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A transient increase of HIF-1α during the G1 phase (G1-HIF)
ensures cell survival under nutritional stress
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The family of hypoxia-inducible transcription factors (HIF) is activated to adapt cells to low oxygen conditions, but is also
known to regulate some biological processes under normoxic conditions. Here we show that HIF-1α protein levels transiently
increase during the G1 phase of the cell cycle (designated as G1-HIF) in an AMP-activated protein kinase (AMPK)-dependent
manner. The transient elimination of G1-HIF by a degron system revealed its contribution to cell survival under unfavorable
metabolic conditions. Indeed, G1-HIF plays a key role in the cell cycle-dependent expression of genes encoding metabolic
regulators and the maintenance of mTOR activity under conditions of nutrient deprivation. Accordingly, transient elimination
of G1-HIF led to a significant reduction in the concentration of key proteinogenic amino acids and carbohydrates. These data
indicate that G1-HIF acts as a cell cycle-dependent surveillance factor that prevents the onset of starvation-induced
apoptosis.

Cell Death and Disease          (2023) 14:477 ; https://doi.org/10.1038/s41419-023-06012-7

INTRODUCTION
Cell division requires major metabolic changes to enable
duplication of the DNA and the cell mass [1]. Cell growth,
division and metabolism are tightly coupled to provide
biosynthetic precursors and ATP to allow for energy-
consuming processes such as mitosis [2]. Throughout the cell
cycle cells rewire metabolic circuits to allow (i) an increased
glycolytic flux during G1, (ii) the production of nucleotide
precursors for the synthesis of DNA and RNA during G1/S phase
and (iii) an increased oxidative phosphorylation during mitosis
[3, 4]. In yeast, more than 50% of the metabolome changes to
satisfy periodic demands during the cell cycle, while in
vertebrates mitochondria converge into a hyper-fused giant
network during G1/S transition [5, 6]. Cell cycle-dependent
changes in metabolism rely heavily on cyclin-dependent
kinases (CDKs), which, in addition to their role as regulators of
the cell cycle, also influence metabolic circuits [7–9]. During a
G1 phase checkpoint known as Start in yeast and as the
restriction point “R” in mammals, nutrient concentrations and
cell size are sensed to allow irreversible entry into the cell cycle
in the presence of suitable conditions [10, 11]. This sensing of
nutrient availability is mediated by various enzymes including
the kinases mTOR (mammalian target of rapamycin) or AMP-
activated protein kinase (AMPK). The latter kinase functions as a
cellular energy sensor and is rapidly activated by unfavorable
conditions represented by low ATP/AMP ratios [12].
One of the AMPK substrates is the transcription factor HIF-1

[13], a heterodimer composed of HIF-1β and oxygen-regulated

HIF-1α subunits [14]. The oxygen-dependent regulation of HIF-1 is
achieved via its O2-dependent proline hydroxylation by prolyl-4-
hydroxylases (PHDs) and subsequent degradation by the protea-
some, a process that leads to a rapid decrease in HIF-1 levels
under normoxic conditions [15]. At the same time, asparagine
hydroxylation reduces transcription activation by precluding the
binding of HIF-1α to the coactivator p300 [16]. HIF-1 can be also
upregulated by a number of different oxygen-independent
mechanisms that occur under physiological [17] and pathophy-
siological conditions, such as cancer [18, 19]. Increased HIF levels
can result from various mechanisms including increased tran-
scription of the HIF1A gene [20], elevation of protein stability for
example by phosphorylation [21] and association with heat shock
protein 90 kDa (HSP90) [22]. In addition, oxygen-independent HIF
stabilization can involve mechanisms leading to reduced levels of
degradative ubiquitination, for example by interaction with
deubiquitinating enzymes [23] or by TNF receptor-associated
factor 6 (TRAF6)-mediated addition of regulatory (K63-branched)
ubiquitin chains [24]. Following its stabilization, the nuclear HIF-1
dimer associates with hundreds of binding sites to induce or
repress transcription of its target genes [25, 26]. HIF-1 has also
functions that are independent from DNA-binding, as it was
shown for example that HIF-1α and HIF-2α can interact with the
MCM DNA helicase complex [27] and the helicase loading factor
cell division cycle 6 (CDC6) [28], thus causing decreased DNA
replication. Further non-transcriptional functions include the γ-
secretase activating function of HIF and the mitochondrial
association of a fraction of HIF [29, 30].
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Here we set out to investigate the regulation of HIF-1α during the
cell cycle and discovered that its levels increase transiently during the
G1 phase. Transiently activated G1-HIF acts as a surveillance factor that
prevents the onset of apoptosis likely due to its ability to ameliorate the
supply of metabolites under unfavorable metabolic conditions.

