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Flavones provide resistance to DUX4-induced toxicity via an
mTor-independent mechanism
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Facioscapulohumeral muscular dystrophy (FSHD) is among the most common of the muscular dystrophies, affecting nearly 1 in
8000 individuals, and is a cause of profound disability. Genetically, FSHD is linked to the contraction and/or epigenetic de-
repression of the D4Z4 repeat array on chromosome 4, thereby allowing expression of the DUX4 gene in skeletal muscle. If the
DUX4 transcript incorporates a stabilizing polyadenylation site the myotoxic DUX4 protein will be synthesized, resulting in muscle
wasting. The mechanism of toxicity remains unclear, as many DUX4-induced cytopathologies have been described, however cell
death does primarily occur through caspase 3/7-dependent apoptosis. To date, most FSHD therapeutic development has focused
on molecular methods targeting DUX4 expression or the DUX4 transcript, while therapies targeting processes downstream of DUX4
activity have received less attention. Several studies have demonstrated that inhibition of multiple signal transduction pathways
can ameliorate DUX4-induced toxicity, and thus compounds targeting these pathways have the potential to be developed into
FSHD therapeutics. To this end, we have screened a group of small molecules curated based on their reported activity in relevant
pathways and/or structural relationships with known toxicity-modulating molecules. We have identified a panel of five compounds
that function downstream of DUX4 activity to inhibit DUX4-induced toxicity. Unexpectedly, this effect was mediated through an
mTor-independent mechanism that preserved expression of ULK1 and correlated with an increase in a marker of active cellular
autophagy. This identifies these flavones as compounds of interest for therapeutic development, and potentially identifies the
autophagy pathway as a target for therapeutics.
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INTRODUCTION
With an estimated prevalence of nearly 1 in 8000 individuals [1]
Facioscapulohumeral Muscular Dystrophy (FSHD) is one of the
most common muscular dystrophies. Pathology typically begins
with weakness in the facial, scapular, and humeral muscles, but
progresses to the trunk and lower extremities, resulting in
profound disability [2]. FSHD is most often inherited as a dominant
Mendelian trait, however the genetic etiology is complex. Disease
is associated with a repeat array of 3.3 kb D4Z4 elements located
near the telomere of chromosome 4q [3, 4]. In the unaffected
population the array most often contains between approximately
10 and 100 units. The most common form of the disease, FSHD1,
results from contraction of the array below ~9 units, which allows
epigenetic de-repression of the DUX4 gene contained within each
repeat (reviewed in [2]). Contraction alone does not cause disease
however, as it must occur on a chromosome carrying a
“permissive” 4qA haplotype, which allows the transcript expressed
from the last repeat to incorporate a signal that allows
polyadenylation of the mRNA, which stabilizes it and enables
DUX4 protein synthesis [5–12]. In the second, less common, form

of the disease, FSHD2, trans-acting mutations in SMCHD1,
DNMT3B, or LRIF1 cause epigenetic de-repression of the array,
and in the presence of a permissive 4qA allele can result in
transcription of the stabilized DUX4 [5, 13–16]. Oddly, even when
all genetic determinants of disease are present, DUX4 is not
uniformly expressed, but instead activation occurs in “bursts” in a
small fraction of myonuclei [17–21].
DUX4 is a double homeobox transcription factor with well-

characterized target genes [6, 22–25]. It has a biological function
in the regulation of zygotic genome activation and the oocyte-to-
embryo transition [26–29], and is also expressed strongly in testis
[17], but it is normally absent in muscle. Despite much study, a
detailed model of how DUX4 causes pathology has not emerged.
DUX4 is pro-apoptotic [25] and toxic to muscle in many cellular
and animal disease models [30]. Cell death occurs via caspase 3/7
activation, and both p53-dependent and -independent mechan-
isms have been observed [18, 19, 25, 31–44]. Thus, it may be that
progressive muscle loss results from stochastic activation of DUX4
over time. Yet, the mechanism of how DUX4 induces apoptosis
remains unclear. Many DUX4-dependent cytopathologies have
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been documented, including oxidative stress [45], DNA damage
[46], impaired ubiquitin-dependent proteolysis [47], defective RNA
quality control [48, 49], altered splicing [18], nuclear protein
aggregation [36, 47], nuclear double-stranded RNA aggregates
[44], altered mitochondrial metabolism [50], and aberrant nuclear
import/export [51], which may all contribute to cell death.
Additionally, much evidence indicates that DUX4 expression
causes mis-regulation of signal transduction pathways including
hyaluronic acid [36], hypoxia [41], β-catenin [52, 53], innate
immunity [44], RET [54], and MAP kinase [55] pathways. As a result,
most FSHD therapeutic development have focused on DUX4-
targeting therapies, either using CRISPR-based approaches
[56–59], or antisense oligonucleotide/nucleic acid-based
approaches to target the transcript [60–69]. Alternatively, small
molecule-based approaches have been proposed that inhibit
activation of the DUX4 gene [70] with losmapimod currently
undergoing clinical trial (ClinicalTrials.gov Identifier:
NCT04003974).
An alternate approach is to target DUX4-induced cytopathol-

