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The tumor microenvironment (TME) is a highly intricate milieu, comprising a multitude of components, including immune cells and
stromal cells, that exert a profound influence on tumor initiation and progression. Within the TME, angiogenesis is predominantly
orchestrated by endothelial cells (ECs), which foster the proliferation and metastasis of malignant cells. The interplay between
tumor and immune cells with ECs is complex and can either bolster or hinder the immune system. Thus, a comprehensive
understanding of the intricate crosstalk between ECs and immune cells is essential to advance the development of
immunotherapeutic interventions. Despite recent progress, the underlying molecular mechanisms that govern the interplay
between ECs and immune cells remain elusive. Nevertheless, the immunomodulatory function of ECs has emerged as a pivotal
determinant of the immune response. In light of this, the study of the relationship between ECs and immune checkpoints has
garnered considerable attention in the field of immunotherapy. By targeting specific molecular pathways and signaling molecules
associated with ECs in the TME, novel immunotherapeutic strategies may be devised to enhance the efficacy of current treatments.
In this vein, we sought to elucidate the relationship between ECs, immune cells, and immune checkpoints in the TME, with the
ultimate goal of identifying novel therapeutic targets and charting new avenues for immunotherapy.
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FACTS

1. The interaction between endothelial cells and immune cells
in the tumor microenvironment can influence immune cell
infiltration and function.

2. Endothelial cells can express immune checkpoint molecules,
such as PD-L1, which can modulate immune cell activity.

3. Combination therapies targeting both the tumor vascula-
ture and the immune system hold great potential for
enhancing treatment response and overcoming resistance
in cancer therapy.

OPEN QUESTIONS

1. What are the molecular mechanisms underlying the cross-
talk between endothelial cells and immune cells, and how
can we target these interactions to enhance the efficacy of
immunotherapy?

2. What is the role of endothelial cell-expressed immune
checkpoint molecules in regulating immune cell function?

3. Can we develop strategies to overcome the immunosup-
pressive effects of the tumor microenvironment and
enhance the activity of immune cells in the presence of
antiangiogenic therapy?

INTRODUCTION
During phases of rapid growth, tumors exhibit a high degree of
vascularization, while dormant tumors do not [1]. This highlights
the critical role of angiogenesis in tumor progression, as it enables
the delivery of oxygen, nutrients, and growth factors to distant
organs, as well as the spread of cancerous cells [2]. The process of
angiogenesis is regulated by a complex interplay of signaling
molecules and pathways within the tumor microenvironment
(TME) [3]. At the core of this process lies the proliferation,
migration, and morphogenesis of endothelial cells (ECs) [4].
Numerous angiogenic regulators associated with the process of
angiogenesis involve surface receptors on ECs and their corre-
sponding ligands. Among these crucial ligands and receptors are
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the VEGF/VEGFRs and the angiopoietin and Tie2 pathways [5].
Within the human body, ECs form the inner lining of large blood
and lymph vessels, as well as the microvasculature [6]. Despite
their relatively small proportion of tissue cells, ECs are essential for
maintaining tissue homeostasis, regulating blood vessel dilation,
blood coagulation, and promoting angiogenesis [7]. Moreover, ECs
play a critical role in the circulatory system by providing paracrine
support to surrounding nonvascular cells, regulating permeability
and inflammation, and maintaining the balance between coagula-
tion and fibrinolysis [8, 9].
Impaired endothelial barrier function has been implicated in the

morbidity and mortality associated with a range of pathological
conditions, such as sepsis, pulmonary edema, and reperfusion
injury [10]. In addition to regulating blood fluidity and platelet
adhesion, ECs also play a key role in controlling leukocyte
activation, adhesion, and transmigration [11]. They are central to
regulating immunity and inflammation, as well as balancing
coagulation and fibrinolysis [12]. The activation of leukocytes
motility is facilitated by the binding of adhesion molecules, such
as selectins [13]. Notably, ECs express E-selectin and P-selectin,
which serve as pivotal molecules in mediating this process [14].
Evidence suggests that ECs are plastic and can undergo a
transition to mesenchymal cells through a process known as
endothelial-to-mesenchymal transition (EndMT) [15]. In the con-
text of cancer, EndMT is a critical adaptation of the TME that
promotes cancer proliferation, spreading, and resistance to
chemotherapy [16]. ECs undergo EndMT to shed endothelial
characteristics and acquire mesenchymal markers, accompanied
by greater transcription factor expression, defaulting to a
mesenchymal cell function and exhibiting some mesenchymal
cell characteristics, as well as the loss of their capability to form
capillaries and cell-cell junctions, the increase in cellular migration
properties, and the release of extracellular matrix proteins as a
result [17]. The concerted action of TGF-β and TNF-α drives the
induction of EndMT, wherein ECs that have undergone this
process autonomously secrete TGF-β2 and Activin [18]. These
secreted cytokines not only reinforce the mesenchymal pheno-
types of ECs, but also induce the profound epithelial-to-
mesenchymal transition (EMT) in epithelial cancer cells [18, 19].
Immune cells present within the TME play a crucial role in

recognizing and eliminating cancer cells during the early stages of
tumor development [20]. However, their function eventually
becomes restricted through various mechanisms. In a recent
study, an intriguing tumor T-cell metabolic circuit has been
identified, wherein tumor-derived lactate disrupts the pyruvate
metabolism of CD8+ T cells, consequently impeding the
cytotoxicity of these cells [21]. There is still much to be unraveled
regarding intricate mechanisms underlying tumor immunosup-
pression such as this. ECs and immune cells engage in complex
communication via immune targets, adhesion, and signaling
pathways [22]. The precise impact of ECs on immune cell function
within the TME remains incompletely understood, and the
underlying mechanisms of their interaction represent a potential
target for cancer therapies. In this study, we endeavored to delve
into, investigate, and establish the intricate connection between
ECs and immune cells, thereby elucidating promising avenues for
therapeutic interventions.
Immune checkpoint molecules, including inhibitory and stimu-

latory checkpoint molecules, are expressed on both adaptive and
innate immune cells [23]. The emergence of a new generation of
immune checkpoint inhibitors (ICIs) has revolutionized tumor
treatment, offering patients with metastatic disease the opportu-
nity to live longer and providing new therapeutic indications in
earlier stages of cancer [24]. The link between immune
checkpoints and ECs is an important consideration in the TME
and may have implications for cancer treatment.
The aim of this paper is to investigate the critical role of ECs in

the TME, including their interaction with immune cells, their

relationship with immune checkpoints, and their impact on
immunotherapy. Furthermore, we will explore the potential to
enhance the efficacy of immunotherapy by targeting ECs.

