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Mesenchymal stem cells (mesenchymal stromal cells, MSC) are multipotent stem cells that can differentiate into cells of at least
three mesodermal lineages, namely adipocytes, osteoblasts, and chondrocytes, and have potent immunomodulatory properties.
Epigenetic modifications are critical regulators of gene expression and cellular differentiation of mesenchymal stem cells (MSCs).
Epigenetic machinery controls MSC differentiation through direct modifications to DNA and histones. Understanding the role of
epigenetic machinery in MSC is crucial for the development of effective cell-based therapies for degenerative and inflammatory
diseases. In this review, we summarize the current understanding of the role of epigenetic control of MSC differentiation and
immunomodulatory properties.
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FACTS

● Major transcription factors determining MSCs’ are epigeneti-
cally controlled.

● C/EBPα (encoded by CBPA) and PPARγ (encoded by PPARG)
are recognized as master regulators of adipocyte differentia-
tion. The expression of CEBPA depends on HDAC1 activity.
Opening of PPARG promoter region depends on SWI/SNF
complex and simultaneous acetylation of histone H3 residues.

● RUNX2 and OSX major orchestrators of osteogenic differentiation
are controlled by, methylation at histone H3 residues, acetylation
at histone H3 and H4 residues, and DNA methylation signatures.

● Chondrogenic differentiation depends on MSCs condensation to
form 3D structures. SOX9 is a major transcription factor in early
chondrogenesis, and its expression is controlled by histone H3/
H4 acetylation.

● MSCs licensing with proinflammatory cytokines, hypoxia condi-
tions, and bioactive molecules induces their immune-modulatory
activities.

OPEN QUESTIONS

● Do differentially sourced MSCs differ in the epigenetic
landscape, showing higher environmentally defined potential
for differentiation or immune modulation (trained effect)?

● What is the role of ncRNAs in the regulation of epigenetic
machinery in MSCs?

● What are the epigenetic mechanisms controlling MSCs
immunomodulatory properties after licensing with proinflam-
matory cytokines?

● How stress microenvironment is changing the epigenetic
landscape of MSCs?

● How to modulate MSCs epigenetic landscape to improve their
therapeutic properties?

INTRODUCTION
Mesenchymal stem cells (MSCs, also known as mesenchymal
stromal cells and multipotent stromal cells) were first identified in
the bone marrow by Alexander Friedenstein et al. in the late '60s
[1, 2]. They were described by Owen et al. as spindle-shaped,
colony-forming unit fibroblasts (CFU-Fs) [3]. Nowadays, MSCs are
successfully isolated and characterized from almost every tissue,
including adipose tissue, lungs, liver, kidney, peripheral blood,
umbilical cord, Wharton’s jelly, and dental pulp [4, 5]. To date,
several phenotypical and functional variances among differentially
sourced MSCs have been reported, which started a scientific
debate over the homogeneity and their therapeutic properties. In
2005, the International Society for Cellular Therapy proposed three
minimal criteria to define human MSCs, namely: i) plastic or glass
surface adherence; ii) the ability to differentiate into at least
adipogenic, chondrogenic, and osteogenic lineages in vitro; and
iii) the presence of specific phenotype associated with the
expression of CD29, CD90, CD73 with simultaneous lack of
CD14, CD34, CD45, and HLA-DR expression [6–8].
MSCs gained considerable interest due to their promising

therapeutic potential in degenerative and inflammatory diseases.
The lack of immunogenicity offers the possibilities of their
applications both in autologous and allogeneic systems [9].
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Notably, MSCs activities such as self-renewal, differentiation, and
immunoregulation can be modulated by microenvironmental
factors. Consequently, MSCs’ stability remains the major safety
issue, limiting their broad use in clinical settings. Therefore, a
better understanding of MSCs’ biology and the effects of
microenvironmental stimulation on their function is crucial to
approximate their therapeutical usage. Notably, our understand-
ing of the role of epigenetic machinery in cellular biology allowed
us to define complex molecular mechanisms controlling cell
phenotype and functional properties. It seems that, similarly to
other stem and adult cells, epigenetic modifications play an
important role in MSCs’ fate decisions and functions. Here, we
aimed to summarize current progress in understanding the role of
epigenetic mechanisms controlling MSCs’ differentiation and
immunomodulatory function.

THE MECHANISM OF EPIGENETIC MODIFICATIONS
All cellular processes and functions depend on the expression of
genes encoding proteins or regulatory molecules. In fact, gene
expression is a fundamental process that enables the decoding of
the DNA sequences into the final functional gene product (cellular
proteins). Notably, DNA is tightly packed within the nucleus of
eukaryotic cells in highly organized and compact structures,
making the gene hardly accessible to transcription machinery.
Nucleosomes represent the first level of DNA packing, formed by
DNA wrapped around histone proteins. Histones are nucleosome
core proteins providing structural support to form chromatin. Five
types of histones were identified. The nucleosome is formed by
core histones, namely H2A, H2B, H3, and H4, while H1 and H5 are
involved in higher-order chromatin structures [10]. Gene expres-
sion depends on chromatin accessibility, defined as the extent of
physical interaction between nuclear macromolecules and “chro-
matinized” DNA. The structure of chromatin may be lightly packed
(referred to as euchromatin) or tightly packed - more condensed
(referred to as heterochromatin). Chromatin accessibility is
controlled by the occupancy and topological arrangement of
nucleosomes, along with the presence of various chromatin-
binding factors, which bind either directly or indirectly to DNA,
that modulate DNA accessibility to transcription machinery
(extensively reviewed in ref. [11]). Progress in understanding
molecular mechanisms regulating gene expression allowed us to
define epigenetics.
Epigenetics refers to the heritable changes in gene expression

