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Multiple primary lung cancers (MPLCs) pose diagnostic and therapeutic challenges in clinic. Here, we orchestrated the cellular and
spatial architecture of MPLCs by combining single-cell RNA-sequencing and spatial transcriptomics. Notably, we identified a
previously undescribed sub-population of epithelial cells termed as CLDN2+ alveolar type II (AT2) which was specifically enriched in
MPLCs. This subtype was observed to possess a relatively stationary state, play a critical role in cellular communication, aggregate
spatially in tumor tissues, and dominate the malignant histopathological patterns. The CLDN2 protein expression can help
distinguish MPLCs from intrapulmonary metastasis and solitary lung cancer. Moreover, a cell surface receptor−TNFRSF18/GITR was
highly expressed in T cells of MPLCs, suggesting TNFRSF18 as one potential immunotherapeutic target in MPLCs. Meanwhile, high
inter-lesion heterogeneity was observed in MPLCs. These findings will provide insights into diagnostic biomarkers and therapeutic
targets and advance our understanding of the cellular and spatial architecture of MPLCs.
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INTRODUCTION
Lung cancer is one of the leading causes of morbidity and mortality
due to cancer globally [1]. Smoking and atmospheric pollution are
the major causes of lung cancer [2], and the presentation,
symptoms, and pathology display extreme diversity [3]. Multiple
primary lung cancers (MPLCs) [3] refer to several primary tumors
growing synchronously in the lung. With the widespread of high-
resolution computed tomography (HRCT), lung cancer screening
has entered a new era in which MPLCs are being diagnosed more
frequently. It has been reported that up to 15% of patients with
lung cancer harbor a second primary lung lesion [4]. However, it is
still difficult to distinguish MPLC and intrapulmonary metastasis
(IPM) in the clinic, especially in cases of similar histologies.
Existing diagnostic criteria of lung cancer are mainly based on

comprehensive histopathological assessment (CHA) [5] and next-
generation sequencing (NGS) [6], which are insufficient to meet
clinical requirements, especially in MPLCs. Therefore, significant
efforts have been made worldwide to explore novel and accurate
methods of identifying the complicated relationship between
multiple separate lung tumor lesions.
Recently, single-cell RNA-sequencing (scRNA-seq) has been

used to study the molecular and cellular atlas of lung cancer

[7–9]. However, most of the studies were limited to single
primary tumors and adjacent normal tissues, and lacked
evaluation of spatially resolved molecular profiles and cellular
landscape. In this study, to delineate the cellular composition and
spatial architectural landscape of MPLCs, we performed high-
resolution profiling of MPLC based on both scRNA-seq and
spatial transcriptomics (ST). We characterized 133,923 cells from
19 tissue samples and integrated them with 37,616 spatial
transcriptome spots from 12 tissue samples in four MPLC
patients. We also investigated multiple independent scRNA-seq
and bulk RNA-seq datasets to help contrast and validate key
characteristics of MPLCs. In general, we described the cellular and
spatial characteristics as well as the high inter-lesion hetero-
geneity of MPLCs. Interestingly, one previously unrecognized
epithelial cell sub-population termed as CLDN2+ AT2 cells were
found to be specific in MPLCs. Furthermore, cellular and
molecular features of different histopathological pattern regions
in invasive MPLCs-lung adenocarcinomas (LUAD) were also
described. To the best of our knowledge, this is the first study
to orchestrate the cellular and spatial architecture and identify
potential biomarkers and therapeutic targets in MPLCs by
combining scRNA-seq and ST.
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RESULTS
Single-cell transcriptomics-driven overview of MPLCs cell
compositions
To investigate cell heterogeneity and building blocks of MPLCs at
single-cell levels, we integratively analyzed multiple data resources
including scRNA-seq and ST data of MPLC samples, scRNA-seq and
bulk RNA-seq datasets of independent solitary lung cancer cohorts,
as well as the immunohistochemistry (IHC) data about MPLCs,
solitary LUAD and IPM samples (Fig. 1a), and interesting cellular
and molecular patterns of MPLCs were identified.
Firstly, we collected 19 tissue samples from four MPLCs patients