EXPLORING THE ROLE OF ECS IN THE TME
TME: a dynamic ecosystem driving oncogenesis and
metastasis
TME constitutes a complex and intricate multicellular milieu that
nurtures cancer development [25]. The cellular components
residing within the TME are postulated to exert a profound
influence on fundamental cancer hallmarks, including prolifera-
tion, angiogenesis, invasion, metastasis, and most notably,
resistance to chemotherapy [26]. These multifarious functions
are orchestrated by a diverse array of cell types, including tumor
cells, immune cells, fibroblasts, and endothelial cells, along with
secreted factors that collectively constitute the TME. As such, they
present themselves as potential targets for anticancer therapies
[27]. The cancer-associated fibroblasts (CAFs) have been found to
secrete hepatocyte growth factor (HGF), thereby instigating
resistance to pharmacological interventions targeting tyrosine
kinases and the epidermal growth factor receptor (EGFR) [28]. ECs
also participate in promoting tumor resistance through various
mechanisms. Studies revealed that chemotherapeutic drug
exposure triggers ECs to secrete TNF-α and promotes CXCL1/2
expression in cancer cells, contributing to amplification of CXCL1/
2-S100A8/9 loop and inducing the acquisition of therapeutic
resistance [29]. Recognizing the dynamic changes occurring in the
TME during tumor progression could lead to treatment strategies
that can address each stage of tumor evolution [30]. In recent
years, the strides achieved in molecular biology research have
given rise to the advent of molecular targeted therapies and
immunotherapies, exemplified by the inhibition of PD-1/PD-
L1 signaling [31]. Such interventions aimed at the TME include
blocking extracellular ligand-receptor interactions and down-
stream signaling pathways, leading to the discovery of novel
targets that enhance the efficacy of numerous cancer therapies
[32]. Notably, immunotherapies that augment the host’s anti-
tumor immune response by targeting TME have emerged as a
promising approach [33]. Among the factors that promote
angiogenesis, TME plays a pivotal role [34]. Proliferation and
motility of ECs are crucial for angiogenesis, which are associated
with tumor progression and metastasis [35]. Targeting the
metabolism of ECs represents a promising strategy for treating
diseases, including cancer [36]. Bevacizumab (Avastin), an anti-
VEGF monoclonal antibody, inhibits the VEGF signaling pathway,
which is pivotal in promoting tumor growth and metastasis
through angiogenesis [37]. It has been widely used in combination
with chemotherapy as the first antiangiogenic drug for multiple
malignancies.

Hypoxia as a key regulator of tumor progression in the TME
Hypoxia, one of the hallmarks of TME, stimulates the production of
pro-angiogenic factors by tumor cells, particularly vascular
endothelial growth factor (VEGF), resulting in the activation of
the “angiogenic switch” [38]. This triggers the proliferation and
migration of ECs, leading to the formation of new blood vessels
[39]. Hypoxic microenvironments are present in most tumors and
promote tumor progression and therapeutic resistance by
enhancing abnormal angiogenesis, desmoplasia, and inflamma-
tion [40]. Under hypoxic conditions, hypoxia-inducible factors
(HIF), which regulate genes such as VEGF, transforming growth
factor (TGF-β), platelet-derived growth factor B (PDGF-B), plasmi-
nogen activator-1 (PAI-1), and erythropoietin (EPO), escape
degradation and bind to hypoxia response elements (HREs) [41].
This facilitates the expression of genes required for cellular
response in overcoming hypoxia, including angiogenesis. To
persist in the hypoxic microenvironment, cancer cells induce
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multiple biological pathways that are mediated by HIF [42]. These
pathways encompass metabolic reprogramming, cellular survival,
and migration. Notably, the activation of HIF-dependent genes,
which encode crucial glycolytic enzymes (such as hexokinase 1
and 3, aldolase A and C, and glyceraldehyde 3-phosphate
dehydrogenase), as well as the monocarboxylate transporters
responsible for glucose (glucose transporters 1 and 3) and lactate,
are prominent examples of the molecular players implicated in
these intricate mechanisms [42]. By orchestrating the migration of
ECs to hypoxic areas, HIF facilitates the formation of new vascular
networks to overcome oxygen deficiency [43]. In this intricate
process, the activation of HIF-1α initiates the transcriptional
upregulation of VEGF in tumor cell, thereby orchestrating the
recruitment of ECs to hypoxic regions and stimulating ECs
proliferation [44].

VEGF signaling in TME modulation
The VEGF/VEGFR axis is widely recognized as a crucial driver of
tumor vascularization, as evidenced by various studies [45].
Oncogene activation and tumor suppressor gene mutations also
contribute to VEGF upregulation in cancer cells [46]. Through
paracrine signaling, VEGF activates ECs and stimulates their
migration and proliferation, ultimately resulting in angiogenesis
[47]. The expression of VEGF is commonly observed in many
malignant tumors and is generally considered to be a major driver
of tumor angiogenesis [48]. It has been proposed that VEGF
signaling modifies the TME by indirectly enhancing tumor cell
migration, intravasation, and survival, as well as promoting tumor
metastasis and vascular permeability [49]. Notably, VEGF exerts
various effects on immune cells, such as inhibiting T-cell function,
increasing regulatory T cells (Tregs), and inhibiting dendritic cell
(DC) differentiation and activation [50]. Since the discovery that
bevacizumab is effective in treating metastatic colorectal cancer
[51], VEGFR-targeting molecules have been approved for the
treatment of various tumors [52]. However, it is important to note
that resistance to antiangiogenic drugs often arises during clinical
treatment, ultimately resulting in unfavorable treatment outcomes
and failure [53]. Despite the limited understanding of potential
predictive biomarkers and mechanisms of response and resis-
tance, the clinical combination of antiangiogenic therapy with ICIs
has yielded significant advancements in the treatment of
metastatic cancer [54].

Angiogenic factors beyond VEGF: driving improper vascular
network formation in tumors
In addition to VEGF/VEGFR signaling, other growth factors can also
contribute to the formation of aberrant tumor vasculature. For
instance, members of the angiopoietin (Ang), PDGF-B, and TGF-β
families have been implicated in this process [55]. While Ang-1
mediates migration and adhesion of ECs, Ang-2 inhibits the
communication between the endothelium and perivascular cells
thereby facilitating vascular regression [56]. However, when
combined with VEGF, Ang-2 can promote angiogenesis [56]. The
Tie2 receptor tyrosine kinase, which is expressed in ECs, tumor-
associated macrophages (TAMs), and tumor cells, binds to the
ligands Ang-1 and Ang-2 [57]. Hypoxia increases the expression of
Tie2 in monocytes, which, in combination with Ang-2, suppresses
their anti-tumor functions [58]. Similarly, PDGF-B promotes the
growth, invasion, and angiogenesis of tumor cells, leading to
tumor metastasis in multiple cancer types [59]. TGF-β, on the other
hand, plays diverse roles in the TME, including stimulating the
differentiation of ECs and myofibroblasts, recruiting immune cells,
and inhibiting anti-tumor immune responses [60].