ogies that trigger apoptosis. We have previously demonstrated
that inhibiting hyaluronic acid signaling [36] or inhibition of the
mTor/PI3K/AKT pathway [41] can ameliorate DUX4-induced
toxicity in myoblasts. Additionally, it has recently been demon-
strated that inhibition of MAP kinase pathways can have a similar
effect [55]. We set out to leverage these observations to identify
compounds that can inhibit DUX4-induced toxicity and may be
developed into FSHD therapeutics. To this end, we performed two
rounds of screening and characterization on compounds that
were selected either due to their structural similarity to the
hyaluronic acid synthesis inhibitor 4MU or its metabolite 4MUG, or
based on previous reports of activity in relevant signal transduc-
tion pathways. We identified a set of five flavones that can inhibit
DUX4-induced toxicity at low-micromolar concentrations, thereby
making them candidates for further therapeutic development.
Additionally, we show that these compounds function through an
mTor/AKT-independent mechanism that results in activation of
cellular autophagy, thereby demonstrating that targeting both
mTor-dependent and mTor-independent biochemical pathways
are viable approaches for FSHD therapeutic development, and
specifically identifying autophagy as a novel target for therapies.

RESULTS
First-generation small molecules inhibit DUX4-induced
apoptosis
In our previous work, we demonstrated that the hyaluronic acid
synthesis inhibitor 4MU can provide resistance to DUX4-induced
toxicity [36]. Additionally, we and others have implicated hypoxia
signaling as central to toxicity [41, 52]. Interestingly, these
signaling pathways converge on the mTor/AKT/PI3K signal
transduction axis [71, 72], and inhibition of this pathway can
provide resistance to toxicity [41]. We sought to leverage these
observations to identify small molecules that can provide
resistance to DUX4-induced apoptosis. Unfortunately, 4MU itself
requires millimolar doses for maximal effectiveness, and so is not
suitable for use as a therapeutic. Thus, we considered other
molecules that may provide a similar result at lower concentra-
tions. Based on previous reports of their activity in a relevant
pathway, we identified a panel of six first-generation compounds
that had the potential to meet this criteria- honokiol (CAS # 35354-
74-6), its synthetic analogue claisened hexafluoro (C6F) [73, 74],
magnolol (CAS # 528-43-8), epigallocatechin gallate (EGCG, CAS #
989-51-5), silibinin (CAS # 22888-70-6), and liquiritigenin (CAS #
69097-97-8) [75–79]. Notably, EGCG, silibinin, and liquiritigenin
were of particular interest because their chemical structures are
built around the same fused ring structure as 4MU, and they each
maintain the chemically active hydroxyl group [80, 81] (Fig. 1A). To
evaluate these compounds, we used the MB135-DUX4i myoblast

model [38]. Myoblasts were seeded on 96 well plates, and the
following day they were pre-treated by adding the indicated
compound to the media for 3 h, followed by the addition of
2 μg/mL doxycycline (DOX) to the media for 24 h to induce DUX4
expression (for a total of 27 h of exposure to the compounds). As a
positive control, we also included the mTor inhibitor rapamycin,
which can inhibit DUX4-induced toxicity [41] and its next-
generation analogue everolimus. Cell death was then visualized
using the CellEvent Caspase 3/7 Green assay (Invitrogen, Waltham,
MA USA). We tested a range of concentrations and found that
each was able to provide resistance to toxicity when administered
at proper concentrations (Figs. 1B, S1). To confirm and quantitate
these results, we conducted similar experiments using the
Caspase-Glo 3/7 assay system (Promega, Madison, WI USA). Each
compound provided at least a twofold reduction in caspase 3/7
activity relative to vehicle controls, with liquiritigenin showing the
strongest effect (Fig. 1C). To validate these results we performed
limited-cycle RT-PCR as described previously [41] and confirmed
that these compounds did not interfere with the induction of the
codon-altered DUX4 transgene (Fig. 1D). Similarly, we performed
western blotting analysis to determine the effects on the levels of
DUX4 protein. As observed previously [41], rapamycin caused a
drop in the abundance of DUX4 (Fig. 1E). Surprisingly however,
only honokiol showed a similar decline in DUX4 protein
abundance, but the remaining compounds had no effect. This
confirms that the mechanism of observed resistance to DUX4-
induced toxicity occurs downstream of DUX4 expression, but also
unexpectedly suggests that these compounds function via a
different mechanism than rapamycin. Finally, to confirm that these
compounds function downstream of DUX4 expression and that
they do not have a deleterious effect on mature myotubes,
immortalized patient-derived 16ABic myoblasts [82] were induced
to form myotubes for 4 days using established methods [83], and
were then treated with compounds for 24 additional hours. The
expression of three DUX4-target genes were then analyzed using
qRT-PCR, and no significant change was observed (Fig. 2A). We
also analyzed three myogenesis markers and found no statistically
significant effect on their expression (Fig. 2B). Similar results were
observed using a second patient-derived cell line (Fig. S2).

