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The β2-Adrenergic receptor (β2-ARs) is a cell membrane-spanning G protein-coupled receptors (GPCRs) physiologically involved in
stress-related response. In many cancers, the β2-ARs signaling drives the tumor development and transformation, also promoting
the resistance to the treatments. In HNSCC cell lines, the β2-AR selective inhibition synergistically amplifies the cytotoxic effect of
the MEK 1/2 by affecting the p38/NF-kB oncogenic pathway and contemporary reducing the NRF-2 mediated antioxidant cell
response. In this study, we aimed to validate the anti-tumor effect of β2-AR blockade and the synergism with MEK/ERK and EGFR
pathway inhibition in a pre-clinical orthotopic mouse model of HNSCC. Interestingly, we found a strong β2-ARs expression in the
tumors that were significantly reduced after prolonged treatment with β2-Ars inhibitor (ICI) and EGFR mAb Cetuximab (CTX) in
combination. The β2-ARs down-regulation correlated in mice with a significant tumor growth delay, together with the MAPK
signaling switch-off caused by the blockade of the MEK/ERK phosphorylation. We also demonstrated that the administration of ICI
and CTX in combination unbalanced the cell ROS homeostasis by blocking the NRF-2 nuclear translocation with the relative down-
regulation of the antioxidant enzyme expression. Our findings highlighted for the first time, in a pre-clinical in vivo model, the
efficacy of the β2-ARs inhibition in the treatment of the HNSCC, remarkably in combination with CTX, which is the standard of care
for unresectable HNSCC.
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INTRODUCTION
Beta-adrenergic receptors (β-ARs) are a family of proteins widely
expressed in physiological as well as pathological conditions.
Catecholamine epinephrine and norepinephrine are the biolo-
gical agonizts of β-ARs that modulate the sympathetic nervous
system (SNS)–induced fight-or-flight stress responses [1]. Speci-
fically, β2-AR signaling is able to modulate metabolic pathways
either in normal or pathological conditions. In fact, the β2-
adrenergic receptor regulates ER–mitochondria contacts, being
a regulatory pathway for ER–Mito coupling, and these contacts
respond to physiological demands or stresses [2, 3]. On the
other hand, Beta-adrenergic receptor gene polymorphisms are
associated with cardiac contractility and blood pressure
variability [4]. The key role of the β2-AR signaling in cancer
biology has been initially demonstrated in epidemiological
studies that correlated chronic stress with accelerated tumor
progression [5, 6], as well as reduced tumor aggressiveness in
patients under β-blockers therapy [7, 8]. The β2-AR signaling
promotes tumor initiation and progression by regulating several
cell processes, such as apoptosis/anoikis [9, 10], autophagy,

angiogenesis [11], inflammation and immune-response [12, 13],
DNA damage, drug resistance and EMT [14, 15].
In breast cancer, the β2-AR catecholamine activation negatively

correlates with drug response in HER2 overexpressing patients,
showing a PI3K/Akt/mTOR mediated resistance to the therapy
[16]. The β2-AR subtype is a G protein-coupled receptor (GPCR); its
stimulation causes the Gαs subunit mediated cyclic AMP (cAMP)
synthesis and the consequent Protein Kinase A (PKA) phosphor-
ylation. The PKA could be identified as one of the key effectors of
the β2-signaling, together with the guanine nucleotide exchange
protein (EPAC) subjected to the cAMP modulation. PKA elicits its
effect by activating the PI3K/Akt/mTOR and Src/Ras/MAPK axis,
while EPAC downstream regulates the B-Raf and MAP/extracellular
signal-regulated kinases 1/2 (ERK1/2) through the Ras-related
protein Rap-1A [17–19].
In head and neck squamous cell cancer (HNSCC), an epidermal

growth factor receptor (EGFR) chimeric monoclonal antibody
(mAb) (Cetuximab—CTX), is the standard of care of patients
intractable with cisplatin, or in case of high recurrence and
metastasis [20, 21]. The EGFR plays a key role in the pathogenesis
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and progression of HNSCC, being overexpressed in more than
80% of patients both in the tumor and in the surrounding tissue
[22–24]. Its constitutive activation promotes cancer growth and
progression mainly by the mitogen-activated protein kinase
(MAPKs) and/or the PI3K/AKT/mTOR and JAK/STAT signaling [25].
Unfortunately, the therapy with CTX is often hindered by
resistance mechanisms which make it ineffective. EGFR blockade
often leads to oxidative stress increase in cancer cells, which, in
turn, can drive cell death [26]. Nevertheless, cancer cells can boost
their redox balancing machine and become resistant to this
treatment [27].
In a previous study, in HNSCC, we have shown that the