ECs and tumor progression: a complex interplay
During the formation of blood vessels in the TME, ECs are
exposed to an unique milieu of extracellular signals, including
hypoxia, fluctuating blood flow, low pH, and growth factors and

cytokines released by tumor cells [61]. In turn, ECs can release
factors that affect tumor cell adhesion, promoting tumor
growth and invasion [61, 62]. The interaction between tumor
cells and ECs is closely associated with tumor growth and
metastasis [63]. For instance, when ECs undergo chemotherapy,
insulin-like growth factor binding protein-7 (IGFBP7/angiomo-
dulin) expression is suppressed, resulting in the emergence of
chemoresistant and aggressive tumor cells, which potentially
contribute to tumor progression and metastasis [64]. Tumor
cells can also activate Notch1 signaling activity in ECs, leading
to persistent Notch1 activation that facilitates tumor cell
transmigration, intravasation, and metastasis [65]. Furthermore,
ECs downregulate Slit2, a tumor-suppressive angiocrine factor
inhibited by EphA2, thereby facilitating tumor proliferation and
motility [66] (Fig. 1). ECs are not functionally fixed and can
differentiate into other cell types, such as fibroblasts, chon-
drocytes, and osteoblasts [67]. Evidence suggests that ECs can
differentiate into osteoblasts in the bone microenvironment
during prostate cancer bone metastasis [68].

Endothelial progenitor cells: implications for tumor
angiogenesis and beyond
After the release of tumor-secreted cytokines, endothelial
progenitor cells (EPCs) migrate from the bone marrow to the
bloodstream, infiltrate into the tumor mass, differentiate into
ECs, and produce angiogenic factors that promote tumor
vascularization [69]. The amount of circulating EPCs in the
body is strongly correlated with cancer progression [70]. In
addition, EPCs are recruited into the tumor mass and contribute
to the “angiogenic switch”, either directly by integrating into
cancer vessels or indirectly by secreting pro-angiogenic
cytokines paracrinely [57]. Apart from their role in neovascular-
ization, EPCs have promising therapeutic and prognostic
potential for malignant tumors [71]. Previous research has
suggested that monocytes may also serve as EPCs, expressing
EC markers and integrating into blood vessels to promote
tumor progression [72]. Tumor-secreted cytokines such as
monocyte chemoattractant protein 1, macrophage inflamma-
tory protein 2, and TNF-related apoptosis-inducing ligand
mediate the interaction between tumor cells and EPCs, leading
to enhanced invasion and angiogenesis [73].

ECS-IMMUNE CELLS CROSSTALK IN THE TME: IMPLICATIONS
FOR CANCER PATHOGENESIS AND THERAPY
Understanding the role of ECs in regulating T-cell-mediated
anti-tumor responses
T cells are vital for establishing and maintaining adaptive
immunity against pathogens, allergens, and tumors [74]. In
numerous human malignancies, T cells have been linked with
better patient outcomes [75]. However, several drug resistance
mechanisms in the TME inhibit or dampen anti-tumor immunity
by presenting a range of barriers to T cells [76]. ECs play a
crucial role in recruiting and activating T cells as part of the
regulation of the immune system [77]. Nevertheless, tumor ECs
(TECs) appear to decrease both antigen presentation and
immune cell recruitment, resulting in tumor immunosuppres-
sion [78]. Combining ICIs with antiangiogenic drugs is increas-
ingly recognized as an effective approach to improve
immunotherapy effectiveness and reduce immune-related
complications [79]. In murine models, tumor-associated high
endothelial venule ECs (TA-HECs) derived from post-capillary
venules are recruited into tumors and associated with different
types of T cells; enhancement of TA-HECs leads to higher
proportions of anti-tumor stem-like CD8+ T cells and improves
the effectiveness of immune checkpoint blockade (ICB) [80].
Recent research by Sakano et al. indicates that TECs induce
tumor-infiltrating T-cell exhaustion through the expression of
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glycoprotein nonmetastatic melanoma protein B (GPNMB),
suggesting that GPNMB could serve as a potential treatment
target for liver cancer [81].
TECs are stimulated to express more vascular cell adhesion

molecule-1 (VCAM-1) by combined blockade of vascular endothe-
lial growth factor A (VEGFA) and ANG2, which allows anti-tumor
T cells to accumulate within various types of tumors in mice [82].
Initially discovered as a cell adhesion molecule, VCAM-1 functions
to regulate inflammation-induced vascular adhesion, as well as
macrophage and T-cell migration through the endothelium [83].
TECs express programmed cell death 1 ligand 1 (PD-L1), which
interacts with programmed cell death 1 (PD-1) present on T cells
and inhibits their anti-tumor ability [84, 85]. High expression of PD-
L1 on TECs has been shown to reduce CD8+ T-cells infiltration,
while it increases the aggregate of forkhead box P3 (FOXP3)+

Tregs inside tumors; anlotinib can downregulate PD-L1 expression
on vascular ECs (VECs) via blocking the AKT pathway [85]. FOXP3+

Tregs suppress aberrant immune responses to self-antigens as
well as immune responses to tumors, resulting in a poor prognosis
when large numbers of Tregs infiltrate tumor tissues [86].
A report by Gkountidi AO et al. suggests that MHC class II-

restricted antigen-presenting tumor lymphatic endothelial cells
(LECs) suppress anti-tumor immunity by dampening T-cell-
mediated responses as well as promoting intratumoral Tregs
suppression [87]. Furthermore, previous study has found that PD-
L1 is overexpressed by tumor LECs and blood endothelial cells
(BECs) in the presence of Interferon-γ (IFN-γ), which inhibits the
accumulation of CD8+ T cells in TME [88]. IFN-γ is involved in
enhancing anti-tumor immunity and protumor immune
responses, making it an attractive target for immunotherapeutic
interventions [89].

