreasing H3K27me3
enrichment on its promoter

We then sought to determine whether the promotion of SOX2 on
IncRNA AC005392.2 expression occurred during transcriptional
activation or post-transcriptional regulation. First, we found that
SOX2 overexpression had little effect on the half-life of
AC005392.2 mRNA (Fig. 3a). Of note, a potential SOX2-binding
site in the promoter of AC005392.2 (—1031 ~ —1041, upstream of
the transcriptional starting site, TSS) was found using the JASPAR
database (Fig. 3b). Our results further confirmed the binding of
SOX2 on the AC005392.2 promoter by ChIP assay and luciferase
reporter assays (Fig. 3c, d). We next constructed different
truncations of the AC005392.2 promoter (0 ~ —539, —540 ~
—951, —952 ~ —1434, —1435 ~ —2000). As expected, we found
transcriptional activity was significantly decreased in the third
truncated region of the AC005392.2 promoter (—952 ~ —1434, Fig.
3e), which contained the predicted binding site (—1031 ~ —1041).
Furthermore, deletion of this sequence (—1031 ~ —1041)
markedly restrained SOX2-induced luciferase activity of the
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Fig. 1 SOX2 promotes vasculogenic mimicry in CRC cells by stimulating glycolysis in vitro and in vivo. a GSEA showing that increased
expression of SOX2 was positively correlated with glycolysis in gene expression profiles for patients with CRC (TCGA, n = 177). b Western blotting
examining the expression of SOX2 and glycolytic molecules in HCT116 and SW620 cells after a 72 h transfection with a SOX2 clone or SOX2 shRNA.
¢, d The effect of SOX2 on glucose consumption (c) and lactate production (d) was assessed using fluorescence-based kits in HCT116 and SW620 cells
(mean £ SD; n =3, two-tailed Student’s t test). e The effect of SOX2 on ECAR was measured using a Seahorse XF assay in HCT116 and SW620 cells
(mean £ SD; n = 3). f, g HCT116 and SW620 cells were transfected for 72 h using a SOX2 clone or SOX2 shRNA, then treated with 2-DG (3 mM) for 24 h.
Western blotting was performed to analyze the indicated proteins (f). A tube formation assay was performed to assess VM formation (g, Scale, 200 um;
mean * SD; n =3, two-tailed Student’s t test). h Plots of tumor volumes, measured every three days (mean+SD; n=5, two-way ANOVA test).
i Representative tumor images and a summary of tumor weight data. Tumors were harvested after mice were euthanized (mean = SD; n =5, two-
tailed Student’s t test). j '8F-FDG uptake and SUVmax of xenografts were examined using PET/CT (mean + SD; n = 3, two-tailed Student's t test). k, I IHC
staining of SOX2, EPHA2, and CD31/PAS in SOX2-overexpression HCT116 (k) and SOX2-knockdown SW620 xenografts (I, Scale, 100 pm). The number
of VM structures (CD31—/PAS+) was calculated (mean + SD; n = 4, two-tailed Student’s t test). *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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AC005392.2 promoter (Fig. 3f). Collectively, these data suggest
that SOX2 upregulates AC005392.2 expression, partially through
binding to its promoter.

Additionally, recent studies have shown that aberrant expres-
sion of INcRNA can be partially attributed to abnormal epigenetic
regulation [18]. H3K27me3 methyltransferase is commonly
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believed to act by repressing gene expression [19]. We found
that the expression of H3K27me3 was decreased by SOX2
overexpression, without any significant concurrent changes in
the expression of H3K27ac, H3K23ac, or H3K36me3 (Fig. 39).
Furthermore, SOX2 overexpression reduced H3K27me3 enrich-
ment in the promoter of AC005392.2 by ChIP-qPCR assay and
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Fig.3 SOX2 decreases the enrichment of H3K27 methylation and transcriptionally activates AC005392.2 expression. a HCT116 cells were
transfected for 72 h with a SOX2 clone and subjected to actinomycin D (2.5 pg/ml) treatment for the indicated times. gRT-PCR was performed
to analyze the expression of AC005392.2 (mean+SEM; n=3). b A schematic map of potential SOX2-binding sites in the promoter of
AC005392.2, shown according to the JASPAR database. ¢ A ChIP assay was performed to confirm the interaction between the SOX2 and
AC005392.2 promoter in HCT116 and SW620 cells after transfection for 72 h with SOX2 clones or SOX2 shRNA. An IgG antibody was used as a
negative control (mean £ SD; n = 3, two-tailed Student’s t test). d AC005392.2 promoter-driven luciferase activity was assessed in HCT116 and
SW620 cells transfected with a SOX2 clone or SOX2 shRNA using a luciferase reporter assay (mean + SD; n = 3, two-tailed Student’s t test).
e, f Luciferase activity of the AC005392.2 promoter was examined in HCT116 cells and SW620 cells transfected with a truncated AC005392.2
promoter (e) or deletion mutant of the AC005392.2 promoter (f, mean + SD; n = 3, two-tailed Student’s t test). g Western blotting examining
the expression of histone methylation and acetylation modification in SOX2-overexpressing HCT116 and SOX2-depleted SW620 cells. h A ChIP
assay identifying the expression of H3K27me3 at the promoter of AC005392.2 in SOX2-overexpressing HCT116 and SOX2-depletion SW620
cells (mean £ SD; n = 3, two-tailed Student’s t test). ***p < 0.001, and ****p < 0.0001.