contemporary blockade of β2-AR and MEK1/2 has a synergistic
effect that boosts cytotoxicity and autophagy and prevents
resistance; in fact, β2-AR blockade drives a cell oxidative stress
by the inhibition of the nuclear factor erythroid 2-related factor 2
(Nrf2). The latter regulates the expression of genes involved in
oxidative stress response and drug detoxification [28]. Cells
become resistant to chemical carcinogens and inflammatory
stressors when NRF2 is activated.
Therefore, in this work, we have investigated the potential of

the combined treatments with CTX and β2-AR inhibitors in an
orthotopic model of HNSCC.

RESULTS
Effects on UMSCC 103 viability of the Β2-AR inhibitor alone
and in combination with U0126 and cetuximab
According to our previous results, we verified the cytotoxic effect
of the β2-AR inhibition in the UMSCC 103. As expected, cell
viability was significantly reduced after 48 h of treatment with ICI
(Fig. 1a), with a dose-dependent effect that finally reached 33% at
25 μM. Furthermore, the MEK 1/2 inhibition with U0126 also
resulted in highly effective in promoting significant cytotoxicity at
10 μM. The ICI and U0126 synergism in UMSCC 103 has been
statistically confirmed (Fig. 1b). Considering the strong EGFR
upregulation in the UMSCC lines [29], and the adoption of
Cetuximab (CTX) as the standard of care for the treatment of
HNSCC [20, 21], we preliminarily tested the cytotoxic effect of this
drug in UMSCC 103 (Fig. 1c). Effectively, we found a significant cell
death at 20 μM, which hugely increased after co-treatment with
CTX and ICI, in a dose-dependent manner. Even in this case, the
drugs resulted synergic in promoting the UMSCC 103 cytotoxicity
(Fig. 1d).

Β2-AR and EGFR inhibition strongly delays the HNSCC
progression in vivo
We established an orthotopic HNSCC mouse model by injecting
the UMSCCs 103GFP directly into the nude mice tongues [30]. We
have previously shown that this model replicates the character-
istics of the original tumor and is a reliable model to study HNSCC.
One week post injection we randomized the mice, after tumor
fluorescence evaluation, and started the treatments with U0126,
CTX, and ICI alone or in combination, which lasted almost four
weeks; the mice were sacrificed once achieved the experimental
cut-off (Fig. 2a). The UMSCC 103GFP engraftment has been
localized in the anterior part of the tongues. The tumors were
very well localized into the distal portion of the tongue, with rare
erythematous plaques and ulcers. The tumor histology high-
lighted a conventional type of squamous carcinoma, with the
presence of parakeratotic cells fairly uniform and a basaloid
appearance. These cells showed a distinctive pearl-like shape, with
many intercellular connecting bridges made of keratin.
Nevertheless, the exponential cancer cell growth led to the

invasion of most of the muscular organs (Fig. 2b), especially in the
control group, where we observed also some ulcers. The tumor
growth rate has been verified by monitoring the tumor mass
fluorescence through the MacroFluo technology twice per week in

mice under anesthesia with isoflurane 4%. During the follow-up,
no significant loss of weight has been registered. Here we found a
tumor growth delay (not statistically significant) after treatment
with ICI at the concentration of 2 mg/Kg [31](≃35% fluorescence
reduction). Interestingly, neither CTX (40 mg/kg) [32] nor U0126
(10 mg/kg) [33] alone were effective on the tumor growth, while
we observed a significant tumor mass reduction (≃−65%) in mice
subjected to the contemporary administration of ICI and CTX
(Fig. 2C).

Β2-AR expression pattern in HNSCC orthotopic mouse model
The β2-AR pathway is targeted by different selective and non-
selective agonizts/antagonists for the treatment of several
diseases. Few high doses or a series of small doses of these drugs
in patients can induce the β-Arrestin mediated β2-AR desensitiza-
tion, with the consequent tachyphylaxis [34]. These mechanisms
are very well described in the case of the use of the β2-AR agonist,
but little is known about the long-term effects of the β2-AR
antagonists.
In our HNSCC in vivo model, we analyzed the β2-AR modulation

by immunohistochemistry (IHC), demonstrating a strong mem-
brane expression of the β2-AR in the CTR group (Fig. 3a).
Interestingly, although the intensity of the β2-AR signal and the
percentage of positive cells were mildly reduced after treatment
with CTX or U0126, in the ICI group we found a strong inhibition of
β2-AR expression, which become noticeable after treatment with
ICI in combination with both U0126 and CTX.
The β2-AR expression has been analyzed also by western blot

(Fig. 3b). Here, we found that the β2-AR downregulation was
statistically significant only in mice co-treated with ICI and CTX.
Nevertheless, for the other groups, we observed the same trend
described in the IHC (Fig. 3b; Fig. S1).