Targeting TECs to optimize T-cell-mediated anti-tumor
responses: emerging approaches
While chimeric antigen receptor (CAR)-T-cell therapy based on
gene-editing technology has achieved significant success in
treating hematological diseases, its efficacy in treating solid
tumors remains limited [90]. Cell surface markers like selectins
on ECs and corresponding T-cell receptors are essential for CAR-T
cells to reach the tumor site [91]. As cancer progresses, selectins
promote several steps that allow tumor cells to interact with blood
constituents such as platelets, ECs, and leukocytes [92]. Further-
more, chemokine receptors present on T cells engage with
chemokines on ECs, thereby activating endothelial adhesion
molecules (EAMs) and triggering ECs activation [93]. Thereafter,
intercellular adhesion molecule-1 (ICAM-1) and VCAM-1 expressed
on ECs facilitate stable cell adhesion, further enabling chemokine
interactions that result in T-cell diapedesis, i.e., the extravasation
of T cells into the tissue [93]. However, TECs become anergic when
stimulated with pro-angiogenic factors secreted by tumor cells
such as VEGFs and fibroblast growth factors (FGFs), thereby
becoming unable to be triggered by inflammation and incapable
of activating EAMs [93, 94]. Antiangiogenic agents may overcome
TECs’ anergy and improve immunotherapy outcomes [94].
TECs not only inhibit the transport and infiltration of anti-tumor

T cells, but they also directly affect immune responses by
repressing T-cell responses. Through direct contact between cells
mediated by the PD-1/PD-L1 pathway, TECs demonstrate an
immunosuppressive effect against tumor antigen-specific CD8+

T cells. Notably, the deficiency of PD-L1 in TECs compromised their
ability to suppress and induce apoptosis in tumor-infiltrating CD8+

T cells, ultimately leading to the inhibition of tumor development
in an in vivo model [95]. TECs also induce immune suppressive

Fig. 1 Tumor cells secrete several angiogenic factors (e.g., VEGF, ANG, PDGF-B, TGF-β) that promote the proliferation of endothelial cells
(ECs). A hypoxic environment potentiates the ability of tumor cells to stimulate angiogenesis via hypoxia-inducible factors (HIFs). Tumor cells
activate Notch1 signaling in ECs, facilitating tumor cell metastasis. Additionally, ECs downregulate Slit2, promoting tumor proliferation and
motility. Exposure to chemotherapeutic drugs induces ECs to secrete TNF-α and enhances CXCL1/2 expression in cancer cells, leading to the
development of therapeutic resistance. Furthermore, chemotherapy suppresses the expression of IGFBP7 in ECs, resulting in the emergence of
aggressive and chemoresistant tumor cells.
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CD4+ T cells that influence CD8+ T cells through interleukin 10
(IL-10) and transforming growth factor-β (TGF-β) levels, which
contribute to tumor immune evasion [95]. Fas ligand (FasL, CD95L)
is a key component of programmed cell death [96], and in
response to VEGF, IL-10, and prostaglandin E2 (PGE2), TECs are
induced to express FasL, which subsequently kills effector CD8+

T cells, but not Tregs due to increased cellular-FLICE inhibitory
protein (c-FLIP) expression in Tregs [97]. T-cell immunoglobulin
and mucin domain 3 (TIM3), originally detected on Th1 cells,
contributes to apoptosis in Th1 cells [98]. Extensive studies have
elucidated the pivotal role of TIM3 in autoimmune diseases,
chronic viral infections, and tumors [98]. In the context of cancer,
the interaction between Galectin-9 and PD-1, as well as TIM3,
plays a crucial role in regulating T-cell apoptosis, making it a
promising target for cancer immunotherapy [99]. The expression
of TIM3 in lymphoma-derived ECs contributes to the onset,
development, and dissemination of lymphoma by inhibiting CD4+

T-cell activation, as well as Th1 polarization [100].
It has been shown that the release of VEGF from oral squamous

cell carcinoma (OSCC) cells causes ECs to increase the production
of VEGF and PGE2, inhibiting T cells [101]. As well, in Lewis lung
carcinoma (LLC), tumor secretion of VEGF causes ECs to produce
PGE2 that suppresses T-cell function [102, 103]. Several cancers
express galectin-1 (Gal-1), an immunosuppressive molecule that
suppresses immune cell function in TME, contributing to tumor
immune evasion [104]. Gal-1 expressed by ECs inhibits T-cell
transendothelial migration induced by prostate cancer cells [105].
Targeting Gal-1 may provide several advantages as a potential
therapeutic option for cancer; vaccination against Gal-1 promotes
cytotoxic T-cell infiltration, which reduces melanoma burden, and
also induces VEGF-like signals [106].
CD4+ T helper 17 cells (Th17), a relatively new subtype of

adaptive immune cells, play a crucial role in defending against
extracellular bacteria and fungi invasion [107]. Interleukin-22
(IL-22), a crucial cytokine present in Th17 cells, facilitate the
angiogenesis of tumors by acting on ECs [108]. The tumor-
penetrating peptide iRGD have shown considerable potential as
delivery moieties for improving the penetration of chemother-
apeutic agents through angiogenetic vessels into the tumor [109].
iRGD-anti-CD3, a novel bifunctional agent, immobilizes iRGD on
T cells by interacting with CD3, causing the formation of
vesiculovacuolar organelles (VVOs) in the endothelial cytoplasm,
facilitating T-cell migration through the ECs body [110]. Treatment
of T cells with iRGD-anti-CD3 significantly inhibited cancer cell
development and improved survival in different murine xenograft
models, which was further improved by the addition of PD-1
blockade [110].

Unveiling the potential of NK cell therapy: unraveling the
intricacies of NK receptor-TEC interactions
While natural killer (NK) cells have demonstrated remarkable
abilities in eliminating cancer cells, their efficacy against solid
tumors remains a challenge due to the inhibitory effects of the
TME on NK cell activity [111]. Unlike T cells, NK cell activation is
governed by the interaction between NK receptors and target
cells, which occurs independently of antigen preparation and
transmission [112]. A prior study revealed that RAE-1ε, a protein
expressed by lymph node endothelial cells (LNECs) and strongly
expressed by TECs, activates NKG2D, causing internalization of
NKG2D from the NK cell surface and transmitting an NK-intrinsic
signal that desensitizes NK cells function, ultimately leading to
impaired anti-tumor effects in vivo [113]. However, it was
discovered that IL-15-activated NK cells could effectively kill TECs
expressing high levels of poliovirus receptor (PVR, CD155) and
nectin cell adhesion molecule 2 (Nectin-2), while DNAX accessory
molecule-1 (DNAM-1) actively participated in target recognition
[114]. It was found that EBV-positive NK lymphoma cell lines
produce large amounts of TNF-α which cause elevated levels of

ICAM-1 and VCAM-1 in cultured human ECs, and NK cells exhibited
enhanced adhesion to cultured ECs that had been treated with
TNF-α or IL-1β, and the pretreatment of cytokine-stimulated ECs
with anti-VCAM-1 antibodies decreased adhesion [115]. Moreover,
cytokines such as TNF-α and IL-1β produced by CD11b+ cells in
the TME activate ECs to generate CCL2 and CCL7 that recruit NK
cells, and induce the expression of ICAM-1 and VCAM-1, allowing
ECs to make steady contact with NK cells [116].
CAR-NK cells hold immense promise in the realm of cancer

immunotherapy, thanks to their superior safety profile and
encouraging outcomes in preclinical and clinical studies [117].
Specifically, an antigen known as CD123 is expressed on ECs,
which CAR-T-cell therapy targeting CD123 (CART123) can speci-
fically recognize and attack [118]. However, CART123 can
potentially cause injury to ECs, leading to cytokine release
syndrome and capillary leakage syndrome, and upregulation of
CD123 by IFN-γ and TNF-α can exacerbate these conditions [118].
In contrast, CD123-targeted CAR-NK cells (CAR.CD123-NK cells)
offer a safer alternative to CART123, devoid of hematopoietic
toxicity or endothelial injury. In an in vivo model, it has been
observed that CAR.CD123-NK cells and CART123 cells exhibit
distinct toxicity profiles in this particular context [119]. The
outcomes of this model revealed that CAR.CD123-NK cells do not
exhibit targeting capabilities towards human ECs, thereby
preserving the integrity of the vasculature in the murine model.
However, the underlying mechanism behind this phenomenon
remains undisclosed.