agarose gel electrophoresis, while SOX2 depletion did the
opposite (Fig. 3h). Overall, these results indicate that SOX2 can
directly bind with and suppress H3K27me3 enrichment on the
promoter of AC005392.2, helping to transcriptionally promote its
expression in CRC cells.

AC005392.2 activates glycolysis by binding with and
increasing the stability of GLUT1 protein

Given that the mechanisms of IncRNAs largely depend on their
intracellular location [20], subcellular fractionation experiments
were performed. We found that AC005392.2 was mainly present in
the cytoplasm of CRC cells (Fig. 4a), indicating that AC005392.2
may exert its function at a post-transcriptional level. The results of
silver staining revealed an increased level at the size of 45-55 kDa
in the products pulled down by the full-length AC005392.2 sense
sequence compared with the antisense sequence (Fig. 4b). Mass
spectrometry analysis of these products showed that 206 proteins
were pulled down by the AC005392.2 sense sequence and 283
proteins by the antisense sequence (Table S2). Glycolytic
molecules, including alpha-enolase (ENOT1), pyruvate kinase
(PKM) fructose-bisphosphate aldolase A (ALDOA), and phospho-
glycerate kinase 1 (PGK1), appeared in the products pulled down
by both AC005392.2 sense and antisense sequence, while glucose
transporter member 1 (GLUT1) was pulled down by only the
AC005392.2 sense sequence (Fig. 4c and Table 1). Further results
confirmed the interaction between GLUT1 and AC005392.2 by RIP
assay and agarose gel electrophoresis (Fig. 4d). To verify the effect
of AC005392.2 on GLUT1, we examined whether AC005392.2
affected the protein stability of GLUT1 in CRC cells using
cycloheximide (CHX), an inhibitor of protein translation. Of note,
overexpression of AC005392.2 extended the half-life of endogen-
ous GLUT1 protein from 120 min to >480 min in HCT116 cells,
while knockdown of AC005392.2 shortened the half-life of GLUT1
protein from >480 min to <120 min in SW620 cells (Figs. 4e and
S2c), suggesting that AC005392.2 promotes the stability of GLUT1
protein.

Considering that more than 80% of proteins in human cells are
degraded via the ubiquitin-proteasome pathway [21], we analyzed
the effect of AC005392.2 on the degradation of GLUT1 using
MG132, a proteasome inhibitor. Notably, AC005392.2 overexpres-
sion enabled GLUT1 to be maintained at the same level in HCT116
cells following MG132 treatment for the indicated times, while a
marked increase in the level of GLUT1 degradation was observed
in SW620 cells after depletion of AC005392.2 (Fig. 4f). Consistently,
AC005392.2 overexpression decreased the ubiquitination of
GLUT1 in HCT116 cells, while AC005392.2 knockdown promoted
the ubiquitination and degradation of GLUT1 in SW620 cells (Fig.
4g). These results suggest that AC005392.2 stabilizes GLUT1 by
interfering with the ubiquitin-proteasome pathway. A recent study
indicated that GLUT1 associated IncRNA (GAL) stabilizes GLUT1
protein by enhancing GLUT1 SUMOylation to inhibit GLUT1
ubiquitination [22]. As expected, we also found that overexpres-
sion of AC005392.2 increased GLUT1 SUMOylation, as determined
by immunoprecipitation and western blotting, while AC005392.2
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knockdown decreased it (Fig. 4h). Furthermore, small ubiquitin-
related modifier 1 (SUMO1) expression was reversed in HCT116
and SW620 cells stably transfected with AC005392.2 clone vector
or AC005392.2 shRNA (Fig. S2d). The results showed that
knockdown of SUMO1 inhibited the AC005392.2-mediated
upregulation of GLUT1 levels in HCT116 cells, while overexpres-
sion of SUMO1 had little effect on GLUT1 in AC005392.2-
knockdown SW620 cells (Fig. 4i), suggesting that SUMO1-
induced upregulation of GLUT1 depends on AC005392.2. Alto-
gether, these results suggest that AC005392.2 stabilizes the GLUT1
protein by enhancing GLUT1 SUMOylation, thus inhibiting GLUT1
ubiquitination.