Interplay between Β2-AR and EGFR/MAPK axis
Recent studies demonstrated the crosstalk between the β2-AR
pathway and many other molecular mechanisms in cancer, among
which the EGFR, which could be directly activated by the β2-AR [35].
Our previous results demonstrated the interplay between the β2-AR/
cAMP/PKA and the MAPK/MEK/ERK axis in affecting the UMSCC 103
viability [28]. Surprisingly, in our in vivo model, we found that the
selective not-competitive MEK inhibitor U0126 was not effective at all
(Fig. 4a; Fig. S2), while CTX significantly blocked the MEK
phosphorylation (≃−66%), even more when in combination with
ICI (≃−90%). ICI single treatments promoted only a mild phospho-
MEK down-regulation (≃−43%) which increased when this inhibitor
was combined with U0126 (≃−53%). ERK phosphorylation was
strongly blocked (≃−69%) by CTX and, remarkably, if in combination
with ICI (≃−94%) (Fig. 4b; Fig. S2).

UMSCC 103 ROS metabolism is modulated by the EGFR- Β2-AR
axis crosstalk
The reactive oxygen species (ROS) play a fundamental role in the
HNSCC development and drug resistance [36, 37]. Recent studies
showed that EGFR constitutive activation dramatically impacts the
ROS balance. In particular, the CTX promotes lipid peroxide
accumulation due to the p38/Nrf-2/HO-1 axis impairment and the
consequent cytotoxicity [38]. We know that the β2-AR pathway
also plays a crucial role in the oxidative stress balance of the
UMSCC 103 where we observed in vitro the Nrf-2 nuclear
translocation inhibition after treatment with ICI, with the relative
downregulation of the antioxidant enzymes involved in the ROS
metabolic machinery [28].
We verified the level of Nrf-2 nuclear translocation in tumor cells

(Fig. 5a; Fig. S3). As expected, we observed a strong Nrf-2
activation in the untreated group, with a high nuclear localization.
On the other hand, in the ICI treatment group, Nrf2 was partially
cytoplasmatic (≃−17%) and in mice co-treated with ICI and CTX it
was almost completely cytoplasmatic (≃−78%).
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Nrf-2 is the master regulator of many enzymes involved in ROS
metabolism, among which are HO-1, Gclc, G6PD, and NQO-1. In
our setting, we have found (Fig. 5b) that the ICI-mediated Nrf-2
cytoplasmic blocking significantly inhibits the HO-1 gene expres-
sion level (≃−52%). Quantitatively, we observed the same effect in
mice co-treated with ICI and U0126. In the same way, CTX
downregulated the HO-1 gene expression (≃−39%), and its effect
is amplified when in combination with ICI (≃−69%). Gclc and
G6PD gene expression are significantly reduced after co-treatment
with ICI and CTX.
The NQO-1 gene expression analysis did not show significant

results (Fig. 5b). We did not find a statistically validated variation of

the NQO-1 gene expression in cancer cells extracted from mice
tongues after the described treatments. In this case, we only
observed a similar trend compared to the HO-1 data.
The IHC analysis (Fig. 5c) suggestively confirmed the HO-1

downregulation after treatment with ICI (IHCscore ≃−44%). In
addition, this inhibitory effect increases after co-treatment with ICI
and CTX (IHCscore ≃−66%). The contemporary treatment of EGFR
and β2-AR inhibitors promoted the NQO-1 protein reduction
(IHCscore ≃−42%) (Fig. 5c).
To confirm that the effect on oxidative stress was mediated by

the inhibitory effect on NRF2, we performed an in vitro experi-
ment with a vital ROS stain (CellRox), combining our treatments