and long-term alteration in the transcriptional potential at the
chromatin level [12] (Fig. 1). The first evidence was reported by
Waddington C.H. et al. in 1942 and defined as a phenomenon
above genetics [13]. Currently, we understand that epigenetic
regulation of gene expression may be mediated by DNA
methylation, histone modifications, and chromatin remodeling,
which occur without changes in the DNA sequences. In addition to
the above-mentioned mechanisms associated with direct chro-
matin remodeling, control of gene expression by regulatory non-
coding RNAs (ncRNAs) is usually considered a part of the
epigenetic machinery. In this chapter, we will briefly introduce
the essential epigenetic mechanisms associated with direct
chromatin modifications that will be further discussed in the
context of MSCs’ fate and immunomodulatory function.

DNA methylation
DNA methylation is a biological process involving direct chemical
modification of the DNA without changing its sequence [14]. This
process is controlled by catalytic enzymes belonging to the family
of methyltransferases (DNMTs), transferring a methyl group (-CH3)
from S-adenosylmethionine (AdoMet/SAM) to cytosine in a
dinucleotide sequence CpG (extensively reviewed in ref. [15]).
Approximately 70% of gene promoter sites are associated with
CpG islands (CGIs) which are responsible for transcriptional

initiation [16]. The canonical DNMT enzymes, namely DNMT3a
and DNMT3b, can establish de novo methylation to unmodified
sequences [17]. At the same time, DNMT1 maintains the methyl
group transfer from parental to newly synthesized DNA strand
during DNA replication [18, 19]. DNA methylation was shown to
play a crucial role in genomic imprinting, regulation of tissue-
specific gene expression, and X chromosome inactivation; there-
fore, it is recognized as a conservative and long-lasting mechan-
ism [20, 21].

Histone modifications
Chromatin structure is dense and hardly accessible for enzymes
involved in transcription processes. Therefore, histones undergo
post-transcriptional modifications to control DNA accessibility. To
date, four mechanisms of histone modifications are best described
and functionally characterized, namely acetylation, methylation,
ubiquitination, and phosphorylation [22].
Histone acetylation is controlled by acetyltransferases (HATs)

that transfer acetyl groups from acetyl co-enzyme A to lysine
residues of the N-terminal H3 and H4 tails [23, 24]. Consequently,
the positive charge of histone is neutralized, which reduces
chromatin condensation, allowing the initialization of gene
transcription [25]. This process may be reversed by activating
histone deacetylases (HDACs), which remove acetyl groups from
lysine residues making chromatin denser and more unavailable for
transcriptional machinery and thus repressing gene expression
[26, 27].
Similarly, to DNA methylation, methyl groups can be transferred

to amino acids of histone proteins by methyltransferases;
however, this process is independent of DNA methylation. Histone
methylations can both repress or activate transcriptional pro-
cesses depending on the methylation region, and a number of
modifications occurred [28]. Histone methylation may occur on all
histones, targeting especially lysine and arginine residues [29].
Ubiquitination refers to modifying the epsilon amino group of

lysine by attaching one (monoubiquitinylation) or more (poly-
ubiquitination) ubiquitin monomers. Ubiquitin is a small protein
found in the vast majority of human tissues. Similarly, to the
processes mentioned above, ubiquitination occurs in lysine
residues of the N-terminal histone tails. Histones H2A and H2B
seem to be the most ubiquitinated proteins in the nucleus [30, 31].
However, some reports showed that H1, H3, and H4 could also be
modified by ubiquitination [32]. The process is controlled by
several different enzymes such as Ubiquitin C-termin Hydrolase 1
(UCHL1), and Ubiquitin Specific Peptidase 1 (USP1) (for an
extensive review, please see ref. [33]) and may control transcrip-
tion processes, DNA damage responses, stem cell maintenance,
and differentiation, among others [34]. However, it seems that
H2A monoubiquitinylation is frequently associated with the
repression of gene transcription [35, 36], while H2B monoubiqui-
tinylation is often associated with increased transcription [37–39].
Contrary to the abovementioned processes, histone phosphor-

ylation occurs on serine, thyronine, and threonine. Their role in the
regulation of transcription remains not fully elucidated, although a
number of proteins with phosphor-binding domains recognizing
phosphorylated histones have been characterized [40, 41]. It
seems that histone phosphorylation is primarily associated with
the response to DNA damage (for review, please see ref. [42]).

Adenosine triphosphate-dependent chromatin remodeling
Adenosine triphosphate (ATP)-dependent chromatin alternations
are mediated by multi-subunit chromatin-remodeling complexes
utilizing the energy from ATP hydrolysis. These ATP-dependent
chromatin remodeling enzymes were classified within the RNA/
DNA helicase 2 superfamily and, based on their ATPase domain
sequence similarities, may be divided into four groups/subfami-
lies, namely chromodomain helicase DNA-binding (CHD), SWItch/
Sucrose non-fermentable (SWI/SNF), imitation SWI/SNF (ISWI), and

A. Walewska et al.

2

Cell Death and Disease          (2023) 14:720 



INO80 (reviewed extensively in ref. [43]). Their direct role in
developmental and physiological processes is well established.
Interestingly, they may also be recruited by tissue-specific
transcription factors to gene promoters and interact with other
epigenetic modifiers such as HATS, HDACs, and histone methyl-
transferases (HMTs) [44].