GLUT1 contributes to SOX2-mediated glycolysis and VM in
CRC

GLUT1, a transporter facilitating the uptake of glucose, was
reported to regulate VM formation in nasopharyngeal carcinoma
[16]. Similarly, we found GLUT1 overexpression dramatically
increased glucose consumption, lactate production, and ECAR in
HCT116 cells (Figs. S2e and S3a—c), while knockdown of GLUT1 did
the opposite in SW620 cells. Moreover, the expression of VM-
related molecules and VM formation were also regulated by
GLUT1 expression (Fig. S3d-f). These results indicate that GLUT1
can promote glycolysis and VM formation in CRC. To further
investigate the involvement of GLUT1 in SOX2-mediated glycolysis
and VM formation, GLUT1 expression was reversed in HCT116 and
SW620 cells stably transfected with a SOX2 clone vector or
SOX2 shRNA (Fig. S2f). The results revealed that reversing GLUT1
expression partly inhibited the promotion of SOX2 on glucose
consumption, lactate production, and ECAR (Fig. 5a—c). Most
importantly, the expressions of VM-related molecules and VM
formation driven by SOX2 were also impaired by GLUT1
dysregulation (Fig. 5d-f). Furthermore, IHC results of xenograft
tissues confirmed the effect of SOX2 on GLUT1 expression in vivo
(Fig. 5g). Overall, these results demonstrate that GLUT1 is
necessary for SOX2-mediated glycolysis and VM in CRC.

Expression of AC005392.2, GLUT1, and EPHA2 in CRC clinical
samples

To investigate the role of AC005392.2, GLUT1, and EPHA2 in
human CRC progression, a microarray analysis using 78 pairs of
CRC tissue was performed. The results showed that higher levels
of AC005392.2, GLUT1, and EPHA2 were found in tumor tissues
than in surrounding normal tissues (Fig. 6a—c). The Kaplan-Meier
survival analysis revealed that higher levels of AC005392.2, GLUTI,
or EPHA2 were associated with poor prognosis (Fig. 6d-f).
Furthermore, lower levels of both SOX2 and AC005392.2, GLUTIT,
or EPHA2 resulted in a promising prognosis in patients with CRC
(Fig. 6g-i). A similar trend was also observed in patients with lower
levels of both AC005392.2 and GLUT1 or EPHA2 (Fig. 6j, k). We
consistently found that patients with low levels of both GLUT1 and
EPHA2 had a better prognosis (Fig. 6l). Correlation analysis
suggested that SOX2 was positively associated with AC005392.2,
GLUT1, and EPHA2 in CRC samples (Table 2), while AC005392.2
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showed a positive correlation with GLUT1 and EPHA2 (Table 3). DISCUSSION