Fig. 1 UMSCC 103 viability and synergism analysis after treatment with ICI, U0126, and CTX alone or in combination. a Viability assay on
UMSCC 103 treated with ICI and U0126 at 48 h. The cell death was statistically significant after a single treatment with ICI (10 μM and 25 μM)
and U0126 (10 μM); the cytotoxicity increases after treatment with a combination of drugs, with a dose-dependent relationship. b The viability
coefficients related to the ICI/U0126 tested concentrations have been plotted in a combination index function to assess the drug’s synergism.
The combination of drugs led to a cytotoxic synergic effect at 10 μM ICI+ 10 μM U0126, which becomes milder at 25 μM ICI+ 10 μM U0126.
c Viability assay on UMSCC 103 treated with ICI and CTX at 48 h. The drug combination was very effective in a dose-dependent trend.
d Synergism analysis of ICI and CTX cell death mediated, with significant results obtained with several combinations: 10 μM ICI+ 20 μM CTX
and μM ICI+ 20 μM CTX (*P ≤ 0.05; **P ≤ 0.01; ****P ≤ 0.0001 vs. CTR).
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with an NRF2 activator (KI696). Interestingly, we found that KI696
reduced ROS accumulation mediated by both ICI-CTX and ICI-
U0126 combination (Fig. 5d, e)

DISCUSSION
The β2-AR pathway is involved in several biological mechanisms
underlying the initiation and progression of many malignancies.

Recent studies on ovarian cancer demonstrated that the β2-AR
agonist stimulation accelerates tumor growth, similarly as it
happens in patients undergoing chronic stress [11]. Also, in prostate
and breast cancer, the β2-AR activation promotes the cancer cell
survival through the inhibition of the pro-apoptotic mediators [10].
Makoto et al. first described in vivo how the stimulation of the β2-
AR induces DNA damage by suppressing p53 via the β-arrestin/AKT/
MDM axis [39]. Conversely, the β2-AR antagonists can delay the

Fig. 2 In vivo tumor growth assay. a Schematic in vivo experimental design. b Ex vivo tongue collection and tumor fluorescence
documentation. c Tumor growth rate of mice treated with CTX and U0126 alone or in combination with ICI. A significant delay is reported in
ICI+ CTX-treated tumor-bearing mice (**P ≤ 0.01 vs. CTR).
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Fig. 3 β2-AR expression in HNSCC mouse model. a Immunohistochemistry assay on mice tongues engrafted with UMSCC 103 for the β2-AR
detection. This receptor was highly expressed in the untreated, while the CTX or ICI treatment induced its strong down-regulation. The
inhibitory effect is more evident if we combine the drugs. b Western Blot analysis of the β2-AR modulation in cancer cells collected from the
tumor bulk. The treatment of ICI and CTX significantly reduced the adrenoceptor expression (*P ≤ 0.05 vs. CTR).

Fig. 4 β2-AR and EGFR pathways crosstalk. Western Blot analysis, for assessing the activation levels of the MAPK pathway modulated by β2-
AR and the master upstream regulator EGFR. a pMEK/MEK ratio is significantly affected by CTX alone, much more in combination with ICI.
b The ERK phosphorylation status followed the same trend observed with pMEK/MEK. (*P ≤ 0.05; **P ≤ 0.01 vs. CTR).
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tumor growth or eventually attenuate its metastatic potential, for
example, suppressing the secretion of the matrix metalloproteinase
(MMPs) in several tumors, affecting their invasive potential [40].
Our previous study highlighted the synergistic interplay between

the β2-AR and MAPK pathways in HNSCC. In particular, the
contemporary inhibition of β2-AR and MEK1/2 promoted the UMSCC

103 cell death by the down-regulation of the PI3K/Akt/mTOR, p38,
and NFkB pathways and the contemporary Nrf-2 blocking [28].
Nilsson et al. described the involvement of the β2-AR activated
pathway in the EGFR TKI resistance due to a LKB1/CREB//IL-6-
dependent mechanism [41]. Comparable results have been achieved
in a retrospective clinical study where the Her2-overexpressing
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metastatic breast cancer patients, subjected to the concurrent
treatment with β-blocker propranolol and trastuzumab, showed an
improvement of progression-free survival and overall survival,
underling the strong interplay between the β2-AR and EGFR
pathways [16]. Similarly, in HNSCC patients, there is a correlation
between β2-AR expression and poor prognosis [42]. Based on these
data, we decided to investigate the role of the β2-AR pathway in an
HNSCC mouse model, focusing on the interplay between the above-
described pathways. Therefore, we initially showed in vitro that the
inhibition of β2-AR and MAPK is synergic in reducing the viability of
UMSCC 103. Subsequently, considering that MEK 1/2 is a down-
stream EGFR pathway component, very often upregulated in
resistance to therapies tumors [43], we decided to introduce the
CTX in our study, widely considered as the standard of care of many
HNSCC patients [44]. Effectively, the CTX was significantly cytotoxic
on UMSCC 103 and its efficacy increases in combination with ICI, in a
synergistic way.
In many types of β2-AR expressing cells, the prolonged and