RESULTS
HIF-1α is transiently stabilized during the G1 phase of the cell
cycle
As nutrient availability regulates metabolic checkpoints of the cell
cycle, we investigated whether also HIF-1α protein levels are
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subject to cell cycle-dependent changes. To address this question,
we employed human diploid HCT-116 colon cancer cells which
can be conveniently synchronized and are widely used in cell
cycle research [31, 32]. Cells were synchronized by inducing arrest
during early mitosis using nocodazole, followed by mitotic shake-
off and release into the cell cycle for different periods of time, as
schematically shown in Fig. 1A. Cell extracts were prepared and
analyzed by Western blotting for the occurrence of HIF-1α and
further cell cycle regulatory proteins. Successful cell synchroniza-
tion was ensured by controls revealing the time-dependent
reduction of mitotic markers (H3 S10 phosphorylation, Aurora B
and Cyclin B1), increased levels of Cyclin D and E (Fig. 1A) and of
PFKFB3 (6-phosphate fructose-2-kinase/fructose-2,6-bisphospha-
tase-3), a regulator of carbohydrate metabolism that is also
increased in G1 [33]. Furthermore, cell synchronization was
confirmed by flow ctyometric analysis (Fig. S1A). These experi-
ments showed a transient increase of HIF-1α protein levels during
the G1 phase peaking between 2 and 4 h after release from the
nocodazole block, while the levels of the HIF-1α protein were very
low in the other cell cycle phases (Fig. 1A). The transient
stabilization of HIF-1α during the G1 phase was not due to
changes at the mRNA level (Fig. S1B) and was also detected in
HCT-116 cells synchronized by release from a double thymidine
block (Fig. 1B).
The transient increase during G1 phase was restricted to the

dynamically regulated HIF-1α protein, as there were no changes of
the expression levels of the other HIF family members (Fig. 1C).
G1-HIF was also detected in all tested tumor cell lines and in non-
transformed primary human fibroblasts, as revealed by immuno-
blotting (Fig. 1D) and its quantification (Fig. S1C). To compare the
levels of G1-HIF with that of oxygen-dependent HIF, Western blot
experiments were performed using extracts from synchronized
cells and those treated with the PHD inhibitor deferoxamine
(DFO). These results show that the levels of G1-HIF are way lower
as compared to HIF amounts occurring after PHD inhibition (Fig.
1E) or hypoxia (data not shown).

G1-HIF protects cells from death caused by metabolic stress
To study the function of G1-HIF, we genetically engineered HCT-116
cells to allow the fast elimination of HIF-1α using an Auxin-inducible
degron (AID) system (Fig. S2A, B). These cells (designated as HCT-116
HIF-1α AID cells) also express the doxycycline (Dox)-inducible
ubiquitin E3 ligase TIR1 (transport inhibitor response 1 protein) from
Oryza sativa (OsTIR1) [34], to allow the rapid elimination of HIF-1α
after addition of Dox and the plant hormone Auxin (Aux) (Fig. 2A).
The HIF-1α AID fusion protein was fully functional as evidenced by
the intact hypoxia-induced expression of HIF target genes (Fig. S2C).
When cultivating HCT-116 OsTIR1 and HCT-116 HIF-1α AID cells in
the presence of Dox and Aux, we made the serendipitous
observation that depletion of HIF-1α largely prevented the color
change of DMEM medium that occurred when cells were grown for
several days in the same medium (Fig. 2B). The difference in color
change was not related to alterations in proliferation or cell cycle
distribution of the cells (Fig. S2D), but was rather correlated with

reduced acidification of the medium after G1-HIF depletion (Fig. 2C).
Given that HIF-1α is an important regulator of metabolism under
both hypoxic and normoxic conditions [35, 36], we determined
whether the transient expression of the transcription factor affected
cell viability under conditions of nutritional stress. To address this,
HCT-116 HIF-1α AID cells and control cells were further grown in
nutrient-rich DMEM (Dulbecco’s modified eagle medium) medium or
nutrient-poor DMEM medium without supplementation of glucose,
pyruvate and glutamine in the presence or absence of HIF-1α, as
schematically shown in Fig. 2D. While the depletion of G1-HIF
showed almost no reduction of cell viability in nutrient-rich medium,
its elimination in nutrient-poor medium caused strong cell death, as
revealed by crystal violet staining of the remaining attached cells.
This effect was fully recapitulated by quantitative and time-resolved
analysis of cell viability by dye exclusion (Fig. 2D), further controls
ensured that neither Dox nor Aux had significant cytotoxic activities
(data not shown). The protective effect of G1-HIF was also evident in
medium lacking glucose and pyruvate or in the absence of
glutamine (Fig. 2E), hinting that G1-HIF protects cells from death
induced by various types of metabolic stress. Further experiments in
nutrient-poor medium revealed no impact of G1-HIF on proliferation
and cell cycle dynamics (Fig. S2E), senescence (Fig. S2F) or autophagy
(Fig. S2G) at the analyzed time points, suggesting that G1-HIF
maintained cell viability by other processes. Instead, we observed
that the absence of G1-HIF in nutrient-poor medium increased the
cleavage of Caspase-3 and its substrate poly (ADP-ribose) polymerase
(Fig. 3A), both of which are indicative of apoptosis induction.
Consistent with this, the depletion of G1-HIF in cells cultured in
nutrient-poor medium increased the number of cells in early and late
apoptosis (Fig. 3B). The latter effects were prevented by the pan-
caspase inhibitor Quinoline-Val-Asp-difluorophenoxymethylketone
(Q-VD) (Fig. 3C), indicating that G1-HIF is essential to prevent
caspase-mediated apoptosis under conditions of starvation.