Second-generation small molecules are more potent
inhibitors of DUX4-induced apoptosis
While our first-generation compounds were effective at inhibiting
DUX4-induced toxicity, the most potent, liquiritigenin, required a
150 μM dose for optimal effectiveness. While this is a significant
improvement relative to concentrations required for 4MU, it is still
too high for therapeutic use. To overcome this limitation, we
performed a second screening of a larger library of compounds
(Table 1). Many of these were additional flavone compounds that
bear structural similarity to 4MU or to its bioactive metabolite 4MUG
[84] (Fig. 3A). For the initial characterization, we used the protocol
described above using 50, 5, or 1 μM concentrations and the
CellEvent assay (Fig. S3). The best performing compounds were then
selected for a secondary screening /optimization using concentra-
tions of 30, 20, or 10 μM (Fig. S4). This screen identified 5
compounds- acacetin (CAS # 480-44-4), apigenin (CAS # 520-36-5),
luteolin (CAS # 491-70-3), apigenin 7-glucoside (A7G, CAS # 578-74-
5), and luteolin 7-glucoside (L7G, CAS # 5373-11-5), which provided
resistance to DUX4-induced toxicity at optimal concentrations of
20 μM (Fig. 3B). We also identified acriflavine (CAS # 8048-52-0),
which based on phase-contrast images provided resistance at 5 μM
(Fig. S3). We again quantitated these results using the Caspase-Glo
assay and found that each compound provided at least four-fold
reduction in DUX4-induced toxicity (Fig. 3C). As before, we validated
these results using limited-cycle RT-PCR. Acriflavine showed a
notable decline in DUX4 transcript levels, suggesting that its effects
were an artifact of inhibited transgene activation. Other compounds
did not have an effect an DUX4 expression (Fig. 3D). Similarly,
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Fig. 1 First-generation compounds provide resistance to DUX4-induced toxicity. A Pubchem [81] structures of compounds under study.
4MU is also shown for comparison to the structures of EGCG, silibinin, and liquiritigenin. B MB135-DUX4i myoblasts were pre-treated with the
indicated compounds for 3 h, followed by addition of 2 μg/mL doxycycline (DOX) to the media to induce DUX4 expression. After 24 h, caspase
3/7 activation was visualized using the CellEvent Caspase-3/7 Green reagent. Scale bar= 400 μm. CMB135-DUX4i myoblasts were treated as in
B. and cell death was quantified using a Caspase-Glo 3/7 Assay. Statistical significance for doxycycline-induced drug-treated samples vs
relevant doxycycline-induced vehicle-treated controls is shown and was calculated using 1-way ANOVA with Tukey’s test. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001. Error bars are SEM. D Myoblasts were treated as in (B) and were then analyzed for DUX4 induction using limited-
cycle RT-PCR. EMyoblasts were treated as in (B) and DUX4 protein expression was measured by western blotting with the DUX4 E55 antibody.
Vinculin was also included as a loading control. Uncropped blot images are presented in the Supplementary Information.
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western blotting showed that the second-generation compounds
did not cause a post-transcriptional decline in DUX4 protein levels
(Fig. 3E). This again suggests that these compounds exert their effect
through a different mechanism than rapamycin. We also examined
the effects of these compounds in patient-derived myotubes, and
we again found that there was no change in DUX4-target gene
expression levels, except for acriflavine, which inhibited expression of

all three DUX4 target genes significantly (Fig. 4A), however this
appears to be an artifact of acriflavine disrupting myogenesis, as it
caused significant overexpression of CKM, while also inhibiting
MYOG expression. Similar results were observed using a second
patient-derived cell line (Fig. S5). These results are again consistent
with the five flavone compounds functioning downstream of DUX4
to inhibit toxicity without having negative effects on myogenesis.