continuous agonist stimulation leads to an initial acute cAMP
production which slowly declines almost to the basal level. This
mechanism belongs to the tachyphylaxis process, characterized by
the inactivation of the G-protein signaling and the contemporary
cytoplasmic internalization of the receptor, balanced by the βARK
activation [45, 46]. Recent studies demonstrated that in normoxia,
the β2-blockers sensibly promote the phosphorylation of the
intracellular receptor domains needed for the βARK-mediated
endosome internalization and the consequent receptor desensiti-
zation. In hypoxia conditions, this mechanism is completely
reverted; in fact, the receptor-expressing balance is turned to a
strong re-sensitization [47]. Consistently with these findings, in
untreated mice, we found a high β2-AR expression which was
differently modulated in the case of long-term treatments with
both β-blockers and EGFR inhibitors. In mice with bigger and more
necrotic tumor masses, we observed a strong β2-AR cell
membrane expression, which is strongly inhibited by the long-
term treatment with the β2 selective antagonist ICI, and even more
when in combination with CTX. In our study, the down-regulated
expression of the β2-AR correlates with smaller tumor masses.
To further understand the mechanisms underlying the

cytotoxicity of the β2-AR and EGFR inhibition, we investigated
the pathways regulated by these receptors. Here we found a
significant impairment in the MAPK signaling due to the
blockade of the MEK phosphorylation by both ICI and CTX.
Surprisingly, although U0126 was a selective MEK 1/2 inhibitor, it
was not effective, probably because of the pharmaceutical
limitations that compromised its utility as an in vivo anticancer
agent [48]. For this purpose, we studied in deep the ROS
metabolism machinery, finding the impairment of the Nrf-2
signaling in our HNSCC mouse model. We know that in basal
condition, Nrf-2 is sequestered into the cytoplasm by its
cytoplasmic chaperone molecule Kelch‐like‐ECH‐associated pro-
tein 1 (Keap1). The cell exposition to xenobiotic and oxidative
stress reduces the affinity of Keap-1 with Nrf-2, which is released
to the nucleus where it trans-activates the antioxidant responsive

elements (ARE) sequence, leading to the synthesis of several
proteins such as the xenobiotic detoxification enzyme NQO-1,
the catalytic subunit in rate‐limiting step of GSH synthesis GCLC,
the first pentose phosphate pathway enzyme G6PD and the
Heme metabolism enzyme HO-1 [49]. Also, in oral pre-cancerous
leukoplakia or erythroplakia yet, there are high ROS levels, due to
the activation of several oxidative enzymes, such as the inducible
nitric oxide synthase (iNOS), with the relatively augmented risk of
DNA damage in oral epithelium [36]. Interestingly, in our model,
we found a strong activation of the ROS metabolism due to the
Nrf-2 nuclear translocation. Conversely, the treatment with ICI
significantly blocked the Nrf-2 into the cytoplasm, with the
relative down-regulation of the genes involved in the ROS
machinery. Surprisingly, also CTX was highly effective in reducing
the Nrf-2 activity, as already described by some authors. Indeed,
recent studies in NSCLC patients described the activation of the
Nrf-2 mediated ROS metabolism by the EGFR blockade [50] or by
the presence of a dysfunctional Keap1. In colon cancer patients
treated with CTX has been observed an enhanced RSL3
ferroptosis by inhibiting the Nrf-2/HO-1 signaling [38]. Interest-
ingly, CTX and ICI, together, were more able to reduce the Nrf-2
translocation; in the same way we have described this behavior
for the MEK/ERK signaling. Effectively, the MAPK signaling is
strictly correlated with the ROS metabolisms in several cancers
[51, 52], among which the HNSCC [28]. Moreover, we demon-
strated that ROS accumulation is correlated to Nrf-2 modulation
by ICI-CTX and ICI-U0126 combination. In fact, using KI696 (an
Nrf-2 activator), the effect of this combination on ROS
accumulation was strongly reduced. Our data mechanistically
suggested the correlation between the inhibition of the ERK/MEK
pathway, by the contemporary inhibition of the β2-AR and EGFR
pathways, and the Nrf-2 activation, with the contemporary
blockade of the downstream ROS metabolism enzymes HO-1,
GCLC, G6PD, and NQO-1.
Further studies are needed to understand the interplay

between the EGFR selective inhibition and the β2-AR desensitiza-
tion balance.