Interactions between TAMs and ECs in cancer progression:
implications for angiogenesis and lymphangiogenesis
Tumor-associated macrophages (TAMs), the most diverse immune
cells in the TME, comprise M2 macrophages and a relatively low
proportion of M1 macrophages [120]. Whereas M1 macrophages
have traditionally been viewed as anti-tumor cells, M2 macro-
phages participate in several pro-tumorigenic processes in cancer
by regulating angiogenesis and lymphangiogenic activity, sup-
pressing the immune system, inducing hypoxia, and promoting
tumor cell proliferation and metastasis [121]. In recent years, TAMs
have become a promising target for developing new cancer
treatments given their close association with malignant tumors
[122]. For instance, WNT7b produced by TAMs has been shown to
play a crucial role in tumor progression by increasing VEGFA
expression in TECs [123]. In addition, TAMs expressing Tie2 are
capable of mimicking vascular structure through the expression of
EC-related markers and the formation of capillary-like structures in
response to VEGF, potentially providing a pathway for vessel
maturation with replacement by true ECs [124]. Interaction
between TAMs and ECs may enhance endothelial affinity and
permeability, thereby facilitating the adhesion and transmigration
of circulating tumor cells into tissues and organs [125].
TAMs promote migration of tumor cells via several mechanisms,

including the enhancement of endothelial permeability via the
release of interleukin-6 (IL-6), C-C motif chemokine ligand 2
(CCL2), and matrix metalloproteinases (MMPs), attaching to VCAM-
1 on tumor cells, and suppressing anti-tumor immune cell
infiltration [125]. Notably, endothelial permeability refers to the
role of ECs as the inner lining of all blood vessels in maintaining
organ integrity by regulating tissue perfusion [126]. The
angiopoietin-Tie2 signaling axis is also believed to contribute to
both regulation and dysregulation of endothelial permeability in
the body [126].
Furthermore, gene deletion of Neuropilin-1 (Nrp1) in TAMs

reduces their pro-angiogenic and immunosuppressive functions,
resulting in a reduction in tumor growth and metastasis [127]. In
epithelial ovarian cancer (EOC), TAM infiltration has been found to
enhance IL-8 expression in cancer cells, thereby accelerating
tumor progression through EC-mediated interactions [128]. TAM-
derived exosomes have also been shown to inhibit ECs migration
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via the miR-146b-5p/TRAF6/NF-kB/MMP2 pathway, while EOC-
derived exosomes reverse this process [129]. In addition, M2
macrophage-derived exosomal miR-155-5p and miR-221-5p play
critical roles in interactions between TAMs and ECs, thus
facilitating the development of pancreatic ductal adenocarcinoma
(PDAC) [130]. It was also found that M2 macrophage-derived
exosomes suppressed E2F2 expression in ECs, thus promoting
angiogenesis [100].
In several tumor types, depletion of TAMs decreases VEGFC

production and VEGFR3 signaling in LECs, impairing lymphangio-
genesis [131]. Moreover, a subset of TAMs express high levels of
podoplanin (PDPN), promoting the attachment of this TAM subset
to LECs, thereby promoting the growth of vessels and lymphoin-
vasion [132]. In the TME of breast cancer, miR-1420-5p, miR-183-
5p, and miR-222-3p released from TECs via extracellular vesicles
(EVs) lead to the local increase of TAMs and contribute to tumor
growth [133]. In addition, Calmodulin2 (CALM2) has been found to
exhibit high expression in gastric cancer (GC) cells, modulating the
JAK2/STAT3/HIF-1/VEGFA axis, promoting macrophage polariza-
tion, and facilitating ECs angiogenesis [134].

ECs and other immune cells crosstalk: mechanisms driving
TME
B lymphocytes, a distinct adaptive immune cell population within
the TME, possess intricate and enigmatic functionalities [135]. The
B-cell-activating factor of the TNF family (BAFF) is an indispensable
factor in hematological, lymphoid carcinomas and immunological
domains [136]. Microvascular ECs (MVECs), which constitute the
stroma of chronic lymphocytic leukemia (CLL), endow significant
abundance. MVECs produce BAFF upon anomalous surface CD40L
expression on CLL B cells, suggesting an intimate crosstalk
between neoplastic B cells and MVECs [137]. Signal transducer
and activator of transcription 3 (STAT3) plays a pivotal role in ECs’
angiogenesis in tumors [138]. Notably, STAT3-dependent stimula-
tion of EC function by B cells significantly boosts tumor
angiogenesis [139]. The high-mobility group box 1 (HMGB1)
released by cancer cells is known to attract B cells to the tumor in
the esophageal squamous cell carcinoma (ESCC), where B cells
undergo rapid multiplication and activate pro-angiogenic pheno-
types, promoting the growth of both ECs and tumors [140].
Myeloid-derived suppressor cells (MDSCs), notorious for their

potent immunosuppressive properties [141], play crucial roles in
tumor angiogenesis, drug resistance, and metastasis [142].
Notably, TEC-specific Shb deprivation enhances MDSC recruitment
and facilitates breast cancer transmission to the lungs in mice
[143].
Dendritic cells (DCs), distinguished leukocyte populations

capable of initiating and regulating adaptive immune responses,
are critical targets of cancer immunotherapy [144, 145]. Deletion
of serine/threonine kinase 11 (Stk11) in mouse ECs resulted in
severe reductions of mature DC numbers and spontaneous tumor
formation, indicating the crucial role of DCs in suppressing
tumorigenesis [146]. Endothelial-like differentiation (ELD) of DCs
represents a poorly studied mechanism contributing to tumor
angiogenesis [147]. Notably, within the TME of ESCC, MAPK/ERK1/
2 signaling induces immature DCs (iDCs) to undergo ELD, leading
to their differentiation into endothelial-like cells instead of mature
DCs [148]. This reduces their ability to present antigens, potentially
compromising the efficacy of anti-tumor immune responses [149].
The mast cells (MCs) are known to regulate multiple aspects of

tumor biology, including cell proliferation and survival, angiogen-
esis, invasiveness, and metastasis [150]. Upon activation of c-KitR/
SCF, MCs release tryptase that acts on PAR2 in both ECs and tumor
cells, thereby triggering the proliferation of these cells and
promoting tumor invasion and metastasis [151].
Tumor-associated neutrophils (TANs) are crucial in cancer

development, as well as resistance to or response to therapy
[152]. A distinction exists between N1 and N2 TANs based on

their activation status, cytokine status, and effects on cancer cell
development. N1 TANs exhibit anti-tumor properties, while N2
TANs promote immunosuppression, cancer development, angio-
genesis, and metastasis [153]. The diverse effectors and down-
stream targets involved in IL-8 signaling promote ECs’
angiogenic responses, increase the proliferation and survival
of both ECs and cancer cell, and enhance the migration
efficiency of cancer cells, ECs, and TANs infiltrating tumor sites
[154] (Fig. 2).