G1-HIF regulates amino acid and carbohydrate homeostasis
As the biological function of G1-HIF discovered here was only
apparent after metabolic perturbation, we assessed its impact on
cell metabolism. Therefore, HCT-116 HIF-1α AID and control cells
were released from a nocodazole block in Auxin-containing
nutrient-rich or nutrient-poor medium, followed by determination
of the levels of extracellular and intracellular selected metabolites
at various time points, as schematically shown in Fig. 4A. Targeted
metabolic analyses (LC-MS/MS) was used to detect changes in
amino-acid metabolism, the tricarboxylic acid cycle (TCA cycle)
and the pentose-phosphate pathway. A total of 102 extracellular
and 106 intracellular metabolites were detected of which 5
extracellular and 27 intracellular metabolites were differentially
regulated in either one or both nutrient conditions during at least
one phase of the cell cycle (Fig. 4B and Supplemental Table S1).
The analysis of intracellular amino acids from cells grown in

nutrient-rich medium showed a dynamic increase of most amino
acids during progression through the cell cycle (Fig. 4C) in order to
satisfy the periodic demands for the synthesis of proteins, nucleic
acids and other building blocks. The absence of G1-HIF markedly

Fig. 1 Cell cycle-dependent expression levels of HIF-1α in normoxia. A The top visualizes the experimental protocol indicating that HCT-116
cells were arrested in prometaphase by treatment with nocodazole (0.1 µg/ml) for 16 h and released into M phase by shaking off the non-
adherent cells. Cells were collected at the indicated time points, and lysates were analyzed by Western blotting using the indicated antibodies
detecting HIF-1α and further cell cycle regulated proteins. The positions of molecular weight markers are indicated. The right part shows a
quantification of normalized G1-HIF protein levels (B) HCT-116 cells were synchronized by a double thymidine block (2 mM thymidine),
washed, and released into the S phase as schematically indicated at the top. Cells were collected at the indicated time points and analyzed by
immunoblotting for the expression of HIF-1α and cell cycle markers. The right part shows a quantitative analysis of G1-HIF protein expression.
C The experiment was performed as in (A) with the difference that all DNA-binding members of the HIF family were detected. D The indicated
cells were synchronized via nocodazole block and release, followed by detection of G1-HIF and the cell cycle regulators by immunoblotting.
E HCT-116 cells were synchronized via nocodazole block/release or treated with DFO (10 µM) as shown, followed by the analysis of HIF-1α
expression by Western blotting. Quantifications show the mean ± SD, as calculated using the one-way ANOVA with Tukey multiple
comparisons test (***= P ≤ 0.001, n= 3).
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reduced levels of most proteinogenic amino acids, with the
exception of asparagine, cysteine, isoleucine and histidine. HIF-1α-
deficiency also caused a slight increase in metabolites of the urea
cycle i.e., citrulline and arginine (Fig. 4C). In nutrient-poor medium,
the levels of approximately half of the intracellular amino acids

also increased during the cell cycle (Fig. 4D), although the overall
levels of metabolites were lower than in cells cultured in nutrient-
rich conditions. The deletion of G1-HIF elicited a pronounced
decrease in all of the amino acids; with the exception of isoleucine,
indicating a collapse of amino acid homeostasis (Fig. 4D). Levels of
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glutamic acid, valine, aspartic acid, aspartate, glycine, alanine, and
asparagine dropped more severely in nutrient-poor medium in
the absence of G1-HIF (Fig. 5A). Other pathways were also affected
in the absence of G1-HIF, as reflected by lower levels of hexose-6-
phosphate, galactose-6-phosphate, malate and lactate (Fig. 5B).
Extracellular lactate levels were also reduced in the absence of G1-
HIF (Fig. 5C), consistent with the impaired acidification of the cell
culture medium under these conditions (Fig. 2C). Further
experiments showed no effect of G1-HIF on the level of reactive
oxygen intermediates or oxygen consumption (Fig. S3A–D),
suggesting that G1-HIF mainly functions by ensuring cell cycle-
dependent supply of nutrients as summarized in Fig. 5D.