CONCLUSION
In conclusion, our findings suggest a powerful interplay between
the β2-AR and EGFR signaling in HNSCC. In particular, the
contemporary inhibition of these pathways significantly reduces
the tumor growth in the orthotopic mouse model of HNSCC due
to the impairment of the MEK/ERK/Nrf-2 axis. Indeed, we found a
strong inhibition of the ERK phosphorylation by ICI and CTX
directly into the tumor sections or in ex vivo collected tumor cells,
showing a synergistic effect when administered in combination.
We have also demonstrated that the MAPK signaling impairment
affects the Nrf-2-regulated ROS metabolism. In fact, we have
observed that the Nrf-2 cytoplasm blockade induced by the
treatments with the relative down-regulation of HO-1 and NQO-1
enzymes leads to an enhanced cytotoxicity due to the ROS
unbalancing.

Fig. 5 β2-AR and EGFR pathways regulate the ROS metabolism NRF-2 mediated. Evaluation of the ROS metabolism in cancer cells directly
obtained from the HNSCC-bearing mice. a Western Blot analysis of Nrf-2 expression in both cytoplasmic and nuclear protein extracts. ICI
treatment reduced the Nrf-2 nuclear translocation, in a more evident way if in combination with CTX. b RT-PCR for the HO-1, NQO-1, GCLC,
and G6PD gene expression level analysis. The β2-AR blockade diminishes the gene expression level of HO-1, with a synergistic effect in
combination with CTX, which is able to induce a milder effect by itself. The MEK 1/2 inhibition did not replicate this effect. No significant
effects have been observed about the NQO-1 expression. The expression of GCLC and G6PDH is significantly reduced only after treatment
with ICI in combination with CTX. c Immunohistochemistry assay on mice tongues engrafted with UMSCC 103 for the HO-1 and NQO1
detection. The ICI and CTX treatments sensibly reduced the expression of HO1, which increases if we combine the drugs. The expression of
NQO1 was affected only in mice subjected to the combination of ICI plus CTX. d Cell-ROX assay for the evaluation of the oxidative stress in
UMSCC 103 induced by our drugs. With both flow cytometer and e fluorescent microscopy analysis, we observed an increased level of
oxidation after treatment with the β2-AR inhibitor, as well as with CTX and U0126. The same drugs are even more effective in combination,
but this increased effect is counteracted by the KI696. (*P ≤ 0.05; **P ≤ 0.01; ****P ≤ 0.0001 vs. CTR).
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Our findings, taken together, suggest that in HNSCC, the
inhibition of both β2-AR and EGFR signaling is a potential target to
strongly reduce tumor cell growth.

MATERIALS AND METHODS
Chemicals, cell culture, and in vitro treatment
All chemicals were purchased from Sigma-Aldrich (St. Louis, USA) unless
otherwise specified. Selective inhibitors of β2-AR (ICI118,551) and MEK1/2
(U0126) were obtained from Tocris Bioscience (Bristol, United Kingdom).
Cetuximab was obtained from Merck KGaA (Merck KGaA, Darmstadt, Germany).
KI696 was obtained from (MedChemExpress, Monmouth Junction, USA)
UMSCC103-GFP (engineered HNSCC cell line) used in this study was

established at the University of Michigan under a protocol approved by the
Institutional Review Board Office under the university’s regulations and
described here. The human embryo kidney cell line (HEK 293 T) was
obtained from the American Type Culture Collection (ATCC, Manassas, VA).
Cells were cultured in DMEM (Gibco, NY, USA) supplemented with 2mM
glutamine, 100 IU/mL penicillin, 100 μg/mL streptomycin (Invitrogen,
Carlsbad, CA), and 10% heat-inactivated fetal bovine serum (FBS) (Gibco,
NY, USA) at 37 °C in a humidified atmosphere under 5% CO2. The cell line
was kept mycoplasma-free; checking was performed every three months.