ECS-RELATED IMMUNE CHECKPOINTS IN THE TME:
IMPLICATIONS AND MECHANISMS
ICB is an immunotherapy approach that inhibits tumor-mediated
suppression of anticancer immune responses, as opposed to
strategies that directly damage tumor cells [155]. Two prominent
approaches to checkpoint-blocking include blocking cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) and targeting the
interaction between PD-1 and PD-L1 [156]. Both immune and
non-immune cells, including ECs of the lungs, liver, and small
intestine, express PD-1 and PD-L1 [157]. Previous evidence
indicated that PD-L1 expression in ECs reduces the activation
and cytolysis of CD8+ T cells [158]. Moreover, it may augment
both Tregs activation and cytokine production [159]. The presence
of TME appears to promote the expression of PD-L1 in ECs, with
VEGFA and hypoxia playing a pivotal role in this process [85].
Previous research suggests that the regulation of PD-L1 in ECs
may be crucial for modulating immune responses [160]. Anlotinib
in particular, suppresses PD-L1 expression in TECs and retards
tumor cell proliferation [85].
The negative regulation of T-cell responses is a crucial function

of CTLA-4 [161]. In the context of melanoma treatment, the
inhibitory signals between antigen-presenting cells and T cells
controlled by the CTLA-4 molecule can be blocked by anti-CTLA-4
[162]. Notably, anti-CTLA-4 treatment-induced normalization of
tumor vessels was found to be accompanied by an increase in
eosinophil infiltration into breast tumors, and a positive correla-
tion emerged between the accumulation of eosinophils and the
degree of responsiveness exhibited by breast tumors towards
anti-CTLA-4 treatment [163]. Among the first targeted therapies
and angiogenesis inhibitors, bevacizumab is a monoclonal anti-
body that targets VEGFA [164]. In contrast, ipilimumab, a human
monoclonal antibody, blocks the immune checkpoint CTLA-4.
Interestingly, the combination of ipilimumab and bevacizumab
resulted in the activation of TECs [165]. Furthermore, in vitro
studies revealed that the combination of ipilimumab and
bevacizumab promoted the expression of E-selectin, ICAM-1,
and VCAM-1 on TECs, as well as the adhesion of activated T cells to
TECs by increasing the levels of IL-1α and TNF-α [166].
As an immune checkpoint on T cells, TIM3 plays a pivotal role in

tumor immune response. Co-blockade of TIM3 and PD-1 has been
shown to induce tumor regression in preclinical models and
enhance anticancer T-cell responses in advanced cancer patients
[167]. In various cancers, TIM3 and Galectin-9 (Gal9) interact to
suppress both innate and adaptive immunity [168]. However,
despite the established role of TIM3 as a receptor for galectin-9, a
previous study have unveiled an intriguing phenomenon. In a
melanoma model, it has been demonstrated that the TIM3 ECs
promote tumor cell proliferation, survival and migration by
activating NF-κB in tumor cells in a galectin-9-independent
manner [169]. The expression of TIM3 in lymphoma-derived ECs
facilitates lymphoma development and spread by interfering with
circulating T cells and inhibiting CD4+ T-cells activation [100].
Clinically, the presence of TIM3 in the endothelium of B-cell
lymphomas has been associated with the disease spread and poor
patient outcome [100]. It has also been reported that over-
expression of TIM3 in breast cancer cell lines leads to accelerated
tube formation of ECs due to upregulated VEGF [170]. Thus, TIM3
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is likely to play a crucial role in regulating angiogenesis and
endothelial-related diseases in the human body [171].
The B7-H3 protein (also called CD276), an immune checkpoint

protein, belongs to the B7 family and is a critical regulator of the
adaptive immune response [172]. It is also considered an
emerging key player in the development of cancer. B7-H3 is
highly expressed in differentiated malignant cells and cancer-
initiating cells, making it a valuable target for antibody-based
immunotherapy [173]. In addition, B7-H3 has been identified as
the surface marker for TECs, which can distinguish between
physiological and pathological angiogenesis [174]. Notably, TECs
expression of B7-H3 has been found to predict prognosis in
ovarian carcinomas [175] and renal cell carcinomas (RCC) [176]. By
activating the NF-κB pathway, B7-H3-overexpressing colorectal
cancer cells increase the expression of VEGFA, which promotes
ECs angiogenesis [177]. Conversely, a study conducted in the

breast cancer cell line MCF-7 found that silencing B7-H3 enhanced
the production of VEGF [178]. Furthermore, a correlation has been
observed between the expression of B7-H3 in Merkel cell
carcinoma-associated ECs and both local aggressive primary
tumor characteristics and an increase in vascular density [179].
The CD40 receptor and its ligand CD40L comprise a crucial

molecular pair of the stimulatory immune checkpoint [180]. CD40
and CD40L interact to mediate anti-tumor immune responses by
increasing immunogenic cell death (ICD) of tumor cells, activating
antigen-presenting cells, producing proinflammatory factors and
stimulating CD4+ and CD8+ T cells [181]. CD40 is expressed by
various cells, including B cells, monocytes, DCs, fibroblasts, tumor
cells and ECs [182, 183]. Interestingly, CD40/CD40L binding
induces leukocyte adhesion to ECs through the E-selectin pathway
while inhibiting ECs migration through blocking the Akt/eNOS
pathway [184]. Breast cancer development has been linked to