Also, GLUT1 and EPHA2 showed a significant positive correlation Vasculogenic mimicry (VM), which was first reported in a highly
(Table 4). In summary, these findings imply that the expression of aggressive uveal melanoma in 1999 [8], is an alternative method
SOX2, AC005392.2, GLUT1, and EPHA2 are noticeably correlated in of supplying blood, independent of endothelial vessels. This
clinical samples and may predict prognoses in patients with CRC. finding provides a new perspective on the blood supply of tumors.
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Fig. 4 AC005392.2 activates glycolysis by binding and increasing the stability of GLUT1 protein. a gRT-PCR detection of AC005392.2
expression in the cytoplasmic and nuclear fractions of HCT116 and SW620 cells (mean + SD; n = 3). b Silver staining showing the stripes pulled
down by the sense and antisense AC005392.2 sequences. The arrow indicates the candidate stripes. ¢ Unique peptides of GLUT1 were
detected by mass spectrometry. d RIP assay showing the enrichment of AC005392.2 in the complex coprecipitated by anti-GLUT1 antibody in
HCT116 and SW620 cells (mean +SD; n =3, two-tailed Student’s t test). e, f HCT116 and SW620 cells were transfected for 72 h with an
AC005392.2 clone or AC005392.2 shRNA, then treated with 20 pg/ml cycloheximide (e) or 20 uM MG132 (f) for the indicated time. Western
blotting was performed to analyze the expression of GLUT1. g, h Immunoprecipitation followed by western blotting was performed to analyze
the ubiquitination (g) and SUMOylation (h) of GLUT1 in AC005392.2-overexpressing HCT116 and AC005392.2-knockdown SW620 cells.
i Western blotting analysis of the protein levels of GLUT1 in HCT116 cells co-transfected with AC005392.2 clone and SUMOT1 siRNA or in SW620
:ells co-transfected with AC005392.2 shRNA and SUMO1 clone for 72 h. ***p < 0.001.

Table 1. Mass spectrometry was used to detect the glycolytic molecules pulled down by the AC005392-2 sense and AC005392-2 antisense sequences
(45-55 kDa).
Accession Description Unique % Protein
peptides coverage
P06733 | ENOA_HUMAN Alpha-enolase OS = Homo sapiens OX = 9606 GN = ENO1 Sense 20 43
PE=1SV=2 Anti- 25 51
sense
P14618 | KPYM_HUMAN Pyruvate kinase PKM OS = Homo sapiens OX = 9606 Sense 21 39
GN=PKM PE=1SV=4 Anti- 29 56
sense
P04075 | ALDOA_HUMAN Fructose-bisphosphate aldolase A OS = Homo sapiens Sense 13 35
OX=9606 GN =ALDOA PE=1 SV =2 Anti- 18 47
sense
P00558 | PGK1_HUMAN Phosphoglycerate kinase 1 OS = Homo sapiens OX = 9606 Sense 20 49
GN=PGK1 PE=15SV=3 Anti- 26 68
sense
P00338 | LDHA_HUMAN L-lactate dehydrogenase A chain OS =Homo sapiens Sense None
OX=9606 GN=LDHA PE=1 SV=2 Anti- 1 4
sense
P09104 | ENOG_HUMAN Gamma-enolase OS = Homo sapiens OX = 9606 GN = ENO2 Sense None
PE=1SV=3 Anti- 1 8
sense
P11166 | GTRT_HUMAN Solute carrier family 2 facilitated glucose transporter member Sense 2 4
1 OS = Homo sapiens OX = 9606 GN = SLC2A1 PE=1 SV=2 Anti- R
sense

To date, VM has been found in a variety of cancer types, including
breast cancer [23], ovarian cancer [24], and colorectal cancer [25],
and is associated with poor prognoses in patients. It may even
explain why anti-VEGF/VEGFR therapy fails, as this treatment
would have no effect on VM formation. The development of drugs
based on VM theory is predicted to change the field of cancer
treatment for patients, however, the mechanism of VM formation
remains unclear. Our previous study has shown that SOX2
promotes VM formation in CRC [10]. In this study, we demonstrate
that the SOX2-IncRNA AC005392.2-GLUT1 axis is essential for VM
formation in CRC. The discovery of this axis may help develop
potential biomarkers for diagnosis and therapeutic candidates for
treatment.

Understandably, the metabolic switch from mitochondrial
respiration to glycolysis is critical for cancer cell growth. High
levels of glycolysis result in the accumulation of lactate and
succinate, and a reduction in (-hydroxybutyrate, which collec-
tively promote tumor growth and progression [26]. A recent study
indicated that glycolysis activation promotes VM formation in
nasopharyngeal carcinoma [16]. Consistent with this, we have
found that SOX2 promotes VM formation in a glycolysis-
dependent manner in CRC. SOX2 increases glucose consumption,
lactate production, and the extracellular acidification rate of CRC
cells. Blockage of glycolysis using the glycolysis inhibitor 2-DG
efficiently attenuates SOX2-induced VM formation in vitro and
in vivo. These findings suggest that glycolysis has an essential role
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in SOX2 promotion of VM in CRC, and targeting glycolysis holds
great promise for therapeutic intervention.