G1-HIF regulates gene expression
Because HIF-1α is a transcription factor and a fraction of G1-HIF
also occurs in the nucleus (Fig. S4A), we continued to investigate a
possible transcriptional function of G1-HIF during the cell cycle.
HCT-116 OsTIR and control cells were synchronized and treated as
shown in Fig. 6A and gene expression was analyzed 4, 12 and 24 h
post release by RNA-seq. The bioinformatic analysis of two
biological and two technical replicates revealed a comparable
number and distribution of overall read counts (Fig. S4B–D).
Principal component analyses confirmed the reproducibility of
replicate experiments under the various experimental conditions
and suggested that the largest variation in gene expression was
related to cell cycle release (PC 1, 51,32%), followed by metabolic
state (PC2, 14,98%). In nutrient-rich medium, 2642 (HCT-116
OsTIR1) and 3154 (HCT-116 HIF-1α AID) differentially expressed
genes (DEGs, ±FC ≥ 2-fold, P ≤ 0.05) were observed upon cell cycle
release, whose mean intensities significantly increased over time
when compared to the expression levels in the nocodazole-
arrested state (Fig. 6B, left half of the graph, and Supplemental
Table S2). In nutrient-poor medium, an even larger set of DEGs
( ± FC ≥ 2-fold, P ≤ 0.05) was found upon cell cycle release (7961
DEGs in HCT-116 OsTIR1 and 7407 DEGs in HCT-116 HIF-1α AID).
This cell stress-induced increase was lost over time, likely due to
metabolic shortage and the onset of apoptosis [37, 38] (Fig. 6B,
right half of the graph, and Supplemental Table S2). Overall, there
was a strong correlation between all changes in gene expression
when comparing OsTIR1 with HIF1α AID cells in both, the
nutrition-rich and the nutrition-poor conditions, suggesting that
G1-HIF only controls a limited number of genes (Fig. S4E).
To reveal the contribution of G1-HIF for gene expression at each

individual time point, we performed pairwise comparisons
between HCT-116 cells expressing or lacking this transcription
factor (Fig. 6C, D) (±≥1.5-fold, P ≤ 0.05). After release in nutrient-
rich medium, 283 (4 h), 255 (12 h) and 380 (24 h) genes showed
G1-HIF-dependent regulation (Fig. 6C, Supplemental Table S3).
Control RT-qPCR experiments confirmed the HIF-1α dependency
of regulated genes (Fig. S4F). The release of arrested cells in
nutrient-poor medium resulted in the detection of 237 G1-HIF-
dependent genes 4 h after release, a number that dropped

markedly at later time points, most likely by a lack of metabolic
building blocks and the onset of cell death (Fig. 6D).
In nutrient-rich medium approximately half of the G1-HIF

dependent DEGs showed HIF-1α-dependent expression at more
than one time point (Fig. 6E). This distribution was not seen in
nutrient-poor medium where gene expression was only intact 4 h
after release within the G1 phase, but not at later time points.
Mapping G1-HIF-dependent genes to gene ontology (GO) path-
ways using Metascape revealed the regulation of genes partici-
pating in cell proliferation, metabolism and the stress response,
amongst others (Fig. 6F). G1-HIF had no significant effect on genes
regulating cell death or survival, suggesting that cell death is
triggered by a well-known and transcription-independent pro-
gram induced solely by nutrient deficiency [37, 39, 40].

G1-HIF-mediated regulation of metabolism employs
transcriptional and non-transcriptional events
A further analysis of G1-HIF-dependent genes revealed a number
of transcripts with a potential role in steering of metabolic
processes at different regulatory levels (Fig. 7A). Since the
functional role of G1-HIF is specifically relevant in nutrient-poor
medium, the genes regulated under these conditions were
assigned to a map of metabolic pathways. This analysis revealed
a possible function of a number of genes on different metabolic
processes (Fig. 7B). The uptake and oxidation of fatty acids (FA) to
acetyl-CoA can be negatively affected by several G1-HIF depen-
dent genes. These include increased expression of ANGPTL4
(Angiopoietin Like 4), which inhibits the catalytic activity of
lipoprotein lipase (LPL) und fatty acid (FA) uptake [41] and also
diminished expression of ACSM3 (Acyl-CoA Synthetase Medium
Chain Family Member 3), which contributes to the generation of
Acyl-CoA. While increased expression of CYP1B1 (Cytochrome
P450 Family 1 Subfamily B Member 1) will reduce ß-oxidation [42],
higher levels of GPAT3 (Glycerol-3-Phosphate Acyltransferase 3)
can limit the amounts of available Acyl-CoA by promoting its
conversion to triaclyglyceride (TAG) [43]. The glycolytic flux can be
downregulated by elevated expression of GSTT2 (Glutathione
S-Transferase Theta 2), as this enzyme increases the glutathionyla-
tion status of metabolic enzymes which in turn can cause a global
decrease of glycolysis [44]. Glutathionylation is also known to
lower the activity of the TCA cycle component 2-Oxoglutarate
dehydrogenase (OGDH) [45]. As also the expression of the OGDH
component OGDHL is reduced in the absence of G1-HIF, a lower
flux through the TCA cycle can be anticipated, which in turn has
important implications on the synthesis and metabolism of amino
acids. The level of amino acids can be further influenced by
additional mechanisms, as elevated expression of ANGPTL4 leads
to impaired uptake of branched amino acids [46], while an
increase in GAD1 (Glutamate Decarboxylase 1) may result in
decreased levels of its substrate glutamate. Further and rather
indirect effects on amino acid levels may derive from the activity
of PDE4B (Phosphodiesterase 4B) which limits cAMP levels and