Fig. 2 The ECs and immune cells present in the TME engage in intricate interactions. ECs induce tumor-infiltrating T-cell exhaustion
through GPNMB. ECs express PD-L1, which binds to PD-1 present on T cells and inhibits their anti-tumor ability. PD-L1 was overexpressed by
ECs in the presence of IFN-γ, inhibiting CD8+ T-cell accumulation within the TME. In response to VEGF, IL-10 and PGE2, ECs were induced to
express FasL, which killed effector CD8+ T cells. NKG2D in NK cells is activated by RAE-1ε expressed from ECs, inhibiting the anti-tumor effects
of NK cells. When DNAM-1 recognizes PVR and Nectin-2 on ECs, IL-15 activates NK cells to kill ECs. WNT7b produced by TAMs increases VEGFA
expression in ECs. MiR-1420-5p, miR-183-5p and miR-222-3p released from TECs via EVs lead to local TAM increases. TAM-derived exosomes
inhibit ECs migration via the miR-146b-5p/TRAF6/NF-kB/MMP2 pathway. VEGF produced in B cells activates STAT3 and promotes YAP/TAZ
interaction, leading to ECs progression. The lack of Shb in ECs led to MDSCs recruitment. ECs with Stk11 deletion reduce mature DC numbers
and spontaneous tumor formation. As a result of activation of c-KitR/SCF, MCs release tryptase, acting on PAR2 in ECs, triggering ECs
proliferation. Due to IL-8 signaling, ECs are promoted, TANs infiltrating tumor sites migrate more efficiently.
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CD40 activation on ECs, and activated platelets, which can interact
with and activate ECs, may act as a source of CD40L [185]. In a
metastatic breast cancer model, CD40L-expressing EPCs exhibit
anti-tumor properties by stimulating the secretion of both TNF-α
and IFN-γ [186]. While CD40-stimulating immunotherapy can
enhance anti-tumor responses by activating DCs and increasing
T-cells priming, TECs increase Indoleamine 2, 3-dioxygenase 1
(IDO-1), which has an immunosuppressive feedback mechanism
that inhibits the response to such immunotherapy [187]. When
combination with sunitinib, anti-CD40 mAb treatment increased
the expression of ICAM-1 and VCAM-1 on TECs, resulting in
enhanced intratumoral infiltration of CD8+ cytotoxic T cells [188].
CD137, also known as 4-1BB, is a member of the TNF receptor

superfamily and functions as a costimulatory immune receptor
[189]. This crucial receptor facilitates the activation of CD8+ T cells
and additionally triggers NK cells and DCs, thereby eliciting further
activation of cytotoxic T cells [190]. CD137 is expressed by a
variety of cells such as T cells, B cells, NK cells, DCs, eosinophils,
and MCs [191]. When CD137 is present on the surface of TECs,
treatment with CD137 monoclonal antibodies (mAbs) leads to
upregulated expression of ICAM-1, VCAM-1, and E-selectin,
promoting recruitment of CD8+ T cells into the malignant tissue
and engendering an immune response against the cancerous cells
[192].
CD278 (also known as ICOS or inducible T-cell costimulatory

factor) represents an essential immune checkpoint that becomes
activated and expressed on T cells [193]. The expression of ICOS
ligand (ICOSL) can be found on many different types of antigen-
presenting cells, including macrophages, DCs, and B cells, non-
hematopoietic cells, and ECs [194]. The binding of ICOS and ICOSL
produces many activities among the diverse subpopulations of
T cells, including activation, effector function, and suppression
[195]. Previous studies have demonstrated that the interaction
between Tregs and ECs via ICOS/ICOSL-mediated signaling
pathways increases the sensitivity of B-lymphoma cells towards
ABT-199 [196]. In addition, research supports that ICOSL acts as an
uncharacterized receptor for osteopontin, and their interaction
promotes ECs and tumor cell migration [197]. In vitro experiments
have demonstrated that ICOSL, stimulated by a soluble recombi-
nant form of ICOS (ICOS-Fc), effectively prevents the adhesion and
migration of DCs, ECs, and tumor cells [198].
Indoleamine 2,3-Dioxygenase (IDO), an enzyme produced by

various immune cells, stromal cells, and tumor cells, has been
implicated in the suppression of effector T cells and the promotion
of Tregs proliferation [199]. Notably, the expression of IDO-1 in
TECs is linked to the efficacy of immunotherapy in metastatic RCC
patients [200]. Within RCC ECs, IDO may limit tryptophan flowing
into tumors or generate tumor-toxic metabolites, ultimately
restricting tumor proliferation and improving patient prognosis
[201]. Conversely, high levels of IDO have been associated with
poorer outcomes in breast cancer and significant ECs proliferation
in vitro [202]. Research has also demonstrated that miR-142-5p
transferred into LECs through tumor cell-secreted exosomes
induces lymphatic IDO expression and exhausts CD8+ T cells [203].
The phagocyte NADPH oxidase isoform 2 (NOX2) is a critical

enzyme involved in antigen presentation and immune regulation
[204]. Recent studies suggest that reactive oxygen species (ROS)
produced by NOX2+ myeloid cells in the TME play multiple roles
in cancer cell proliferation and metastasis [205]. By generating
ROS, NOX2 degrades adjacent cytotoxic lymphocytes such as NK
cells and T cells, resulting in impaired function and viability [206].
The expression of NOX1 and NOX2 in melanoma-conditioned
media promotes the EndMT progression of ECs [207]. NOX2
expression in early and late endosomes of ECs produces ROS that
regulate cell proliferation, promoting angiogenesis in prostate
tumors [208]. In vivo, tumor growth derived from ECs has been
shown to be inhibited by NOX2 and NOX4 inhibitors [209].

Since TNF receptor 2 (TNFR2) plays a crucial role in TME, it has
emerged as a highly promising immune checkpoint for targeted
therapy [210]. Indeed, many human tumors are known to exhibit
high levels of TNFR2 expression [211]. Interestingly, TNFR2
protein is also highly expressed by Tregs, and its activation and
proliferation greatly contribute to the survival and growth of
cancer cells [212]. Through the TNFR2/Akt and ERK signaling
pathways, colorectal cancer-derived progranulin (PGRN) acti-
vates EC proliferation and angiogenesis [213]. The EC colony-
forming units (EC-CFUs) from patients with breast cancer exhibit
reduced expression of genes related to TNFR2 signaling, which
results in resistance to apoptosis mediated by TNF-α [214].
Evidence has also emerged that TNF-α may enhance myeloma
cell migration across ECs via its interaction with TNFR2 and its
effect on autocrine activation of MCP-1 [215]. These findings
highlight the considerable promise of therapies targeting TNFR2
in cancer treatment.
CD47 has emerged as an important macrophage immune

checkpoint that is overexpressed by many cancer cells, enabling
tumors to evade macrophage phagocytosis [216]. Studies suggest
that inhibiting the interaction between signal-regulatory protein α
(SIRPα) and CD47 may enhance the ability of macrophages to
eliminate tumor cells [217]. Interestingly, the downregulation of
CD47 in TECs has been associated with increased angiogenesis,
suppressed tumor necrosis formation, and accelerated tumor
growth [218] (Fig. 3). Moreover, a function-blocking CD47
antibody B6H12 is capable of modulating multiple EVs-mediated
signals between breast tumor cells and ECs that promote the
proliferation and metastasis of tumor cells [219]. Additionally, ECs
exhibit radioresistance in vitro and protect soft tissue, bone
marrow, and tumor-associated leukocytes in irradiated mice by
blocking CD47 signaling [220]. These findings underscore the
potential of CD47-based therapies in cancer treatment and
support further investigations into their clinical translation.