Non-coding RNAs
ncRNAs are widely present in the eukaryotic genome and in
contrast to messenger RNA do not translate into proteins. They are
classified into housekeeping or regulatory ncRNAs. Housekeeping
ncRNAs include ribosomal RNA (rRNA), transfer RNA (tRNA), small
nuclear RNA (snRNA), small nucleolar RNA (snoRNA), and
telomerase RNA (TERC). They are involved in fundamental cellular
processes, including mRNA translation (rRNA, tRNA), pre-mRNA
splicing (snRNA), RNA modifications (snoRNA), and telomeric DNA

synthesis (TERC). In contrast, regulatory ncRNAs are considered
functional components of gene expression, which are usually
classified into two subclasses, namely small ncRNAs including
microRNA (miRNA; 18-22 nt), small interfering RNA (siRNA; 20-25
nt), piwi RNA (piRNA; 26-31 nt), small cajal body-specific RNA
(scaRNA; 200-300 nt), and long ncRNAs including long intergenic
ncRNA (lincRNA; 1 kb nt), circular RNA (circRNA; 100-999 nt), and
natural antisense transcript (NAT; >200 nt). The importance and
function of ncRNAs in cellular biology were extensively reviewed
in ref. [45]. In fact, regulatory ncRNAs play a crucial role in almost
all cellular processes, regulating gene expression at the posttran-
scriptional level [46, 47]. However, ncRNAs do not directly modify
DNA or chromatin structure. Although they can indirectly
influence epigenetic modifications, such as recruiting histone
modifiers or regulating the expression of proteins and enzymes
involved in this process, they do not directly modify the

Fig. 1 DNA methylation, histone modifications, ATP-dependent chromatin remodeling, and miRNAs mediate epigenetic changes.
Chromatin is composed of proteins (histones) and DNA that form chromosomes, and the spatial organization of chromatin is critical for gene
expression regulation. Epigenetic machinery, including methylation of DNA and histone modifications, directly orchestrates chromatin
activity, mediating the balance between an inactive (heterochromatin) or an active form (euchromatin). DNA methylation occurs by adding a
methyl group (-CH3) to cytosine. This process is catalyzed by enzymes such as the activity of DNA methyltransferases (DNMTs). Histone
modification includes methylation (Me), acetylation (Ac), phosphorylation (P), ubiquitination (U), and citrullination (C) on N-terminal tails. ISWI,
CHD, SWI/SNF, and INO80 are the major subfamilies of ATP-dependent chromatin remodelers. In contrast to above mentioned epigenetic
modifications, miRNAs are not directly involved in chromatin activity; however, as potent posttranslational regulators of gene expression,
miRNAs may regulate the expression of enzymes involved in direct modifications of chromatin, including DNMTs, ten-eleven translocation
(TETs) methyl dioxygenases (involved in DNA demethylation), histone deacetylases (HDACs), and histone-lysine N-methyltransferase enzymes
belonging to EZH family (enhancer of zest homolog). Created with BioRender.com.
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epigenetic landscape of the genome [48–50]. Therefore, in this
review, we will summarize the function of ncRNAs directly
regulating the expression and activation of molecules involved
in the epigenetic modifications (Table 1).

EPIGENETIC CONTROL OF MESENCHYMAL STEM CELL
DIFFERENTIATION
As mentioned, MSCs present the plasticity to differentiate into
mesodermal lineage cells, namely adipocytes, osteocytes, and
chondrocytes. Nowadays, it has become clear that epigenetic
reprogramming in response to the mediators regulating MSCs’
fate (growth factors, cytokines, and metabolites) plays a vital role
during differentiation. Here we will summarize our understanding
of epigenetic control of MSCs differentiation.

Adipogenic differentiation
The adipogenic differentiation of MSCs required changes in the
epigenetic landscape, allowing activation of the specific transcrip-
tion machinery inducing cellular plasticity and further adipocyte
maturation. Differentiation toward adipocytes is usually consid-
ered a two-step process, namely determination (described as a
commitment to the adipocyte lineage) followed by differentiation
(adipogenesis) (Fig. 2).
The CCAAT/enhancer-binding protein alpha (C/EBPα encoded

by CEBPA) and the peroxisome proliferator-activated receptor
gamma (PPARγ, encoded by PPARG) are recognized as master
regulators of adipocyte differentiation that control both stages of
the process. The PPARG expression is activated after a few hours of
differentiation induction by CCAAT/enhancer-binding proteins
beta and delta (C/EBPβ and C/EBPδ, respectively) binding to the
PPARG2 promoter [51–53]. In addition, PPARγ phosphorylation is
reduced by miR-143 mediated downregulation of dual specificity
mitogen-activated protein kinase kinase 5 (MAP2K5) expression
and subsequent blocking of MAP2K5–ERK5 (extracellular signal-
regulated kinase 5) signaling pathway [54].
From the perspective of the epigenetic machinery, the opening

of the PPARG promoter region seems to depend on the activity of
the SWI/SNF complex and is accompanied by acetylation of
histone H3, namely acetylation of the 9th lysine (K9ac) residue of
histone H3 (described as H3K9ac mark) and H3K27ac mark [55].
SWI/SNF complex activity has been shown to be regulated by
lncRNAs such as SWINGN [56]. However, to date, it remains elusive
whether this mechanism may be involved in the regulation of
adipogenic differentiation of MSCs. The expression of CEBPA gene

is initially blocked by HDAC1 activity, which is further down-
regulated upon accumulation of PPARγ through 26 S proteasome
degradation, allowing C/EBPα expression [57, 58]. Moreover,
C/EBPα activity promotes the expression of lncRNA TINCR, which
acts as a sponge to reduce miR-31-5p and, in turn, unblock C/EBPα
overexpression [59]. C/EBPα controls the expression of down-
stream genes by recruiting SWI/SNF complex to the promoter
region of its target genes [60].
Committed cells remain undifferentiated and possess the

phenotypic characteristic of MSCs. During the determination step,

Table 1. The involvement of non-coding RNAs into epigenetic regulation of mesenchymal stem cell differentiation.