Establishment of UMSCC103-GFP
The UMSCC103-GFP has been obtained with the gene editing technology,
based on the use of the pLenti CMV GFP Puro (658-5) (a gift from Eric
Campeau & Paul Kaufman) (Addgene plasmid # 17448; http://n2t.net/
addgene:17448; RRID: Addgene_17448) lentiviral vectors [53]. The day before
the transfection, 5 × 106 of HEK293T cells were seeded in a 10 cm dish.
Transfection was done with 50 µl of Lipofectamine 2000 (Invitrogen)
according to the manufacturer’s instructions using 15 µg of the transfer
vector, 15 µg of pLP1 (Invitrogen), 6 µg of pLP2 (Invitrogen), and 3 µg of
pVSV-G (Invitrogen). At 48 and 72 h post-transfection, viral supernatants
were collected and filtered through a 0.2 µm syringe filter. Subsequently, the
UMSCCs 103 have been transduced for 24 h at an MOI between 0.5 and 1,
with 8 µg/ml of polybrene (Sigma). The fluorescent cells have been purified
by FACS Aria III cell sorter (Becton & Dickinson, Mountain View, CA, USA).

Cell viability assay
Cell viability was measured by the colorimetric 3-(4,5-dimethyl-2-thiazolyl)-
2,5-diphenyltetrazolium bromide (MTT) assay. Cells were seeded in 96-well
plates at a density of 104 cells per well, then they were treated with 100 μL
of 1 mg/mL MTT (Sigma) in DMEM medium containing 10% fetal bovine
serum for 4 h at 37 °C. The medium was then replaced with 200 μL of
DMSO and shaken for 15min, then absorbance at 540 nm was measured
using a microplate ELISA reader with DMSO used as the blank. To quantify
the synergistic or antagonist effect of the drug combinations, Combenefit®
software was used [54]. Each sample was performed in triplicate.

In vivo studies
HNSCC mouse models have been carried out on 8-week-old female Athymic
Nude-Foxnŋu nu/nu mice from Envigo (Envigo RMS Srl S. Pietro al Natisone—
Udine Italy). Mice were housed in a group of seven in a 12 h light: 12 h dark cycle
in a controlled room temperature of 22 ± 2 °C and fed ad libitum. For the
xenograft orthotopic HNSCCmodel, the mice have been previously anesthetized
by intra-peritoneal injection of a solution of Zoletil 100, 50mg/kg (Virbac),
according to their body weight. Subsequently, the Xenograft orthotopic mouse
model of HNSCC has been generated by injectingUMSCC103-GFP (105 in 50 µl of
PBS) directly into the anterior part of the tongue. The tumor growth has been
evaluated in mice under isoflurane anesthesia, with the Macrofluo microscope
(Leica; Wetzlar, Germany) documentation system. The tumor pictures were
analyzed with the ImageJ software to evaluate the fluorescence intensity. After
reaching the fluorescence value of ~106 RawIntDen, the mice (n= 5) were
equally divided into six groups based on different treatments:

1. CTR group: 4 weeks of treatment with normal saline solution;
2. ICI118,551 (ICI) groups: 4 weeks of treatment (2 mg/kg 5 days per

week for 4 weeks, intraperitoneally).
3. Cetuximab groups: 4 weeks of treatment (40 mg/kg every 3 days,

intraperitoneally);
4. U0126 groups: 4 weeks of treatment (10mg/kg every 3 days,

intraperitoneally).

In the same way, we monitored the mice during the follow-up, collecting
the tumor fluorescence data twice per week until they reached the ethical
endpoint.
This study was approved by the Italian Animal Ethics Committee of

“Istituto Nazionale deiTumori Fondazione G. Pascale”, Naples, Italy. All the
experiments were performed by also following the European Directive 63/
2010/UE and the Italian Law (DL 26/2014, authorized by the Ministry of
Health, prot. #647/2020-PR Italy). This study was carried out in accordance
with the recommendations that cover all scientific procedures involving
the use of live animals, as we have previously reported.

Immunohistochemistry
Immunohistochemical staining was carried out on tumor whole slides to
evaluate the expression of HO1, NQO1, and ß2. Paraffin slides of 0.4 μm
thickness were analyzed using the following antibodies: anti-HO1 (rat
monoclonal, R&D SYSTEM cat. N. MAB3776) (diluted: 1:100) anti-NQO1
(mouse monoclonal, R&D SYSTEM cat. N. MAB7567) (diluted: 1:100) and
anti-ß2 (rabbit polyclonal, Santa Cruz, cat. N. sc-569) (diluted: 1:100).
IHC was performed using BOND Polymer Refine Detection (Leica