Fig. 2 First-generation compounds have minimal impact on DUX4 activity or expression of myogenic marker genes in patient-derived
myotubes. A Immortalized 16ABic myoblasts were seeded to high density on gelatin coated 6-well plates. The following day, growth media
was replaced with differentiation media, and differentiation was allowed to proceed for 4 days. Media was then replaced with fresh diff. media
containing the indicated compound and myotubes were incubated for an additional 24 h, followed by quantification of expression of three
DUX4-target genes by qRT-PCR. B As in (A), but qRT-PCRs were performed with primers specific to markers of myogenesis. Error bars are SEM.
Statistical significance for samples vs relevant vehicle-treated controls is shown and was calculated using 1-way ANOVA with Tukey’s test.
*P < 0.05, **P < 0.01, ***P < 0.001.
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Flavones and rapamycin inhibit DUX4-induced toxicity
through distinct mechanisms
We next investigated the mechanism of action of the flavones.
First, we used phospho-specific antibodies to determine how
activation of DUX4 affects signaling in the mTor/AKT pathway. We
analyzed either uninduced MB135-DUX4i myoblasts, or myoblasts
induced with 2 μg/mL doxycycline for 5 or 24 h with antibodies
specific to AKT phosphorylated on Thr308 or Ser473, or
phosphorylated ribosomal S6 protein, a marker of mTor activity.
After 5 h of induction, we observed no change in phosphorylation
of S6 or AKT at Ser473, and only a small but reproducible increase
in AKT phosphorylation at Thr308 (Fig. 5A). However, we observed
a notable decline in phosphorylation of AKT after 24 h of DUX4
expression. In contrast, there was no change in the levels of overall
AKT or S6 protein. Thus, it may be that prolonged DUX4
expression inhibits signaling along this axis, or that signaling
along the mTor/AKT axis is lost at this late time point, as these
populations are actively undergoing apoptosis. To determine the
effects of our compounds on AKT/mTor activation, we pre-treated
myoblasts with compounds for 3 h and then induced DUX4
expression for 5 h. As expected, rapamycin and everolimus ablated
S6 phosphorylation and triggered hyperphosphorylation of AKT,
particularly on Thr308 (Fig. 5B). Surprisingly, of the compounds
under study, only honokiol showed a reproducible, but partial
inhibition of S6 phosphorylation, and none showed hyperpho-
sphorylation of AKT. Thus, with the possible exception of honokiol,
it appears that the first-generation compounds inhibit toxicity
through an mTor-independent mechanism. Interestingly, the
effects are not DUX4-specific, as performing the same experiments

without inducing DUX4 yielded nearly identical results (Fig. 5C),
suggesting that they function not by inhibiting a DUX4-activated
signal transduction pathway, but rather by triggering a DUX4-
independent response that protects against toxicity. To confirm that
these observations also hold true for the second-generation
compounds, we also pretreated MB135-DUX4i myoblasts with
luteolin or L7G for 3 h and either left them uninduced for five
more hours or induced them with doxycycline for five or 24 h and
analyzed by western blotting (Fig. S6). As before, the second-
generation compounds showed no inhibition of S6 phosphorylation.

Second-generation compounds prevent loss of ULK1 and
induce a marker of autophagy
To investigate the mechanism of action of the second-generation
flavone compounds, we interrogated other pathways that may
protect against DUX4-induced toxicity. We considered that the
antioxidant activity of the flavones may be responsible for their
protective effect, as FSHD pathology is associated with oxidative
stress [46, 50, 85] and antioxidants have been shown to inhibit
DUX4-induced toxicity in DUX4-expressing C2C12 cells [32, 86].
However, similar to our previous results [36], we found the
antioxidant coenzyme Q10 did not prevent DUX4-induced toxicity
and could not prevent the mis-localization of the DUX4-
interacting protein C1QBP (a marker of pathology) (Fig. S7). While
the closely related MitoQ did inhibit toxicity, this was due to
decreased of DUX4 expression (Figs. S3, S7). Alternatively, we
considered that flavones may function by modulating autophagic
activity, as luteolin has been previously reported as both a positive
and negative regulator of autophagy [87], suggesting that this
pathway may be relevant. Furthermore, rapamycin is a known
autophagy activator [88], and autophagy regulation integrates
multiple signaling pathways [89]. Therefore, both mTor-
dependent and mTor-independent mechanisms that regulate
autophagy may affect DUX4-induced toxicity. We investigated this
possibility by analyzing ULK1 expression, a key autophagic
regulator that integrates multiple signaling pathways [89]. After
5 h of induction there was no notable change in the levels of ULK1
protein (Fig. 6A). However, after 24 h much of ULK1 protein was
lost. Surprisingly, the decline in ULK1 was accompanied by an
increase in LC3-II, a marker of active autophagy. To investigate the
effects of the second-generation compounds on autophagy, we
pre-treated myoblasts for 3 h and then induced DUX4 for 24 h. We
found that the flavone compounds protected ULK1 from DUX4-
induced loss. This effect appears to be specific to ULK1 and not a
general property of the autophagic machinery, as DUX4 induction
did not cause loss of the autophagy-associated proteins ATG3,
ATG5, ATG7, or ATG16L1, and the flavones had no effect on these
proteins (Fig. S8). Interestingly, we observed that each of the
flavones increased the abundance of the LC3-II autophagy marker
well above the level induced by DUX4 alone (Fig. 6B), suggesting
that cellular autophagy protects against DUX4-induced toxicity
and that the flavone compounds function by enhancing this
protective mechanism. Finally, we asked whether the flavones
function in mTor-independent pathways that are known to
modulate autophagic activity. One candidate pathway is necrop-
tosis, which functions via RIPK1 or RIPK3 activation, is regulated by
ULK1 [90], and has recently been shown to contribute to DUX4-
induced toxicity [43]. A second possible pathway is via SIRT1,
which can directly activate autophagy via an mTor- and ULK1-
independent pathway [91], and is known to be activated by some
flavones [92]. To address these possibilities, we treated MB135-
DUX4i cells with second generation compounds and induced
DUX4 expression as above and analyzed lysates by immunoblot-
ting. We did not detect RIP3K in MB135-DUX4i myoblasts,
consistent with its minimal expression in human skeletal muscle
(https://www.gtexportal.org/home/gene/RIPK3), and we detected
no reproducible changes in RIPK1. However, we did observe that
DUX4 induction caused a reproducible increase in the levels of