Fig. 2 G1-HIF protects from cell death induced by nutritional stress. A The experimental strategy for fusion of the AID to the C-terminus of
HIF-1α is schematically depicted at the top. The functional characterization was done by treatment of the indicated cells with Dox (1 µg/ml) for
24 h (to enable expression of OsTIR1), followed by treatment with DFO (10 µM) for 6 h (to generate detectable HIF-1α protein levels) and
subsequent treatment with Aux (100 µM) for 30min. Cell lysates were analyzed for HIF-1 protein expression with specific antibodies. B The
indicated cells were pre-treated with Dox for 24 h and then cultivated in the presence of Aux. The color changes in the cell culture media over
several days are displayed. C Cells were treated as in (B) and the pH of the cell culture media was determined. D The experimental scheme is
shown in the left. HCT-116 OsTIR1 and HCT-116 HIF-1α AID cells were pre-treated for 1 day with Dox to allow first the expression of OsTIR1.
Then cells were further cultured in nutrient-rich or nutrient-poor medium lacking glucose (Glu), pyruvate (Pyr) and glutamine (Gln) in the
presence of Dox and Aux as shown. Five days after the addition of Dox the remaining attached cells were washed with PBS and stained using
crystal violet (middle). Cells were treated as shown above and cell viability was examined each day using a LUNA automated cell counter. The
mean ± SD of three independent biological replicates is shown (right). E The experiments were done as in (D) with the difference that
differently composed nutrient-poor media were used. Quantifications show the mean ± SD, as calculated using the two-way ANOVA with
Bonferroni multiple comparisons test (*= P ≤ 0.05, ** = P ≤ 0.01, ***= P ≤ 0.001, n= 3).
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thus PKA-mediated upregulation of transporters for glutamine and
other amino acids [47].
Metabolic adaptation does not rely solely on altered gene

expression, but can be also controlled by signaling pathways that
can interconnect and coordinate different metabolic pathways,
e.g., the mTOR kinase system [48]. A possible contribution of G1-
HIF to mTOR signaling was assessed by determining the
phosphorylation of known substrates for the mTORC1 and
mTORC2 complexes in nutrient-rich versus nutrient-poor media.
While no effects were apparent in nutrient-rich medium (Fig. S5),
the absence of G1-HIF markedly decreased levels of mTOR activity
in nutrient-poor medium. This resulted in an attenuated
phosphorylation of the mTORC2 substrate AKT Ser473 (data not
shown) and the mTORC1 targets 4E-BP1 (on Thr37/46) and 70S6K
(on Thr389) (Fig. 7C). These experiments also revealed a slight but
significant decrease in mTOR protein levels in the absence of G1-
HIF. Together, these data show that G1-HIF directly or indirectly
controls the expression of metabolic regulator genes and the
activity of the mTOR complex.

Accumulation of G1-HIF occurs via an AMPK-regulated
pathway
RNA sequencing failed to identify changes in the expression of
other HIF family members or proteins reported to regulate HIF-1α
stability (Fig. S6A). There were also no changes in protein levels
of HIF-1α or its hydroxylation and ubiquitination (Fig. S6B, C). To
identify factors regulating G1-HIF, an HCT-116 cell line expressing
the endogenous HIF-1α protein in fusion with the NanoLuc
luciferase (NLuc) peptide was generated, as schematically shown
in Fig. 8A. These cells (designated as HCT-116 HIF-1α NLuc)
recapitulated the cell cycle-dependent transient stabilization of
the HIF-1α NLuc fusion protein during G1, as revealed by
Western blotting (Fig. S7A) and determination of luciferase
activity (Fig. S7B).
To screen for proteins with a potential relevance for the oxygen-

independent pathway leading to the generation of G1-HIF,
potential candidate regulators were retrieved from the literature
(Supplemental Table S4). In the first step, we investigated the
influence of commercially available inhibitors on the transient
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increase of NLuc activity during G1, as schematically displayed in
Fig. 8B. Only interference with AMPK and glycogen synthase
kinase 3 (GSK3) resulted in more than 50% inhibition of HIF-1α
expression. To screen for further G1-HIF activating candidate
proteins not amenable to small molecule inhibitors, a siRNA-
mediated gene silencing approach was used. HCT-116 HIF-1α
NLuc cells were transfected with highly effective endoribonu-
clease prepared siRNAs (esiRNAs) to reduce the expression of
either one or several candidate proteins. After 2 days, cells were
synchronized by nocodazole treatment and release. Quantification
of the NLuc signal 4 h after release showed that only the esiRNA
leading to the downregulation of AMPKα1 resulted in significant
reduction of NLuc activity (Fig. 8C, Fig. S7C). As both independent
screening approaches suggested the relevance of AMPK for the
generation of G1-HIF, it was interesting to investigate the
activation of this kinase during the cell cycle and to reveal the
contribution of its kinase activity for G1-HIF occurrence. To
address this question, nocodazole-arrested HCT-116 HIF-1α NLuc
cells were released into the G1 phase for 2 and 4 h in the presence
of the AMPK inhibitor Dorsomorphin (compound C) [49] or the
AMPK activating compound AICAR [50]. These experiments
showed a transient activation of AMPK during the G1 phase, as
seen by the increased phosphorylation of threonine 172 (pAMPKα
Thr 172) in its catalytic subunit and phosphorylation of its well-

known substrate protein acetyl-coenzyme A carboxylase (ACC)
(Fig. 8D), which was seen in several cell types (Fig. S7D). At the
protein level the induction of G1-HIF was strongly inhibited by
Dorsomorphin and slightly increased by AICAR (Fig. 8D), but these
changes did not occur at the HIF1A mRNA levels (Fig. S76E). The
inhibitory effect of Dorsomorphin and the slightly stimulating
effect of AICAR were fully recapitulated at the level of NLuc activity
(Fig. 8E). Further experiments showed that AICAR alone cannot
trigger the stabilization of HIF-1α (Fig. 8F), revealing that AMPK is
necessary, but not sufficient to mediate the generation of G1-HIF.
While induction of G1-HIF is mediated by an AMPK-driven and
oxygen-independent pathway, degradation of this transcription
factor did not occur in the presence of the proteasome inhibitor
MG132 (Fig. 8G) and thus proceeds by the ubiquitin/proteasome
system.