Biosystem, Milan, Italy) as a fully automated assay on the BOND RX (Leica
Biosystems), according to the manufacturer’s instructions. The BOND
Polymer Refine Detection kit contains a peroxide block, post primary,
polymer reagent, 3,3′-diaminobenizidine tetrahydrochloride hydrate chro-
mogen, and hematoxylin counterstain. Expressions of the biomarkers were
evaluated semi-quantitatively based on the staining intensity and the
number of immunoreactive cells. The immunohistochemical staining was
scored as follows: no staining or weak staining in <10% of tumor cells,
score 0; weak staining in >10% of tumor cells, score 1+; moderate staining
in >10% of tumor cells, score 2+; strong staining in >10% of tumor cells,
score 3+.

Immunoblot analysis
Cells were lysed in 2% SDS containing 2mM phenyl-methyl sulphonyl
fluoride (PMSF) (Sigma), 10 μg/ml antipain, leupeptin and trypsin inhibitor,
10mM sodium fluoride and 1mM sodium orthovanadate (all from Sigma)
and sonicated for 30 s. Proteins of whole-cell lysates were assessed using
the Lowry method, and equal amounts were separated on SDS-PAGE. The
proteins were transferred to a nitrocellulose membrane (Schleicher and
Schuell, BioScience GmbH, Germany) by electroblotting. The balance of
total protein levels was confirmed by staining the membranes with
Ponceau S (Sigma). Immunoblotting was performed with the following
antibodies: anti-β2-AR (H-20), anti-ERK2 (C-14, positive also for ERK1), anti-
phospho-ERKs (E-4), anti-MEK 1/2 (9G3), anti-phospho MEK 1/2 (7E10), anti-
GAPDH (6C5), Anti-β-actin (C4), and anti-Histone H3 (1G1) all from Santa
Cruz Biotechnology (Santa Cruz, CA); anti-NRF2 (from Invitrogen #PA5-
88084, Waltham, Massachusetts, USA). Peroxidase-conjugate anti-mouse or
anti-rabbit IgG (Amersham-Pharmacia Biotech, UK, or Santa Cruz) were
used for enhanced chemiluminescence (ECL) detection. Each western blot
was performed in triplicate.

Cellrox assay
Cells were plated on glass-bottom 35-mm MatTek dishes and treated with
ICI and/or U0126- CETUXIMAB for 24 h and 1 μM KI696 for 24 h at 37 °C.
The cells were then stained with 5 μM CellROX green reagent by adding
the probe to the complete media and incubating at 37 °C for 30min. The
cells were then washed with PBS and then imaged on a fluorescence
microscope EVOS M5000 Imaging System (Thermo Scientific, Rockford,
USA). For flow cytometry, cells were detached and analyzed with a FACS
CANTO II (BD Biosciences, San Jose, CA). Data were analyzed by FlowJo
V10 software (FlowJo LLC, USA).

RNA isolation and qRT-PCR
Total RNA was isolated by RNeasy Mini Kit (Qiagen) according to the
manufacturer’s instructions; RNA was treated with DNase (Promega, Milan,
Italy) to exclude DNA contamination and 1 μg total RNA reverse-
transcribed using VILO SuperScript (Invitrogen, Monza, Italy). Gene
expression assays were performed on a StepOne Thermocycler (Applied
Biosystems, Monza, Italy), and the amplifications were carried out using
SYBR Green PCR Master Mix (Applied Biosystems, Monza, Italy). The
reaction conditions were as follows: 95 °C for 15min, followed by 40 cycles
of three steps consisting of denaturation at 94 °C for 15 s, primer annealing
at 60 °C for 30 s, and primer extension at 72 °C for 30 s. A melting curve

V. Del Vecchio et al.

8

Cell Death and Disease          (2023) 14:613 

http://n2t.net/addgene:17448
http://n2t.net/addgene:17448


analysis was performed from 70 °C to 95 °C in 0.3 °C intervals. Each sample
was performed in triplicate. Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) was used to normalize for differences in RNA input. Primer
sequences are reported in Table 1.

Statistical analysis
Group differences were analyzed with a two-sided paired or unpaired
Student’s t-test. In vivo experiments were repeated twice. Differences
between groups analyzed with the t-test, Wilcox, or Mann–Withney were
considered statistically significant for p < 0.05. Statistical analyses were
performed with GraphPad Prism 7 software. Sample sizes were chosen
based on preliminary results to ensure a power of 80% and an alpha level
of 5%. No data or animals were excluded from the analyses.
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