Table 1. Second-Generation Compound Screen.

Compound CAS Number Group

Acacetin 480-44-4 4MU-like

Apigenin 520-36-5 4MU-like

Chrysin 480-40-0 4MU-like

Farrerol 95403-16-0 4MU-like

Fisetin 528-48-3 4MU-like

Isorhamnetin 480-19-3 4MU-like

Kaempferol 520-18-3 4MU-like

Luteolin 491-70-3 4MU-like

Myricetin 529-44-2 4MU-like

Quercetin 117-39-5 4MU-like

Scutellarein 529-53-3 4MU-like

4MUG 881005-91-0 4MUG-like

Apigenin 7-glucoside (A7G) 578-74-5 4MUG-like

Liquiritin 551-15-5 4MUG-like

Luteolin 7-glucoside (L7G) 5373-11-5 4MUG-like

Myricitrin 17912-87-7 4MUG-like

Vitexin 3681-93-4 4MUG-like

Scutellarin 27740-01-8 4MUG-like

Acriflavine 8048-52-0 Misc.

Imatinib 152459-95-5 Misc.

Londamine 50264-69-2 Misc.

Oxythiamine 136-16-3 Misc.

Mitoquinone (MitoQ) 845959-50-4 Misc.

PT2385 1672665-49-4 Misc.

Shikonin 517-89-5 Misc.

TAT-cyclo-CLLFVY 1446322-66-2 Misc.

A list of compounds tested in the second-generation compound screen.

J. Cohen et al.

5

Cell Death and Disease          (2023) 14:749 

https://www.gtexportal.org/home/gene/RIPK3


0.2% DMSO 20 �M Acacetin 20 �M Luteolin

0.2% DMSO 20 �M A7G 20 �M L7G

4MUG
Apigenin 

7-glucoside
Luteolin 

7-glucoside

4MU Acacetin Luteolin

B. A. 

D. C. RT-PCR
+DOX
N

o 
D

ru
g

N
o 

RT

N
o 

D
ru

g

0.
2%

 D
M

SO

20
 �

M
  A

ca
ce

tin

20
 �

M
  A

pi
ge

ni
n

20
 �

M
  L

ut
eo

lin

20
 �

M
  A

7G

20
 �

M
  L

7G

0.
05

%
 D

M
SO

5 
�M

  A
cr

ifl
av

in
e

N
o 

RT
 +

 D
O

X

DUX4

GAPDH

E. 