DISCUSSION
This study reveals stabilization of the endogenous HIF-1α protein
during the G1 phase of the cell cycle in normoxia. We hypothesize
that this transiently generated G1-HIF serves as a cellular
surveillance factor to ensure the availability of nutrients before
entering into the metabolically demanding process of DNA
synthesis and cell mass duplication. Similar cell cycle-dependent
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surveillance mechanisms include the spindle assembly checkpoint
and the mitotic surveillance pathway [51]. These fail-safe control
points have in common that they become functionally relevant
only upon the occurrence of problems such as centrosome loss or
nutritional stress. The induction of G1-HIF timely coincides with
the restriction point, which is functionally defined as the point-of-
no-return to complete DNA synthesis [52] and is biochemically
seen by phosphorylation of the retinoblastoma protein [53]. While
surveillance by G1-HIF does not play a discernible role in the
presence of high nutrient levels, it becomes functionally relevant
during metabolic stress where it prevents cell death. In these
situations, G1-HIF is required to provide sufficient amounts of
amino acids and other metabolites to enable cell survival.
Furthermore, inactivation of the pro-survival mTOR pathway in
the absence of G1-HIF will likely contribute to cell death [54]. As
schematically visualized in Fig. 8H, G1-HIF-dependent mainte-
nance of metabolic homeostasis shifts the threshold delineating
cell survival and a well-known cell death program initiated by
nutrient shortage [37–39]. We can formally not rule out that the
G1-HIF-dependent massive drop of nutients in nutrient-poor
medium might be a consequence of cell death, although we did

not see any G1-HIF-dependent changes in the expression of
apoptosis-regulating genes [55].
G1-HIF affects the expression of genes whose products can

influence various distinct metabolic processes (Fig. 7A, B).
Accordingly, G1-HIF protected against cell death induced by a
deficiency of glutamine or an absence of pyruvate/glucose.
Although we do not know the relative contribution of individual
G1-HIF-regulated genes on the various metabolic changes, it is
reasonable to assume that the totality of the measured gene
expression changes will impact biochemical pathways and affect
nutrient availability. In addition, it is possible that G1-HIF can
induce non-transcriptional effects, as they were described for
hypoxia-regulated HIF-1α [27, 56]. It is currently not clear whether
G1-HIF acts directly on the mTOR signaling pathway or whether
the observed downregulation of mTORC1 and mTORC2 activity in
the absence of G1-HIF in nutrient-poor medium results from
nutrient shortage occurring under these conditions.
This study did not reveal a role of G1-HIF for cell division, and

consistently a number of studies showed that tissue-specific
deletion of the Hif1a gene in mice did not cause any major effects
on proliferation and rather affected other processes such as stem
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cell maintenance and development [57–59]. However, this study
does not exclude a possible function of G1-HIF for cell cycle
progression, as the role of oxygen-independent HIF-1α for this
process depends on the cell type and the (patho)physiological
situation [60]. Previous studies reported that the M phase kinase

CDK1 can increase the stability of HIF-1α under hypoxic conditions
[61, 62]. We never observed any stabilization of HIF-1α in mitotic
cells of various origins, suggesting that the stabilizing function of
the CDK1/cyclin B complex is confined to conditions of low
oxygen availability.
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The increase of HIF-1α protein during the G1 phase involves an
AMPK-dependent mechanism, as revealed by two independent
loss-of-function screens. Activation of AMPK is necessary, but not
sufficient for the generation of G1-HIF. The additional signal(s)
leading to the oxygen-independent generation of G1-HIF are
currently not known. While our data exclude significant transcrip-
tional induction of the genes encoding HIF1A or its regulators, a
further mechanism could employ increased synthesis of the HIF-
1α protein at the ribosome [63]. The transient increase of AMPKα1
activity during the G1 phase has also been observed in mouse
fibroblasts, where this process is dependent on Ca2+ transients
and CaMKKß activity [64]. We observed that the activation of
AMPK occurs independent from G1-HIF (Fig. S8A) and is unlikely to
occur by changes in the ATP/AMP ratios which slightly increase
during G1 [6, 65]. As also Ca2+ concentrations were largely
constant during the cell cycle in HCT-116 cells (Fig. S8B), it can be
assumed that transient induction of AMPK activity may be
attributed to the induction of further signaling events and/or to
G1-specific changes in the expression of several known AMPK
regulators, as displayed in Fig. S8C.
Although the function of AMPK for the oxygen-independent