Non-coding RNA Mechanism Source Model Refs.

miR-143 Regulate adipogenesis through MAP2K5 pathway hAD-MSC In vitro [54]

lncRNA TINCR Upregulate adipogenesis by sponging miR-31-5p in a lncRNA TINCR/miR-31-
5p/C/EBPα feedback loop

hAD-MSC In vitro [59]

miR-675 Inhibit adipogenesis through targeting 3’UTR of HDAC4-6 hBM-MSC In vitro [67]

miR-130a, and miR-27b Promote osteogenesis through inhibitory effect on PPARγ hBM-MSC In vitro [77]

lncRNA TCONS_00041960 Acting as a sponge for Runx2 targeting miR-204-5p, miR-608-5p, and miR-30b-
3p respectively

rat BM-MSC In vitro [88]

lncRNA TCONS_00023297 hBM-MSC [89]

lncRNA CALB2 hDPSCs [90]

miR-145 Inhibits chondrogenic differentiation by directly targeting to the Sox9 3’UTR hBM-MSC In vitro [116]

miR-495 [117]

miR-574-3p Regulate chondrogenesis through RXRα target hBM-MSC In vitro [118]

miRNA micro RNA, hAD-MSC human adipose tissue-derived mesenchymal stem cells, hBM-MSC human bone marrow-derived mesenchymal stem cells, lncRNA
long non coding RNA, HDAC histone deacetylase, MAP2K5 Mitogen-Activated Protein Kinase Kinase 5, PPARγ Peroxisome Proliferator Activated Receptor
Gamma, Sox9 - SRY-box transcription factor 9, RXRα Retinoid X Receptor Alpha.

Fig. 2 Epigenetic changes in the course of adipogenic differentia-
tion. Adipogenesis occurs in a two-step process, namely the
determination phase, followed by the differentiation phase.
Adipogenic differentiation induction attracts CCAAT/enhancer-bind-
ing proteins beta and delta (C/EBPβ and C/EBPδ, respectively)
activation and binding to peroxisome proliferator-activated receptor
gamma (PPARG) promoter encoding PPARγ Simultaneously HDAC1
activity is decreased, which in turn activates the transcription of C/
EBPα. C/EBPα and PPARγ are the major transcription factors whose
expression is controlled by the acetylation (ac) of histone H3 lysine 9
and 27 (H3K9ac mark and H3K27ac mark, respectively). Further, di-
methylation of histone H3 lysine 4 (H3K4me2 mark) upregulates
adiponectin (apM1), glucose transporter type 4 (glut4), g-patch domain
protein 1 (gdp1), and leptin (lep) gene expression. Created with
BioRender.com.
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DNA demethylation in the promoter regions of genes critical for
cell fate decision occurs. This process is accompanied by di-
methylation of the 4th lysine (K4me2) residue of histone H3
(described as H3K4me2 mark) in the promoter regions of late
adipogenic genes such as adiponectin (apM1), glucose transporter
type 4 (glut4), g-patch domain protein 1 (gdp1), and leptin (lep) [61].
Interestingly, however, this activation mark is not associated with
the active transcription of those genes in preadipocytes. Further,
during the differentiation step, their active transcription is
associated with DNA demethylation of their promoters, with
simultaneous histone demethylation and histone H3 acetylation
[62, 63]. Histone H3 acetylation seems to be mediated by CREB-
binding protein (CBP), p300HAT, and simultaneous reduction of
HDAC1 and HDAC3 activity [64, 65]. The process may be
controlled by Sirt 1 (NAD-dependent) and HDAC3 (Zn-dependent)
deacetylases to inhibit adipogenesis by decreasing PPARG
expression [66]. In addition, upregulation of HDAC4-6 activity
was observed during adipogenic differentiation of bone marrow-
delivered MSCs [67]. Despite an increasing body of functional
evidence indicating the significant importance of class II HDACs in
the adipogenic differentiation of MSCs, the effect of their activity
on changes in the epigenetic landscape remains elusive [68–70].
However, it becomes clear that HDAC4-6 expression is controlled
by lncRNA H19 activity and lncRNA H19-derived miR-675 activity,
which are downregulated during adipogenesis [71].
The differentiation process leads to the maturation of adipo-

cytes and results in acquiring morphological and phenotypical
characteristics as well as gene expression profiles of mature
adipocytes. Importantly, once the adipogenic program is acti-
vated, MSCs lose their ability to differentiate towards other lineage
cells and, therefore, are referred to as preadipocytes. Likewise,
osteogenic differentiation inducers associated with the Wnt
signaling pathway repress PPARG expression and, in consequence,
block adipogenic differentiation [72]. The canonical Wnt/β-catenin
pathway directly inhibits the expression of the PPARG gene. In
contrast, the noncanonical Wnt pathway members such as Wnt5a
promote adipogenesis at the initial stage of differentiation [73].