DUX4

Vinculin

N
o 

D
ru

g

N
o 

D
ru

g

0.
05

%
 D

M
SO

5 
�M

  A
cr

ifl
av

in
e

0.
2%

 D
M

SO

20
 �

M
  A

ca
ce

tin

20
 �

M
  A

pi
ge

ni
n

20
 �

M
  L

ut
eo

lin

20
 �

M
  A

7G

20
 �

M
  L

7G

Western Blot
+DOX

20 �M 5 �M 

2 �g/mL DOX

No Induction

****** ** **

***

**

No D
ru

g

0.0
5%

DMSO

0.2
% D

MSO

Aca
ce

tin
 

Apigen
in

Luteo
lin A7G L7G

Acri
fla

vin
e

Fig. 3 Second-generation compounds provide resistance to DUX4-induced toxicity. A Pubchem [81] structures of selected compounds
under study as well as 4MU and 4MUG for comparison. B MB135-DUX4i myoblasts were pre-treated with the indicated compounds for 3 h,
followed by addition of 2 μg/mL doxycycline to the media to induce DUX4 expression. After 24 h, caspase 3/7 activation was visualized using
the CellEvent Caspase-3/7 Green reagent. The screen was performed twice, each time in triplicate, for a total of six independent replicates. The
full screen is presented in Figs. S3 and S4. Scale bar= 400 μm. C MB135-DUX4i myoblasts were treated as in (B) and cell death was quantified
using a Caspase-Glo 3/7 Assay. Statistical significance for doxycycline-induced drug-treated samples vs relevant doxycycline-induced vehicle-
treated controls is shown and was calculated using 1-way ANOVA with Tukey’s test. *P < 0.05, **P < 0.01, ***P < 0.001. Error bars are SEM.
D Myoblasts were treated as in (B) and were then analyzed for DUX4 induction using limited-cycle RT-PCR. E Myoblasts were treated as in (B)
and DUX4 protein expression was measured by western blotting with the DUX4 E55 antibody. Uncropped images of blots are presented in
the Supplementary Information. A7G, Apigenin 7-glucoside. L7G, Luteolin 7-glucoside.
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SIRT1 (Fig. 6C). This raised the possibility that the DUX4-induced
increase in autophagy may be mediated by increased SIRT1 levels,
and that the flavones may produce resistance to toxicity by
modulating SIRT1 activity. To test this hypothesis, we treated the
model myoblasts with either the strong SIRT1 activator SRT1720
(Fig. S9), or the SIRT1 inhibitor Selisistat (Fig. S10). We found that
neither SIRT1 activation nor inhibition had any effect on DUX4-
induced toxicity, and that at higher concentrations both caused
DUX4-independent toxicity. Taken together, these observations
reenforce a model where flavone compounds protect from DUX4-
induced toxicity by promoting autophagy via a ULK1-dependent
mechanism, identify flavones in particular as potential drugs for
further development, and identify the autophagy pathway in
general as a target for future FSHD therapeutics.

DISCUSSION
While significant advancement in the characterization of DUX4-
induced cytopathologies has been made, the precise mechanism

that leads to DUX4-induced apoptosis has remained elusive.
Increasing evidence indicates that DUX4 causes widespread mis-
regulation of signaling pathways [36, 41, 44, 52–55], making these
cascades important potential targets for FSHD therapeutics. The
mTor/AKT signaling axis is of particular interest as it mediates
signaling through both the hyaluronic acid and HIF1α pathways.
Additionally, mTor regulates energy homeostasis, and we and
others have seen mitochondrial anomalies in response to DUX4
expression and in FSHD muscle [36, 50, 85, 93–95], and a recent
study has demonstrated metabolic disruption in FSHD [50].
Despite this, most therapeutic development have focused on
targeting DUX4 directly. Thus, in this study we endeavored to
identify inhibitors of DUX4-induced toxicity that function down-
stream of DUX4. We conducted two screens of compounds
predicted to function in the mTor/AKT/HIF1α pathway, and we
identified three first-generation and five second-generation
flavone/flavonoid compounds that inhibit DUX4-induced toxicity
(Figs. 1, 3). Importantly, the second-generation compounds
function at pharmacologically relevant concentrations, and none
have negative effects on the expression of myogenic markers in
FSHD patient-derived myotubes (Figs. 4, S5). These compounds
therefore have the potential to be investigated further as
treatments for FSHD.
Unexpectedly, we have also observed that the flavones do not

function through the mTor/AKT axis. While rapamycin and
everolimus ablated the phosphorylation of the S6 ribosomal
protein and caused hyperphosphorylation of AKT, the flavones did
not show either of these effects. Rather, we observed that the
flavones protected ULK1, a regulator of autophagy [89] from
DUX4-induced loss (presumably by triggering its degradation)
(Fig. 6A, B). Importantly, this correlated with an increase in the
autophagy marker LC3-II (Fig. 6B), which implies that the flavone
compounds protect against the toxic effects of DUX4 expression
by inducing autophagy. It remains unknown how these com-
pounds activate autophagy, however a plausible explanation is
that they function via activation of AMPK. Luteolin has been
implicated in activating AMPK in muscle previously [96], and
AMPK and mTor have opposing effects on autophagy [89].
Therefore, rapamycin and flavones may ultimately share a
separate, but converging mechanism of action, but this hypothesis
requires a dedicated study to confirm.
The unexpected mTor-independent mechanism of action of the

flavones potentially makes them a particularly interesting alter-
native therapeutic to mTor inhibitors. While compounds such as
rapamycin can cause reduced DUX4 protein levels, they are also
potent protein synthesis inhibitors that could prevent generation
of new muscle protein and contribute to muscle pathology
[97, 98]. Furthermore, rapamycin is also an immunosuppressant,
which would create an additional burden on patients. Addition-
ally, flavones may provide benefits to patients independent of
their effect on DUX4-induced toxicity, as a recent publication
demonstrated that closely-related isoflavone compounds can
correct the “hypotrophic” phenotype of FSHD myotubes [93]. This
family of compounds therefore has great therapeutic potential
for FSHD.
The protective effect observed here may have implications for