PREVENTING ANGIOGENESIS: TARGETING ECS FOR ENHANCED
THERAPEUTIC EFFICACY
Advancements and prospects in therapeutics targeting ECs
The process of angiogenesis, which involves the formation of
new blood vessels, plays a pivotal role in tumor progression and
metastasis. Several approaches have been explored to specifi-
cally target ECs in cancer therapy. One approach involves using
antiangiogenic agents that directly inhibit the formation of new
blood vessels. Most of these agents disrupt the VEGF signaling
pathways involved in ECs proliferation and migration, effectively
impeding tumor growth [221]. Another strategy is to utilize
targeted therapies that specifically bind to receptors expressed
on ECs. By selectively delivering cytotoxic agents or immune
modulators to the tumor vasculature, these therapies aim to
induce vessel normalization, enhance immune responses, and
improve drug delivery to the tumor site [222]. Furthermore,
emerging research has explored the use of nanotechnology-
based approaches to target ECs. The nanoformulated STING
activator ZnCDA, based on the NCP platform, selectively
activates ECs, leading to disruption of tumor vasculature and
improved targeted drug delivery [223]. Nanoparticles offer the
potential for increased therapeutic efficacy while minimizing off-
target effects.
Clinical trials investigating the targeting of ECs in cancer

therapy have shown promising results in various cancer types,
such as breast [224], lung [225], and colorectal cancer [226]. These
studies have demonstrated improved patient outcomes. Despite
these advancements, challenges remain in effectively targeting
ECs for cancer therapy. Identifying specific markers and pathways
unique to ECs, optimizing drug delivery systems, and overcoming
resistance mechanisms are areas of ongoing research.
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Synergistic effect of ICB and anti-angiogenesis in cancer
treatment
VEGF and VEGFR represent pivotal regulators of tumor
angiogenesis and proliferation. Agents precisely targeting these
molecules have been extensively investigated for their potential
in addressing diverse cancer types. The addition of bevacizumab
to combination chemotherapy for recurrent, persistent, or
metastatic cervical cancer resulted in improved overall survival
[227]. In recent years, researchers have embarked upon the
exploration of synergistic combinations, specifically integrating
VEGF and VEGFR-targeted therapeutics with ICIs [228]. This
novel therapeutic approach aims to magnify treatment out-
comes by concurrently inhibiting tumor angiogenesis and
potentiating the anti-tumor functionality of the immune system.
Notably, clinical trials have showcased substantial improve-
ments in overall survival and amelioration of disease burden in
individuals afflicted by non-small cell lung cancer [229] and
renal cell carcinoma [230]. As depicted in Table 1, a multitude of
ongoing clinical trials are focused on investigating the
synergistic impact achieved through the combination of anti-
angiogenesis drugs with immunotherapy.
However, a multitude of unresolved queries persist. Paramount

among these are the delineation of the optimal combinational
therapeutic regimens, the identification of suitable patient
cohorts, and the judicious management of potential adverse
events stemming from these combined interventions. Conclu-
sively, the integration of VEGF and VEGFR-targeted therapeutics
with ICIs represents a captivating treatment paradigm that holds
immense promise in select oncological contexts.

CONCLUSIONS
ECs are critical in tumor development and metastasis, and their
relationship with immune cells is essential for the immune
response to tumors. It is essential to understand the dynamics
between immune cells and ECs to improve the efficacy of
immunotherapy. The specific targeting of ECs offers a potent
means to effectively impede angiogenesis and suppress the
growth of tumors. By selecting appropriate targets such as VEGF,
highly specific therapeutic effects can be achieved.
Immune cells influence ECs and regulate angiogenesis in

various ways, emphasizing the crucial role of the interplay
between these cells in tumor development. Recent insights into
the role of immune checkpoints and ECs in immune function have
resulted in highly promising anti-tumor therapies targeting these
pathways for cancer treatment. Various therapeutic strategies
aimed at modulating ECs and immune cells were meticulously
scrutinized, encompassing the utilization of monoclonal anti-
bodies, cell-based vaccines, and ICIs.
ECs downregulate antigen presentation and recruitment of

immune cells, contributing to immunosuppression. Thus, targeting
ECs may assist in improving the immune effect of immune cells in
TME. It is crucial to regulate the markers, receptors, and signaling
pathways associated with ECs to enhance the effectiveness of
immunotherapies like CAR-T-cell therapy and ICIs.
Furthermore, it is imperative to acknowledge the challenges

and limitations that beset these therapeutic interventions,
including the emergence of treatment resistance and the intricate
mechanisms of immune evasion. The development of effective
immune targets and improvement of ICIs can be achieved

Fig. 3 Immune checkpoints associated with ECs interact with the TME to affect the tumor in a variety of ways. In ECs, PD-L1 reduces CD8+

T-cell activation and cytolysis and increases Treg activation and cytokine production. Anlotinib inhibits PD-L1 expression in ECs. Ipilimumab
blocks CTLA-4 and activates ECs. Overexpression of Tim3 in tumor cells leads to ECs tube formation acceleration. B7-H3-overexpressing tumor
cells promote ECs angiogenesis. CD40/CD40L binding induces leukocyte adhesion to ECs. CD137 is present on ECs surfaces, and treatment
with CD137 mAbs leads to increased recruitment of CD8+ T cells. ICOS/ICOSL-mediated interactions between Tregs and ECs increase the drug
sensitivity of tumor cells. MiR-142-5p is transferred into ECs through tumor cell-secreted exosomes to exhaust CD8+ T cells through an
increase in IDO expression. NOX2 promotes EndMT progression of ECs. TNF-α, through TNFR2 enhances tumor cell migration across ECs. A
function-blocking CD47 antibody B6H12 modulates multiple EVs-mediated signals between tumor cells and ECs that are critical for tumor cell
proliferation and metastasis.
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through further study of the effects of these pathways on the
immune microenvironment. Understanding the interplay between
ECs and immune cells can provide important insights into the
mechanisms of tumor progression and help design effective anti-
tumor therapies. Future studies may focus on developing novel
methods for harnessing the power of the immune system to
eliminate tumors.
In light of the recent advances and insights presented in this

review, it is unequivocal that the intricate partnership between
endothelial cells, immune cells, and immune checkpoints plays a
critical role in shaping the TME. This partnership is orchestrated by
complex molecular and cellular mechanisms that exert a profound
impact on tumor growth, metastasis, and response to treatment.
We have gained new insights into the mechanisms of immune
evasion employed by tumors, as well as the molecular and cellular
components that drive angiogenesis and immune modulation in
the TME. In conclusion, this review unveils the stunning complex-
ity and beauty of the TME, revealing a new paradigm for
understanding and treating cancer.
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