(one squamous carcinoma and three adenocarcinomas), and each
patient had two separate lung tumor lesions (Supplementary Fig.
1a, the clinicopathologic data are presented in Supplementary
Table 1). For the first two patients (P1 and P2), we collected one
tissue sample from each tumor lesion. For the third patient (P3), to
understand intra-lesion heterogeneity, two repetitive tissue
samples from each tumor lesion were collected. For the last
patient (P4), two tissue samples from one of the larger tumor
lesion and one tissue sample from the other small tumor lesion
were collected. As comparisons, one normal tissue sample
adjacent to each tumor lesion was collected. scRNA-seq was
performed on all the collected 19 samples (Supplementary Fig.
1a). After standard data processing and quality control (Methods),
we obtained transcriptomic profiles of 133,923 cells in total, and
about 5000–9000 cells in each sample (Fig. 1b).
Clustering the scRNA-seq profiles helps identify seven major cell

types including epithelial, endothelial, fibroblast, myeloid, mast, B
and T&NK cells (Methods, Fig. 1c and supplementary Fig. 1b,c).
These samples showed marked differences in terms of cell type
compositions (Fig. 1d), and the differences between separate
tumor samples from the same patient were significantly higher
than that between the normal samples (Fig. 1e). Comparing tumor
and normal tissues, B cells showed a significantly higher average
proportion in the tumor tissues, while epithelial and endothelial
cells were relatively enriched in normal tissues (Supplementary
Fig. 1d, e). Samples from P4 were with few T&NK cells, perhaps
because the two lesions were both adenocarcinoma in situ (AIS)
with less immune infiltration.To elucidate whether multiple
primary tumor lesions in the same patient shared more similarities
than independent tumor tissues from different lung cancer
patients or not, we integrated with the scRNA-seq data of solitary
LUAD and normal lung tissues from another lung cancer cohort
(GSE131907) [10]. The cells in GSE131907 were also annotated into
the seven cell types. We clustered the 19 MPLCs samples and the
22 tumor and normal lung samples collected in GSE131907 based
on the cell type composition similarities (Supplementary Fig. 2).
We observed that the tissues from the same tumor lesion or two
normal tissues of the same patient could be clustered together
(e.g., TS1_L_P4 and TS2_L_P4, NI_L_P4 and NS_L_P4), but distinct
tumor lesions of the same patient were apart (e.g., TI_R_P1 and
TM_R_P1, Fig. 1f and supplementary Fig. 2). Meanwhile, the cell
composition similarities between lesions within the same MPLCs
patients (T-Within) were significantly lower than that between the
matched normal samples (N-Within), but no significant difference
was observed when compared to those between totally indepen-
dent tumor tissues (T-independent) (Fig. 1g). Additionally, the
tumor tissues from different lesions also showed less similarities
than the normal tissues based on the gene expression profiles
(Fig. 1h). In summary, MPLCs showed high inter-lesion hetero-
geneity in cellular compositions and gene expressions.

Epithelial cell analysis identifies CLDN2+ AT2 as an MPLCs
specific cell type
We first inferred chromosomal copy-number variations (CNVs) from
the scRNA-seq data (with T&NK cells as reference) and identified the
malignant and non-malignant epithelial cells (Methods). Most of the
epithelial cells identified in the tumor tissues were malignant (Fig.

2a). The separate tumor tissues possessed different cellular CNV
patterns. For instance, copy number gains in chromosome (Chr) 3
were only observed in the tumor tissues from the inferior lobe lesion
(TI) but not the middle lobe lesion (TM) of P1. For each patient, there
was always one CNV-based cluster specific to one tumor lesion (Fig.
2a, kmCluster 2 was specific for TI in P1, P2, and P4, as well as for TI1
in P3). In conclusion, different tumor lesions in MPLC patients may
originate from different chromosomal variations.
Next, sub-populations of epithelial cells were identified (Fig. 2b).

These sub-populations showed similar data qualities (Supplemen-
tary Fig. 3a). In addition to common epithelial cell sub-populations
including alveolar types I (AT1) and II (AT2), club cells, basal cells
and ciliated cells expressing canonical epithelial markers (Fig. 2c),
we defined one previously unreported sub-population annotated
as CLDN2+ AT2 cells that showed high levels of CLDN2, CXCL14,
CEACAM5, CEACAM6 and MDK, as well as AT2 cell markers (e.g.,
MUC1 and SFTPD, Fig. 2b, c). The collected samples showed high
heterogeneity in the epithelial cell sub-population compositions
(Fig. 2d). AT2 and CLDN2+ AT2 types dominated among these sub-
populations (Fig. 2d). The basal cell is a candidate cell-of-origin for
human lung squamous carcinoma (LUSC) [11]. Notably, specifically
in P1, an MPLC-LUSC patient, the tumor tissues had a much higher
proportion of basal cells than the normal tissues.
Claudin-2 (Cldn-2) is a tight junction protein that mediates