FSHD research beyond their therapeutic potential. There is a
significant body of literature indicating that FSHD genetic markers
do not strictly correlate with the disease phenotype, and DUX4
expression has been detected in the muscle of unaffected
individuals (reviewed in [2]). Thus, it has long been hypothesized
that either additional unknown genetic factors can modify the
disease phenotype, or that environmental factors influence
progression (or a combination of both). Flavones may be one
such environmental factor, as they can be introduced via the diet
[99]. Different flavones can have very different effects on DUX4-
induced toxicity (Fig. S3), and so it is possible that diets rich in a
particular flavone may have notable effects while others are
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Fig. 4 Second-generation compounds have minimal impact on
DUX4 activity or expression of myogenic marker genes in patient-
derived myotubes. Patient-derived myoblasts were analyzed as in Fig.
2, but treated with second generation compounds, followed by qRT-
PCR analysis using (A). DUX4-target gene or (B). myogenic marker gene
primer sets. Error bars are SEM. Statistical significance for samples vs
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negligible, and that this may contribute to disparate disease
progression. Detailed studies of diets rich in the most effective
flavones or flavone supplementation will be necessary to determine
if these are viable approaches to control disease progression.

METHODS
Cell culture
MB135-DUX4i myoblasts were grown essentially as described previously
[36] in MB135 media (20% FBS, 1% antibiotic antimycotic, 10 ng/mL FGF
[Gibco PHG0026], 10 μM dexamethasone [Sigma, St. Louis, MO, D4902] in
Ham’s F10 media). Immortalized 16ABic and 01ABic [82] myoblasts were
grown on gelatin-coated (Sigma G9391) plates in HMP media (20% FBS, 1%

antibiotic/antimycotic, 1.2 mM CaCl2, 0.5% chick embryo extract [MP
Biomedicals, Santa Ana, CA, 092850145]). Myotubes were generated by
plating 4-6X105 myoblasts per well on gelatin-coated 6-well plates. The
following day cells were washed with PBS, and media was replaced with
15% KOSR differentiation media, essentially as described [83] (glutamax
substituted for L-glutamine), and allowed to differentiate for 4 days. Media
was then replaced and supplemented with the relevant compound for
24 h. All experiments were performed on three independently grown cell
cultures unless otherwise noted.

Caspase assays
15,000 myoblasts/well were plated on 96-well plates. The next day media
was replaced with media containing the indicated compounds for the

Fig. 5 Compounds prevent DUX4-induced toxicity through distinct mechanisms. A MB135-DUX4i myoblasts were either left un-induced or
induced with doxycycline for 5 or 24 h. At the indicated times myoblasts were lysed and analyzed by western blotting with antibodies specific
to markers of the mTor/AKT signaling axis. B MB135-DUX4i myoblasts were pre-treated with the indicated concentrations of compounds for
3 h, followed by induction of DUX4 expression for 5 h and western blotting analysis as in (A). C MB135-DUX4i myoblasts were left un-induced
and exposed to the indicated concentrations of compounds for 8 h, followed by western blotting analysis as in (A). Uncropped images of all
blots are presented in the Supplementary Information. P-S6 phosphorylated S6 protein, P-AKT 308 AKT phosphorylated at Thr308, P-AKT 473
AKT phosphorylated at Ser473.

DUX4

Vinculin

LC3A/B

ULK1

N
o 

D
ru

g

N
o 

D
ru

g

0.
05

%
 D

M
SO

5 
�M

  A
cr

ifl
av

in
e

0.
2%

 D
M

SO

20
 �

M
  A

ca
ce

tin

20
 �

M
  A

pi
ge

ni
n

20
 �

M
  L

ut
eo

lin

20
 �

M
  A

7G

20
 �

M
  L

7G
B. A. 