A growing number of studies have shown that tumor glycolysis,
invasion, and metastasis can be regulated by IncRNAs [14].
Targeting IncRNAs could be a new approach for cancer treatment.
In this study, we used a IncRNA microarray to analyze IncRNAs
regulated by SOX2, and discovered a new IncRNA, AC005392.2,
which is significantly upregulated by SOX2 in CRC. AC005392.2
knockdown markedly restrained SOX2-mediated glycolysis and
VM formation, whereas AC005392.2 overexpression rescued the
inhibition of glycolysis and VM formation caused by SOX2
depletion, supporting the involvement of AC005392.2 in SOX2-
driven malignant CRC phenotypes. We next explored the
mechanism by which SOX2 regulates AC005392.2 and found that
SOX2 transcriptionally activates AC005392.2 expression via bind-
ing with its promoter (—1031 ~ —1041, upstream of TSS). Of
particular note, recent studies have shown that aberrant expres-
sion of IncRNAs is partially attributed to abnormal epigenetic
regulation [18, 19]. We also found that SOX2 reduces H3K27me3
enrichment at the AC005392.2 promoter, which relieves the
transcriptional repression of AC005392.2. In addition, we found
that AC005392.2 is upregulated in CRC tumor tissues and is
predictive of a poor prognosis in patients. AC005392.2 is detected
to be positively correlated with SOX2 and VM marker EPHA2 in
CRC, and patients with high levels of AC005392.2 and SOX2 or
EPHA2 have a worse prognosis than those with low expression.
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Fig. 5 GLUT1 contributes to SOX2-mediated glycolysis and vasculogenic mimicry in CRC. a, b Glucose consumption (a) and lactate
production (b) were assessed using fluorescence-based kits in HCT116 cells co-transfected with SOX2 clone and GLUT1 siRNA or in SW620
cells co-transfected with SOX2 shRNA and GLUT1 clone for 72 h (mean +SD; n =3, two-tailed Student’s t test). ¢ ECAR was examined in
transfected HCT116 cells and SW620 cells using a Seahorse XF assay. d Western blotting was performed using the indicated antibodies in
transfected HCT116 cells and SW620 cells. e, f Transwell migration assays (e) and tube formation assays (f) were conducted in transfected
HCT116 cells and SW620 cells (Scale, 200 pm; mean + SD; n = 3, two-tailed Student’s t test). g IHC staining of GLUT1 in SOX2-overexpressing
HCT116 and SOX2-knockdown SW620 xenografts. Scale, 100 pm. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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Fig. 6 Expression of AC005392.2, GLUT1, and EPHA2 in clinical samples. a-c The intensity of staining of malignant cells was scored to
analyze levels of AC005392.2 (a), GLUT1 (b), and EPHA2 (c) were examined by FISH and IHC in a microarray with 78 pairs of CRC tissues (Scale,
1 mm; inset: scale, 100 pm; mean * SD; Normal = 74, Tumor = 78, two-tailed Student’s t test). Representative sections are shown. d—f Survival
curves were generated using the Kaplan-Meier method (median values as cutoff) according to the expression of AC005392.2 (d), GLUT1 (e),
and EPHA2 (f). Representative sections are shown (Scale, 100 pm, n = 78, log-rank test). g—i Survival curves of CRC patients stratified by high or
low expression of SOX2 and AC005392.2 (g, n = 56), GLUT1 (h, n=58) or EPHA2 (i, n = 56) were estimated using the Kaplan-Meier method
and compared using the Log-rank test (median values as cutoff, log-rank test). j, k Survival curves of CRC patients stratified based on high or
low expression of AC005392.2 and GLUT1 (j, n = 56) or EPHA2 (k, n = 64) were estimated using the Kaplan-Meier method and compared using
the Log-rank test (median values as cutoff, log-rank test). | Survival curves of CRC patients stratified by high or low expression of GLUT1 and
EPHA2 were estimated using the Kaplan-Meier method and compared using the Log-rank test (median values as cutoff, n = 60, log-rank test).
m A schematic model of the molecular mechanism by which SOX2 Promotes VM formation in CRC.
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Table 2. Correlation analysis between SOX2, AC005392-2, GLUT1, and EPHA2.