paracellular water or ion transport and has emerged to play a role
in cancer [12–14]. The CLDN2+ AT2 cells showed significantly higher
proportions in tumor tissues than normal tissues (Fig. 2e), especially in
the three MPLC-LUAD patients (Fig. 2d). However, the different tumor
lesions from the same patient did not show a significant alteration in
the CLDN2+ AT2 cell proportions (Supplementary Fig. 3b).
To explore whether the specificity of CLDN2+ AT2 cell type, we

did an integrative analysis of the epithelial cells from GSE131907
and the four MPLCs patients, re-classified them into multiple
clusters and calculated a CLDN2+ AT2 signature based on the top-
15 marker genes (Fig. 2f). Cluster5 showed the highest CLDN2+

AT2 signature scores, and it was mainly composed of the MPLCs
epithelial cells (Fig. 2g). Meanwhile, in the Cluster5, the MPLCs
epithelial cells also showed significantly higher expressions in
CLDN2 than GSE131907 (Fig. 2h). Additionally, we also checked the
other four scRNA-seq datasets about lung cancer or lung cells, and
only limited number of cells showed high CLDN2 expressions
(Supplementary Fig. 3c–f). These results indicate that CLDN2+ AT2
cells may be one MPLCs-specific cell type.
Furthermore, IHC was applied to verify the expression of CLDN2

in paraffin-embedded tissues of the four MPLCs patients. CLDN2
was over-expressed in the tumor tissues of P2 and P3, and
specifically located at the cytomembrane of AT2 cells (Fig. 2i,
Supplementary Fig. 4a and Data 1). The low expressions of CLDN2
in samples of P1 and P4 maybe due to their relatively low
CLDN2+ AT2 cell proportions as shown in Fig. 2d. Moreover, we
tested and compared the CLDN2 protein expression in a larger
sample set including 30 MPLCs, 10 IPM and 16 solitary LUAD
patients. Results showed the CLDN2 IHC scores were significantly
higher in the tumor tissues of MPLCs than in IPM and solitary
LUADs. Meanwhile, the expressions of CLDN2 were remarkably
higher in the tumor tissues than normal ones in MPLCs (Fig. 2j).
The 425 paneled NGS was conducted in all the 80 tumor lesions

from the above 30 MPLCs and 10 IPM patients (Supplementary
Table 2). The shared and unique tumor-specific gene mutations
between separate tumor lesions within the same patient were
analyzed. Results showed that the shared mutations in MPLCs
patients were significantly lower than in IPM (Supplementary Fig.
4b). It has been recognized that the number of shared mutations is
important evidence to distinguish MPLCs from IPM [6]. Interestingly,
the CLDN2 IHC scores were significantly reduced in samples with
larger shared mutations (Supplementary Fig. 4c). Taken together,
the enrichment of CLDN2+ AT2 as well as the CLDN2 protein
expression are potential evidence to distinguish MPLCs from IPM.
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The CLDN2+ AT2 cells possess a stationary state
To further characterize the epithelial subtypes, we performed
pseudotime analysis for the epithelial cells. The cells were ordered
along the predicted pseudotime trajectories, and different cell
states were recognized accordingly (Fig. 3a, b, Supplementary Fig.

5a). In general, the AT2 and CLDN2+ AT2 cells were enriched by
similar states which were different from the club, ciliated, basal
and AT1 cells (e.g., for P1, AT2, and CLDN2+ AT2 cells were mainly
from cell state 3 while the other subtypes were enriched by cell
state 1 or 2; Fig. 3c, and Supplementary Fig. 5a). Comparing AT2
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and CLDN2+ AT2 cells in the tumor tissues, we found that the
CLDN2+ AT2 cells were with significant later pseudotimes than the
AT2 cells (Fig. 3d). Meanwhile, the expressions of these subtype
marker genes also changed with the pseudotimes where the
expressions of the CLDN2+ AT2 marker genes including CLDN2,
MDK, CEACAM5, CEACAM6 and CXCL14 increased significantly over
the pseudotimes (Fig. 3e and Supplementary Fig. 5b).
Next, according to pathway enrichment analysis of the over-