activation of HIF-1α does not reveal a coherent picture [13], a HIF-
1α stabilizing function of AMPK was suggested by several studies.
Genetic deletion of AMPKα2 in myeloid cells prevents HIF-1α
stabilization in neutrophils [66] and furthermore AMPK was found
to decrease HIF ubiquitination while triggering its transcriptional
activity [67]. A further mechanism could involve direct AMPK-
mediated phosphorylation of HIF-1α at S419, which has been
detected by in vitro kinase assays in C. elegans [68]. It remains to
be studied whether this phosphorylation also occurs for human
G1-HIF and whether it is functionally relevant.
It should not go unmentioned that the HIF transcription factor is

functionally associated with another fundamental periodic pro-
cess, namely the circadian cycle. The circadian cycle and the cell
cycle occur with a period in the range of 1 day and are highly
connected [69]. It is interesting to note that the HIF transcription
factor system shows mutual cross-regulation with various
components of circadian clock proteins [70, 71] including AMPK,
which also regulates circadian rhythms in an isoform and -tissue-
specific manner [72]. We assume that these rhythmic processes
contribute to a part of the constitutive HIF functions occurring
under normoxic conditions.

LIMITATIONS OF THE STUDY
While we used a number of transformed and non-transformed
human cell lines to substantiate the evidence the expression of
G1-HIF is not limited to a particular cell system, we have not
investigated G1-HIF in an intact organism. At the organism level,
only small subpopulations of cells are likely to have a sufficiently
high proliferation rate to reliably detect G1-HIF. The pronounced
conditions of metabolic stress used here mimic situations of
prolonged fasting leading to autophagy or conditions that occur
in tissues with strongly fluctuating energy requirements such as
muscles or in poorly vascularized solid tumors [73].

MATERIALS AND METHODS
Cell culture, transfection and synchronization
HCT-116 (ATCC: CCL-247™) cells and their derivatives, HeLa (ATCC: CRM-
CCL-2) and U2OS (ATCC: HTB-96) cells were cultured in DMEM
supplemented with 10% (v/v) FCS, penicillin (100 U/ml) and streptomycin
(100 μg/ml) at 37 °C. Primary human FS4-LTM fibroblasts (inSCREENex,
Braunschweig, Germany) were grown in huFIB Medium (InSCREENeX
GmbH, Braunschweig, Germany) and their proliferation was induced by
addition of doxycycline (1 µg/mL) [74]. All cells were regularly tested for
potential contamination by mycoplasma and grown on cell culture dishes
in a humidified atmosphere containing 5% (v/v) CO2. Transfection was
done using the Lipofectamine® 3000 transfection protocol (ThermoFisher).
For stable genomic integration of DNA, HCT-116 cells were transfected
with a plasmid directing the expression of Cas9 and an appropriate sgRNA
for targeting of the HIF1A locus along with two further plasmids: One
plasmid encoding the inserted sequence flanked by two homology arms
with a length of 0.5 kb and containing short PITCh sequences at their distal
ends. A second plasmid directing the expression of Cas9 and an
appropriate sgRNA cleaving the PITCh sequences, thus creating a DNA
fragment [75]. Two days after transfection, Blasticidin (7 µg/ml) was added
for 10 days to enable proliferation of cells with a genomic insertion of the
resistance gene. Cell colonies were picked and further characterized by
PCR analysis of the genomic locus and Western blotting. All further
experiments were conducted with pools of several cell clones to avoid
clonal effects. Knockdown was done using MISSION esiRNA (Sigma) using
the X-tremeGENE siRNA transfection reagent according to the recommen-
dations of the manufacturer. Mitotic synchronization was performed by
addition of nocodazole (0.1 µg/ml) for 16 h. Mitotic cells were harvested by
mitotic shake-off, washed three times with warm phosphate-buffered
saline (PBS). Equal numbers of cells were released into fresh medium. G1/S
synchronization was done by addition of thymidine (2 mM) for 16 h. Cells
were then washed three times with warm PBS and released into normal
DMEM medium for 8 h. Thymidine (2mM) was added again for 16 h,
followed by three washes with warm PBS and addition of fresh medium.

Screening experiments
Small molecule inhibitor screening: A pool of cell clones showing proper
insertion of NanoLuc luciferase into exon 15 of the HIF1A locus (HCT-116
HIF-1α NLuc cells) was synchronized via the nocodazole block/release
protocol and released in the absence and presence of appropriate
concentrations of inhibitors (Supplemental table S4). After 4 h, one Volume
of the Nano-Glo Luciferase Assay reagent (freshly prepared by mixing
Nano-Glo luciferase assay substrate with Nano-Glo luciferase assay buffer
(1:50)) was added to the cells and luciferase activity was recorded using a
GloMax® Discover microplate reader (Promega). All experiments were
performed in five independent experiments. For screening after knock-
down via esiRNAs, two independent experiments in technical duplicates
were performed. HCT-116 HIF-1α NLuc cells were transfected with 20 ng of
esiRNA (either one or group of esiRNAs) using the X-tremeGENE siRNA
transfection reagent (Transfection Reagent: esiRNA ratio of 5:1) followed by
incubation for 30min at room temperature (RT). After that, the transfection
mix was carefully added to the cells in a dropwise manner. After 2 days
cells were synchronized via nocodazole block and equal numbers of cells
were released on a 96-well plate After 4 h, the Nano-Glo luciferase assay
reagent (Promega) was directly added to the cells and luminescence was
recorded as described above. Further experiments with inhibitors and
siRNAs for the candidate proteins AMPK and GSK3 were performed. In
these experiments, the luciferase activity was measured also between 4
and 8 h post release, in order to ensure that treatment leads to a reduction
rather than to a delay of G1-HIF (data not shown).