Osteogenic differentiation
In contrast to adipogenesis, osteogenic differentiation is character-
ized as a three-step process starting with the proliferative phase,
then matrix maturation, and mineralization (Fig. 3). Runt-related
transcription factor 2 (RUNX2, also known as a core-binding factor-α-
CBFA1) and Osterix (OSX; also known as Sp7) represent the main
transcription factors for osteogenic differentiation [74–76]. Their
expression is accompanied by increased miR-27b, miR-130a, activity
that directly targets PPARγ expression [77]. Both transcription factors
control the expression of numerous downstream genes encoding
proteins crucial for cellular plasticity induction and osteoblast
phenotype establishment. Activation of RUNX2 induces transforma-
tion into osteoblast-lineage cells by increasing the expression of
hedgehog (Indian Hedgehog Signaling Molecule (Ihh), Gli Family Zinc
Finger 1 (Gli1), and Patched 1 (Ptch1)), fibroblast growth factor (Fgf;
Fgfr1, Fgfr2, and Fgfr3), Wnt family member (Transcription Factor 7
(Tcf7), Wnt1 and Wnt10b), and parathyroid hormone-like hormone
(Pthlh; Parathyroid Hormone 1 Receptor (Pthr1)) signaling genes [78].
In addition, RUNX2 modulates the expression of bone-related genes,
including osteocalcin (OCN), collagen I (COL1a1), osteopontin (OPN),
bone sialoprotein (BSP), alkaline phosphatase (ALP), and the
parathyroid receptor (PTHR) [79, 80]. However, both RUNX2 and
OSX with simultaneous canonical Wnt and BMP signaling pathway
activation are required for mature osteoblast phenotype establish-
ment and their proliferation [81, 82].
Notably, transcription of both mentioned orchestrators of

osteogenic differentiation undergoes epigenetic control. To date,
described mechanisms are associated with changes in i) methylation
at histone H3 residues; ii) acetylation at histone H3 and H4 residues;
and iii) DNA methylation signatures [83, 84]. All the mechanisms

attract both promoter regions of the described transcription factors.
Repressive marks, which are associated mainly with histone H3
modifications (such as mono-methylation at the 4th lysine residue
(H3K4me1 mark), tri-methylation of 9th lysine residue (H3K9me3
mark), and tri-methylation of 27th lysine residue (H3K27me3 mark))
and direct DNA methylation at the 5th carbon of cytosine (5mCpG),
are reduced and replaced with active marks such as trimethylation
of 4th lysine on histone H3 (H3K4me3 mark) and acetylation of
histone H3 (H3ac) and H4 (H4ac) [85]. Osteogenic differentiation
decreases the activity of histone-H3K4-specific demethylase KDM5B
and consequently increases the H3K4me3 mark activating Runx2
transcription [86, 87]. This process seems to be associated with
increased activity of lncRNA TCONS_00041960, TCONS_00023297,
and CALB2 acting as a sponge for Runx2 targeting miR-204-5p, miR-
608-5p, and miR-30b-3p respectively [88–90]. On the other hand,
H3K4me3 mark enrichment in both promoters of described
transcription factors may be mediated by histone-H3K4-specific
methylases belonging to the Complex Proteins Associated with Set1
(COMPASS) family complexes, namely SET1/COMPASS and MLL2/
COMPASS-like (also known as KMT2B) [91–93]. In contrast, MLL3/
COMPASS-like (also known as KMT2C) and MLL4/COMPASS-like (also
referred to as KMT2D) seem to be responsible for the maintenance
of repressive marks and are downregulated after induction of
osteogenic differentiation by monomethylation of the 4th lysine of
histone H3 (H3K4me1 mark) [94, 95]. In addition, H3K9me3 and
H3K27me3 repressive marks are reduced by the activity of SWI/SNF
(belonging as mentioned above to the ATP-dependent chromatin
remodeling complexes family), histone demethylases (KDM4B and
KDM6B, respectively) resulting in increased osteogenic potential

Fig. 3 Epigenetic changes during osteogenic differentiation.
Osteogenesis is a three-step process consisting of the proliferative
phase, matrix maturation, and mineralization. The process is
controlled by RUNX2 and OSX transcription factors. In MSCs, their
expression is inhibited by repressive marks, namely histone H3
mono-methylation at the 4th lysine residue (H3K4me1), histone H3
tri-methylation at the 9th lysine residue (H3K9me3), histone H3 tri-
methylation of 27th lysine residue (H3K27me3), and DNA methyla-
tion at the 5th carbon of cytosine (5mCpG). After induction of
differentiation, expression of methyltransferases (KMT2C and
KMT2D) is reduced, and repressive marks are removed by SWItch/
Sucrose non-fermentable complex (SWI/SNF) and histone demethy-
lases (KDM4B and KDM6B) activity. They are replaced by activation
marks, namely histone H3 tri-methylation at the 4th lysine residue
(H3K4me3) and acetylation (ac) of histones H3 and H4, which
opened the chromatin for RUNX2 and OSX expression. Histone
acetylation is mediated by p300HAT (p300 histone acetyltransferase)
and accompanied by decreased expression of HDAC1-3 (Histone
deacetylases 1-3), while H3K4me3 is mediated by SET1/COMPASS
and KMT2B activity and accompanied by reduced expression of
KDM5B. Created with BioRender.com.
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[96–99]. Furthermore, histone H3 and H4 acetylation are associated
with a reduced expression of HDAC1-3 activity and a simultaneous
increase of histone acetyltransferase p300 (p300 HAT) activity,
allowing effective acetylation in both promoter regions of RUNX2
and OSX [100, 101]. This process is also controlled by the lncRNA
H19/miR-675 regulation of HDAC4-6 expression [67]. However,
similarly to adipogenic differentiation, the role of HDAC4-6 in
orchestrating the epigenetic landscape remains not fully elucidated.
It has been proposed that inhibition of HDAC4-6 reduces acetylation
of histone H4 at the endogenous OCN promoter induced by TGF
−β1 [102].
The process of bone formation decreases with aging and during