SOX2 scoring Correlation coefficient (R)
Low expression High expression
(+/4++) (n=30) (+++/++++) (n=48)
AC005392:2 Scoring Low expression (+/++) (n = 20) 14 6 R=0.253
High expression (+++/++++) (n = 58) 16 42 P=0.025
GLUT1 Scoring Low expression (+/++) (n = 28) 19 9 R =0.491
High expression (+++/+++++) (n = 50) 1 39 P=0.000
EPHA2 Scoring Low expression (+/++) (n = 28) 18 10 R=0.240
High expression (+++/+++-+) (n = 50) 12 38 P=0.034
Table 3. Correlation analysis between AC005392-2, GLUT1, and EPHA2.
AC005392-2 scoring Correlation coefficient (R)
Low expression High expression
(-+/++) (n=20) (4+++/4++++) (n=58)
GLUT1 Scoring Low expression (+/++) (n = 28) 13 15 R=0.376
High expression (+++/++++) (n = 50) 7 43 P=0.001
EPHA2 Scoring Low expression (+/++) (n = 28) 17 11 R=0.283
High expression (+++/++++) (n = 50) 3 47 P=0.012
Table 4. Correlation analysis between GLUT1 and EPHA2.
GLUT1 scoring Correlation coefficient (R)
Low expression High expression
(+/4++) (n=28) (+++/++++) (n=50)
EPHA2 Scoring Low expression (+/++) (n = 28) 19 9 R=0.437
High expression (+++/++++) (n =50) 9 41 P =0.000

Taken, together, these findings decipher a molecular mechanism
of action for AC005392.2 in sustaining the oncogenic functions of
SOX2 in CRC.

Screening for IncRNA interacting proteins is crucial to understand
the biological functions of IncRNA molecules. Given the striking effect
of AC005392.2 in promoting glycolysis, we further investigated the
underlying molecular mechanism. RNA pull-down followed by mass
spectrometry reveals that AC005392.2 directly binds with GLUT1
protein. Glucose transporters functioning at the first step of glycolysis
are responsible for glucose translocation across the cell membrane
[27]. Several studies have demonstrated that glucose transporters,
such as GLUT1 and GLUTS3, exert primary control over glycolytic flux
[28]. Consistent with this, we found that overexpression of GLUT1
enhances glycolysis in CRC cells, while depletion of GLUT1 impairs
SOX2-driven glycolysis and VM formation. This supports the idea that
the SOX2-IncRNA AC005392.2-GLUT1 signaling axis is important in
malignant CRC phenotypes. LncRNAs are reported to participate in
various physical and pathological processes by acting as scaffolds,
guides, decoys or repressors, activators, and sponges at the
transcriptional, post-transcriptional or epigenetic levels [29]. In this
study, we validated that AC005392.2 is localized in the cytoplasm of
CRC cells and exerts post-transcriptional regulation. AC005392.2
binds with GLUT1 and contributes to GLUT1 protein stability by
interfering with the ubiquitin-proteasome system. Furthermore, a
recent study reported that SUMOylation enables stabilization of
GLUT1 protein by inhibiting the ubiquitin-proteasome system [22].
Consistent  with  this report, our findings reveal that
AC005392.2 stabilizes GLUT1 protein by enhancing GLUT1 SUMOyla-
tion to inhibit GLUT1 ubiquitination and degradation in CRC.
Additionally, elevated GLUT1 is observed in CRC tumor tissues and
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associated with shorter survival in CRC patients. GLUT1 is positively
associated with SOX2, AC005392.2, and EPHA2, and their upregula-
tion leads to a poor prognosis in CRC patients.

In summary, because glycolysis and VM formation are prevalently
dysregulated in cancers, therapeutic interventions based on the
SOX2-IncRNA AC005392.2-GLUT1 axis may be promising in the
treatment of CRC patients. Our data suggest that SOX2 promotes
VM formation in a glycolysis-dependent manner. SOX2 effectively
enhances glycolysis by transcriptionally activating AC005392.2
expression, which stabilizes GLUT1 protein by increasing SUMOyla-
tion to inhibit ubiquitination and degradation of GLUT1 (Fig. 6m).
Thus, our study uncovers a new mechanism of VM formation in CRC,
offering novel therapeutic clues for the development of new
antiangiogenic drugs or new combination regimens.
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