DUX4

Vinculin

LC3A/B

ULK1

N
o 

D
ru

g

5h
ou

rs

24
 h

ou
rs

+DOX: 24 hours +Drug: 27 hours

+DOX

I
II -

- I
II -

-

SIRT1

RIP1K

P-RIP3K

Vinculin

N
o 

D
ru

g

N
o 

D
ru

g

0.
2%

 D
M

SO

20
 �

M
  A

ca
ce

tin

20
 �

M
  A

pi
ge

ni
n

20
 �

M
  L

ut
eo

lin

20
 �

M
  A

7G

20
 �

M
  L

7G

C. 
+DOX: 24 hours +Drug: 27 hours

RIP3K

Fig. 6 Flavones protect ULK1 and cause increased levels of the autophagy marker LC3-II. A MB135-DUX4i myoblasts were either left un-
induced or induced with doxycycline for 5 or 24 h. At the indicated times myoblasts were lysed and analyzed by western blotting with
antibodies specific to markers of autophagy. B MB135-DUX4i myoblasts were pre-treated with the indicated concentrations of compounds for
3 h, followed by induction of DUX4 expression for 24 h and western blotting analysis as in (A). Uncropped images of all blots are presented in
the Supplementary Information. CMB135-DUX4i myoblasts were treated as in (B) and were then analyzed by western blotting with antibodies
specific to RIPK1, RIPK3, phospho-RIPK3, and SIRT1.

J. Cohen et al.

8

Cell Death and Disease          (2023) 14:749 



stated times. 24 h after doxycycline induction 5 μL of CellEvent Caspase-3/7
Green reagent (Invitrogen R37111) was added per well, plates were
incubated for 30min at 37 °C, and were then imaged with an Echo Revolve
microscope or a Nikon Eclipse TS100 inverted microscope (Figs. S9, S10).
Where applicable, Hoechst staining was performed at 1 μg/ml. For
quantitative assays, the Caspase-Glo® 3/7 Assay (Promega G8090 or
G8091) was performed in duplicate (two wells were measured for each of 3
replicates, for a total of 6 wells measured per condition) according to the
manufacturer’s instructions, and luminescence was measured in a BioTek
Synergy LX multi-mode plate reader.

Gene expression analysis
Cells were grown on 6-well plates as described above and were lysed in
Buffer RLT with 2-mercaptoethanol, scraped, moved into a 1.5mL tube,
homogenized by pipetting with a P200 tip >60 times, followed by freezing
at −80 °C. Total RNA was extracted with an RNEasy Mini kit (Qiagen, Venlo,
Netherlands, 74106) with on-column DNase I (Qiagen, 79254) digestion.
cDNA was made from up to 1 μg of total RNA with a SuperScript III first-
strand synthesis kit (Invitrogen, 18080051) with double priming, and the
RNase H step was performed. Limited-cycle PCR was performed as described
[41]. qPCR was performed as described [36] using published primers
[23, 36, 100] (Table S1). All experiments were performed in triplicate.

Protein expression analysis
Myoblasts were grown on 6-well plates as described, washed in PBS, lysed,
and scraped in 150 μL RIPA (Pierce/Thermo Scientific Waltham, MA USA,
89900) supplemented with PhosSTOP (Roche Penzberg, Germany, 04 906
837 001) and 1% protease inhibitor cocktail (Sigma P8340). Cells were lysed
at 4 oC for 20min, centrifuged at 12,000g for 15 min, and the pellet was
discarded. Protein concentrations were measured by BIO-RAD DC assay,
and 5–10 μg of protein was run. Primary antibodies and dilutions: DUX4
E55 1:1000 (AbCam, Cambridge, UK, ab124699), Vinculin 1:10,000 (Sigma
V9131), phosphorylated ribosomal protein S6 1:1000 (Cell Signaling
Danvers, MA USA, 4858S), ribosomal protein S6 1:1000 (Cell Signaling
2317S), phosphorylated AKT 308 1:1000 (Cell Signaling 13038P), phos-
phorylated AKT 473 1:1000 (Cell Signaling 4060S), Pan-AKT 1:1000 (Cell
Signaling 4691P), ULK1 1:1000 (Cell Signaling 8054T/S), and LC3A/B 1:1000
(Cell Signaling 12741T), SIRT1 1:1000 (Cell Signaling 9475), RIP3 1:1000 (Cell
Signaling 10188), Phospho-RIP3 (Ser227) 1:1000 (Cell Signaling 93654), RIP
1:000 (Cell Signaling 3493). Secondary antibodies and dilutions: anti-rabbit
and anti-mouse IgG-HRP 1:2000 (Cell Signaling 7074P2 and 7076S). ECL
reagents: Clarity Western ECL Substrate (BIO-RAD, Hercules, CA 1705060)
and Clarity MAX Western ECL Substrate (BIO-RAD1705062). Blots were
visualized on a BIO-RAD ChemiDoc or ChemidocMP with Universal Hood III.
Uncropped versions of all western blots are presented in the Supplemen-
tary Materials.

Immunostaining
Myoblasts were fixed and stained as previously described [36] using 1:400
anti-DUX4 antibody P2B1 (Invitrogen MA5-27584) and 1:300 anti-C1QBP
(Bethyl Laboratories, Montgomery Texas, USA A302-862A).

DATA AVAILABILITY
All data necessary to support the conclusions of the paper are displayed in the figures
or Supplementary Materials.
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