inflammatory bone diseases. High levels of IL-1β or TNF pro-
inflammatory cytokines suppress osteogenesis by BMP/Smad
signaling inhibition [103, 104]. However, Sirt1 activation increases
MSC potential to osteogenic differentiation by modulation of NF-
κβ transcription factor and RUNX2 upregulation [105]. Moreover,
HOXB7 increased expression influence ON, OCN, BSP, and COL1A2
gene expression and further RUNX2 [106]. Importantly, RUNX2
high expression during proliferation phase promotes, in turn,
distal-less homeobox 5 (DLX5) and bone sialoprotein (BSP)
transcription factors [107, 108]. Furthermore, Satb2 contributes
to MSC osteogenic differentiation [109]. However, the maturation
and mineralization phase seems to be promoted by OSX, the
second major transcription factor during osteogenesis, which
adjusts the expression of Ocn, Opn, and Osteonectin (On) mature
osteoblast genes [110]. Moreover, ALP expression increases
through Runx2 influence [111].

Chondrogenic differentiation
MSCs differentiation toward chondrocytes strictly depends on
cellular density (condensation of cells into 3D structures that
occurs with the central role of N-cadherin) and growth factors
stimulation (tumor growth factor beta (TGFβ) family members are
well established in this process, namely TGFβ1, TGFβ2, and TGFβ3)
(Fig. 4) [112, 113].
Chondrogenesis commences with mesenchymal condensations

(morphogenetic transformation mediated by cell adhesion),
chondrocyte differentiation, and maturation. SRY-box containing
gene 9 (SOX9) is a key transcription factor in early chondrogenesis
[114]. Together with its cofactors, namely SRY-box containing
gene 5 (SOX5) and SRY-box containing gene 6 (SOX6), control
expression of cartilage-specific extracellular matrix genes (such as
COL2A1, COL9A1, COL11A2, and Aggrecan (ACAN)) [115]. SOX9
expression is directly regulated by miR-145 and miR-495, and
indirectly by miR-574-3p inhibiting retinoid x receptor alpha
(RXRα) an inhibitor of chondrogenesis [116–119]. Moreover, Sox9
interacts with a number of differentiation stage-specific transcrip-
tional regulators, such as WW domain-containing E3 Ubiquitin
Protein Ligase 2 (Wwp2) transport to the cell nucleus. Wwp2 as a
co-factor leads to increased expression of Sox9 [120]. Additionally,
the transcription factor Zinc finger protein (Znf)219, associated by
the C-terminal region with Sox9 factor activity on the Col2a1
promoter, upregulate Sox9 expression during chondrocyte
differentiation and lead to increased expression of Col2a1,
Col11a2, and ACAN [121]. AT-rich interaction domain (Arid)5a, as
another transcriptional regulator, stimulates chondrogenesis by
binding directly to the Col2a1 gene promoter [122]. Importantly,
these activities are accompanied by changes in the epigenetic
landscape involving both DNA methylation and histone modifica-
tions. In fact, chondrocyte-specific gene promoter regions (such as
COL10A1) are hypomethylated in the course of MSC differentia-
tion [123, 124]. In addition, histone acetylation has been shown to
support chondrocyte differentiation [125, 126]. p300 HAT supports
Sox9-mediated expression of cartilage-specific genes such as
Col2a1, a major component of cartilage surrounding extracellular
matrix, by acetylation of histones H3 and H4 in the enhancer
regions [127]. Similarly, Tip60 HAT interacts with Sox9 and

enhances its transcriptional activity in chondrocyte differentiation
by the acetylation mark of lysine 61, 253, and 398 residues [128].
On the other hand, HDAC1- and HDAC2-mediated histone

deacetylation significantly lowers the expression of extracellular
matrix genes, including Col2a1, Col9a1, and Acan, as well as
cartilage oligomeric matrix protein (a non-collagenous cartilage
matrix protein) [129–131]. HDAC4 has been shown to inhibit
Runx2 expression, thus significantly reducing chondrocyte differ-
entiation and hypertrophy [132]. In addition, nicotinamide
adenine dinucleotide (NAD)-dependent deacetylase Sirtuin1 has
been reported to reduce the expression of the COL2A1 gene [133].
Unfortunately, our understanding of histone methylation in this

process remains elusive. Similarly, our understanding of the role of
ncRNAs in the regulation of epigenetic machinery during MSCs
chondrogenic differentiation needs significantly more attention in
the future. Some reports indicate an important role of H3K4me3
and H3K36me3 active marks [134, 135]. Moreover, H3K9 methyla-
tion has been shown to inhibit chondrocyte maturation and
hypertrophy through the downregulation of Runx2 expression.
This repression mark may be erased by the involvement of AT-rich
interactive domain 5b (Arid5b) recruited histone demethylase
Phf2 to promote chondrogenesis [136].