Fig. 6 Analysis of G1-HIF- and cell cycle-dependent gene expression. A Scheme depicting the experimental set-up. B DEGs matching the
filtering criteria ( ± FC ≥ 2-fold, P ≤ 0.05 comparing each time point to the 0 control) at 4, 12 and 24 h after cell cycle release were collected and
their normalized expression values are displayed along the values in the corresponding nocodazole-arrested conditions (gray). Violin plots
show the distribution of the mean expression values, red lines show medians and dashed lines indicate the interquartile range containing
50% of values above and below the median. Total numbers of DEGs according to cell type and nutritional condition are indicated.
C, D Volcano plot representations of pairwise comparisons of HCT-116 OsTIR1 with HCT-116 HIF-1α AID cells across all conditions where ratio
values were calculated by Desq2. Blue and red colors highlight HIF-1α AID-dependent DEGs ( ± FC ≥ 1.5-fold, P ≤ 0.05). E Venn diagram
comparing the time-dependent distribution of regulated DEGs (up- or down) at nutrient-rich (left) and nutrient-poor (right) conditions. F G1-
HIF-dependent DEGs were further used to perform an overrepresentation analysis using Metascape. The enriched pathway terms are
indicated, the gray fields visualize lack of enrichment. Time points in red color refer to cells grown in nutrient-poor medium.
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metabolic regulation. B Transcripts displayed in (A) showing G1-HIF-dependent regulation in nutrient poor medium were analyzed for their possible
role in metabolic regulation of the indicated metabolic pathways. The hypothetical model shows effects on FA oxidation, the metabolism of
carbohydrates, the TCA cycle and amino acids. C HCT-116 OsTIR1 and HCT-116 HIF-1α AID cells were treated for 12 h with Dox (1 µg/mL), arrested in
M phase using nocodazole and released in nutrient-poor medium containing Dox and Aux for the indicated periods. Cell extracts were analyzed by
Western blotting for the expression and phosphorylation of mTOR and its indicated substrates.
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RNA-seq analysis
Cells were treated as described and total RNA was isolated with the
NucleoSpin RNA Kit (Macherey-Nagel). Experiments were done in
biological replicates, resulting in 24 RNA-seq data sets. After quality
control of RNA, 1 μg RNA/sample was used as input material for the RNA
sample preparations. Preparation of the RNA library and RNA-sequencing

was conducted by Novogene Co., LTD (Chaoyang, Beijing, China). Raw
reads were aligned to an index based on the human genome version
GRCh38 using HSIAT2 v2.0.5 software [76]. Read counts were generated
and Log2 transformed using FeatureCounts v1.5.0-p3 [77] from the R
subread package [78]. Normalization and detection of differentially
expressed genes was done using DESeq2 v1.20.0 [79] by Novogene
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according to their bioinformatics pipeline. The resulting data tables were
filtered in Excel 2016 for DEGs using cut-offs as described in the figure
legends. Venn diagrams were created with tools provided at http://
bioinformatics.psb.ugent.be/webtools/Venn/. Overrepresentation analyses
of differentially expressed gene sets were done using Metascape software
with the express settings. Statistical tests for pathway enrichment analyses
were calculated online by Metascape software (https://metascape.org/)
using the ontology sources KEGG Pathway, GO Biological Processes,
Reactome Gene Sets, Canonical Pathways, CORUM, TRRUST, DisGeNET,
PaGenBase, Transcription Factor Targets, WikiPathways, PANTHER Pathway,
and COVID and all genes in the genome as the enrichment background. P
values were based on the accumulative hypergeometric distribution and q
values were calculated using the Benjamini-Hochberg procedure to
account for multiple testings. Terms with a P value < 0.01, a minimum
count of 3, and an enrichment factor >1.5 were collected. Kappa scores
were used as the similarity metric for hierarchical clustering on the
enriched terms, and sub-trees with a similarity of >0.3 were considered a
cluster. The most statistically significant terms within a cluster were chosen
to represent the cluster. Quantification of data and statistical parameters
(means, t-tests, ANOVA, standard variations, confidence intervals, Pearson
correlations, linear regressions) of the RNA-seq data were calculated using
DESeq2 (see above), GraphPad Prism 9.3.1, or Microsoft Excel 2016.

Plasmids and antibodies
This information is listed in Supplemental table S5.

DATA AVAILABILITY
The experimental data sets generated and/or analyzed during the current study are
available from the corresponding author upon reasonable request. No applicable
resources were generated during the current study.
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