EPIGENETIC CONTROL OF MESENCHYMAL STEM CELLS
IMMUNOMODULATORY PROPERTIES
MSCs acquire immunosuppressive functions in a proinflammatory
microenvironment (in response to cytokine stimulation such as IL-
1α/β, IFNγ, TNF, and IL-17) [137, 138], hypoxia conditions [139], or in
response to pharmacological drugs (bortezomib, dexamethasone)
[140, 141] and chemical/biological agents (LL-37, LPS, curcumin,

Fig. 4 Epigenetic changes during chondrogenic differentiation.
Chondrogenesis begins with mesenchymal condensation, followed
by chondrocyte differentiation and maturation. SRY-Box Transcription
Factor (SOX) 9, together with cofactors SOX5 and SOX6) represents a
key transcription factor responsible for Collagen (COL2a1, COL9a1, and
COL11a1) and Aggrecan (Acan) gene expression. The maturation phase
is controlled by Histone H3 and H4 acetylation (ac) by p300HAT (p300
histone acetyltransferase) and Tip60HAT (Tip60 histone acetyltrans-
ferase). Chondrocyte maturation and hypertrophy are controlled by
Runx2 expression. Its expression is associated with the demethylation
of the 9th lysine (K9) at histone H3 (H3K9me mark) by Phf2 (PHD
Finger Protein 2) demethylase and histone deacetylase 4 (HDAC4)
downregulation. Created with BioRender.com.
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α-synuclein) [142–145], including epigenetic modifiers (HDAC/DNMT
inhibitors) [146, 147]. To date, several MSCs mediated immunomo-
dulatory mechanisms have been described, including (1) reduction
of T cell-mediated responses by induction of T cell apoptosis,
inhibition of T cell proliferation, and supporting of regulatory T cell
differentiation [148]; (2) limitation of B cell responses by regulation B
cell proliferation and differentiation towards plasma cells [149]; (3)
inhibition of the cytotoxic function of natural killer (NK) cells [150];
(4) induction of dendritic cells (DCs) [151] and monocyte/
macrophage (Mo/Ma) tolerogenic properties [152]; and (5) limitation
of inflammatory mediator secretion (Fig. 5) [153].
The MSCs stimulation with pro-inflammatory cytokines leads to

an increase in indoleamine 2,3-dioxygenase (IDO) levels, high IL-10
and prostaglandin E2 (PGE2) secretion, and induction of
immunoinhibitory checkpoint (coinhibitory) molecule expression;
all of these activities are recognized as hallmarks of their
immunomodulatory functions [154, 155]. Interestingly, increased
immunosuppressive activities have been observed after MSC
priming with a combination of proinflammatory IFNγ and
polyinosinic-polycytidylic acid (poly(I:C), a synthetic analog of
double-stranded RNA, a ligand for toll-like receptor 3 (TLR3)
stimulation [156–158]. However, it remains elusive how epigenetic
machinery is involved in the proinflammatory cytokine-mediated
MSCs licensing. In fact, our understanding of epigenetic mechan-
isms that control immunosuppressive functions of MSCs comes
mainly from the reports describing the in vitro effect of chemical
stimulations, including hypomethylating agents (5-aza-2’-deoxy-
cytidine) (5-aza), HDAC inhibitors (trichostatin A and valproic acid),
and drugs known to act on epigenetic marks (chlorzoxazone,
sodium butyrate) [159–162].
5-aza is a chemical analog of cytidine, which possess

hypomethylating activity and direct cytotoxicity in higher doses.
In clinical practice, it is used to treat some types of malignancies,
such as myelodysplastic syndrome (MDS) and acute myeloid
leukemia (AML) [163]. In MSCs, 5-aza-2’-deoxycytidine has been
shown to alter their differentiation potential and gene expression
profiles, including enhancement of immunomodulatory gene
expression. It leads to the demethylation of CXCR2, CXCR4, and

CXCR6 promoters, which enhances MSCs migration potential in
response to IL-8, C-X-C Motif Chemokine Ligand (CXCL1), and SDF-
1 gradient [164]. The combination treatment of 5-aza with histone
deacetylase inhibitors (trichostatin A and valproic acid-selectively
inhibiting class I and II histone deacetylases) resulted in elevated
expression of IDO and IL10. These licensed MSCs exerted a
regulatory effect on Th1 and Th17 cell differentiation and
significantly decreased IFNγ, IL-2, and IL-17 levels [165]. Microarray
and methylation analyses revealed the demethylation of 7734
gene promoters and methylation of 5615 genes induced by 5-aza
treatment of MSCs in inflammatory conditions. The pretreatment
with 5-aza decreases methylation of immunomodulatory promo-
ters COX2 and PTGES, and migration factors CXCR2 and CXCR4,
subsequently contributing to the increased PGE2 production by
MSC and suppress lymphocyte proliferation [147].
Deng L. et al. recently proposed chlorzoxazone for improving

MSCs immunosuppressive properties in rat acute kidney injury
model. Chlorzoxazone is a benzoxazole derivative used in clinical
practice as a muscle-relaxing drug. Chlorzoxazone, in contrast to
IFNγ stimulation, does not induce changes in the biological
characteristic of MSCs and their MHC I and MHC II expression
while similarly inhibiting the T cell activation and proliferation via
the increase in IDO expression [160]. Moreover, chlorzoxazone
elevates the expression of Cyclooxygenase (COX2), IL-4, Hepatocyte
Growth Factor (HGF), TNF-stimulated gene 6 (TSG-6), C-C Motif
Chemokine Ligand 5 (CCL5; RANTES), C-X-C Motif Chemokine Ligand
(CXCL9, and CXCL10 (IP-10)) [160]. At the epigenetic level,
chlorzoxazone has been shown to regulate the phosphorylation
of transcription factor Forkhead Box O3 (FOXO3) independently to
AKT and ERK signaling pathways [160]. Administration of
chlorzoxazone-educated MSCs resulted in the reduction of renal
tissue infiltration with immune cells and impairment of fibrinoid
necrosis within the glomeruli, compared to naïve MSCs [160]. In
addition, Yu T. et al. showed that inhibition of Tet-1 and Tet-2
demethylases in periodontium-derived MSCs (periodontal ligament
stem cells) enhances their immunosuppressive functions. Tet-1
and Tet-2 knockdown results in DKK1 promoter hypermethylation
and a decrease of DKK1 expression, leading to the activation of the

Fig. 5 Summary of mesenchymal stem cell priming strategies for the induction of immunomodulatory activities. TNF – tumor necrosis
factor; IFN – interferon; IL – interleukin; IDO - indoleamine 2,3-dioxygenase; PGE2 – prostaglandin E2; COX2 – cyclooxygenase 2; HGF -
hepatocyte growth factor; CCL5 – CC chemokine superfamily member; CXCL – CXC chemokine superfamily member; TSG-6 - Tumor necrosis
factor-inducible gene 6 protein; 5-aza – 5-Aza-2′-deoxycytidine; PTGES - prostaglandin E synthase; TSA - trichostatin A, VPA - valproic acid.
Created with BioRender.com.
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Wnt/b-catenin signaling pathway and modulation of Fas ligand
(FasL) expression. Consequently, MSCs acquire the ability to induce
T cell apoptosis and increase the frequency of Tregs [166].
Similarly, to the above-mentioned drugs, stimulation of MSCs

with IFNγ causes an increase in IDO enzyme level, resulting in the
accumulation of toxic tryptophan metabolites that in turn, hamper
T cell proliferation [167]. The expression of Ido1 gene seems to be
associated with a combination of hypomethylating agents and
histone deacetylation inhibitors (HDACIs) [168]. The increase in
H3K9ac is accompanied simultaneously by a reduction in
H3K9me3 at the promoter region [169].
Taking together, differentially sourced MSCs may vary in their

immunosuppressive properties, and distinct strategies for empow-
ering therapy should be assessed with a focus on the changes in
biological characteristics, immune privilege, and functionality of
MSCs [170–172]. Therefore, there is a substantial need to
strengthen our understanding of the mechanisms and immuno-
modulatory potential of MSCs isolated from different tissues
[165, 166, 173, 174]. This certainly would bring us closer to their
use in clinical practice.

PERSPECTIVE FOR IMPROVING CLINICAL STRATEGIES
INVOLVING MSCS
The approaches utilizing infusion or transfer of MSCs into patients
have begun to develop in the 90’s of the last century. Over the
past decades, the advances in MSCs administration procedures
and safety strategies allowed for registering more than 950 clinical
trials involving ~10,000 treated patients [175]. The considerable
interest of the scientific community in optimizing MSC-based
therapies in inflammatory and degenerative diseases resulted in
the registration of more than 1000 clinical trials with a targeted
enrollment of almost 50,000 patients in 2011–2018 [175].
Unfortunately, this great focus on clinical settings did not provide
potent progress in the introduction of the first MSC-based therapy
for routine medical practice.
Therefore, further efforts should be focused on enhancing the

stability and effectiveness of MSCs transfer regardless of various
conditions affecting the replicability of individual transplants.
Given the complexity and diversity of the isolation procedures and
expansion methods of MSCs, along with donor diversity and the
heterogeneity in the inflammatory profiles of the recipient
microenvironment, the achievement of the desired therapeutic
outcome is very difficult. The advancement of two strategies
might be useful in order to minimize currently defined issues,
namely: (1) optimization of the MSC-related effects in controlled
in vitro production conditions containing the standardized
procedures using effective stabilizing/enhancing agents (such as
inflammatory mediators, epigenetic or genetic modifiers); or (2)
prediction suited properties and modification the MSC for
personalized clinical indication (extensively reviewed in ref. [175]).
Recently developed methods, including single-cell sequencing

(with multi-omics approaches) and further exploring of next-
generation technologies, may progress our understanding of
MSCs heterogeneity being the result of donors’ diversity, culturing
conditions (hypoxia, length of culture), and isolation tissue sources
[176]. Those advances may help to predict particular epigenetic
manipulations or gene silencing, which might improve the desired
therapeutic effect in individual clinical indications. On the other
hand, the acquirement of a sufficient number of MSCs (hundreds
of millions) for transplantation requires extensive expansion of
cells in a standardized laboratory environment. The senescence of
cells during culturing remains one of the leading problems in the
advancement of cellular therapies. Aging MSCs may manifest loss
of stemness, differentiation abilities, and immunomodulatory
potential (for review please see ref. [177]). Therefore, epigenetic
manipulation may maintain their beneficial properties or reverse
the effects of senescence.

The improvement and substantial progress in the development
of stem cell-based therapies require extensive research in the field
of epigenetic machinery driving immunomodulatory activities and
the differentiation potential of MSC. It is tempting to speculate
that a better understanding of the role of epigenetic machinery
and dynamic changes of the epigenetic landscape during fate
decision, differentiation, and induction of immunomodulatory
activities will allow us to better control the stability and enhance
the therapeutic potential of MSCs.
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