expressed subtype marker genes, we found different subtypes
were mainly related to distinct pathways (Fig. 3f). Notably, the
marker genes of CLDN2+ AT2 cells showed a specific enrichment
in cellular senescence [15] (Fig. 3f), suggesting the CLDN2+ AT2
cells as one kind of senescent epithelial cells, just in agreement
with the later pseudotimes of the CLDN2+ AT2 cells. The
expressions of CLDN2 were also significantly associated with five
cellular senescence-associated genes including ITPR2, MDM2,
CDKN2A, KRAS and CDK4 (Pearson correlation coefficient > 0.4,
Supplementary Fig. 5c). The expressions of ITPR2, MDM2, KRAS and
CDK4 were also highest in the CLDN2+ AT2 cells (Fig. 3g), and
higher in the tumor-derived CLDN2+ AT2 cells than the normal
ones (Fig. 3h). Meanwhile, the epithelial cells of solitary LUAD
(based on GSE131907) showed significantly lower levels in the
senescence signature than MPLCs (Supplementary Fig. 5d, e),
suggesting the senescent character may be specific to the CLDN2+

AT2 cells of MPLCs. Cellular senescence refers to a state of
irreversible cell cycle arrest [16], indicating the CLDN2+ AT2 cells
were in a stationary state and cannot divide indefinitely and thus
may prevent the metastasis of the cancer cells in MPLCs.

The CLDN2+ AT2 cells play a critical role in cell–cell
communications
The intercellular communication was evaluated by CellChat [17]
which modeled the cell–cell interactions based on both single-cell
gene expressions and interactions between signaling ligands and
receptors. Fibroblast cells were with the largest number of
ligand–receptor interactions as signal senders (sender: ligand is
over-expressed, receiver: receptor is over-expressed), while
CLDN2+ AT2 cells possessed the largest number of interactions
as the signal receivers (Fig. 4a). Considering the cell communica-
tion network topology, fibroblast and myeloid cells respectively
had the largest outcoming and incoming degrees, and the
CLDN2+ AT2 cells displayed the third highest incoming degree
next to the myeloid and AT1 cells, and displayed higher incoming
and outcoming degrees than the AT2 cells (Fig. 4b).
As the signal senders, the CLDN2+ AT2 cells mainly interacted

with the other cell types via over-expressed ligands like MDK and
APP (Fig. 4c and Supplementary Fig. 6a). As the signal receivers,
the CLDN2+ AT2 cells mainly received the signals from fibroblast

cells (Fig. 4a), of which the over-expressed ligands were mostly
collagens (Fig. 4d and Supplementary Fig. 6b). Further clustering
of the fibroblast cells based on the scRNA-seq profiles identify
eight subtypes (Fig. 4e), and one subtype showed over expres-
sions in multiple collagens such as COL6A3, COL6A2 and COL1A2
(Supplementary Fig. 6c). Since the interactions from fibroblast cells
to CLDN2+ AT2 cells were mostly mediated by over-expressed
collagens, the COL6A3+ fibroblast cells may be the main signal
source of CLDN2+ AT2 cells. Besides, like the CLDN2+ AT2 cells, this
COL6A3+ fibroblast subtype was also more significantly enriched
by the tumor tissues than the normal ones (Fig. 4f).

Elucidation of the spatial architecture of MPLCs by integration
of ST with scRNA-seq
To further understand the spatial organization of different cell
types and relevant heterogeneity features of MPLCs, ST was
applied on 12 samples, including paired tumor and tumor-
adjacent normal tissues from each of the two tumor lesions of the
first three MPLCs patients (P1-P3, Fig. 1a). After standard data
processing and quality control, each sample had about
2000–4000 spatial spots (Supplementary Fig. 7a, b). Then, the ST
data were integrated with the scRNA-seq data using an anchoring-
based integration method (Methods), which transferred the
annotation information defined by the scRNA-seq data to the
spatial spots. Every spot was assigned a dominant cell type based
on the probabilities of being each cell type.
Our results showed that the spatial spots were also annotated

by seven major cell types (Fig. 5a, b and Supplementary Fig. 7c).
That epithelial or B cells prefer to aggregate together spatially in
the tumor tissues rather than the normal tissues (Fig. 5b). To
analyze the aggregated trend of each cell type quantitatively, we
designed one consistency score, which calculated the proportion
of each spot’s direct neighbor spots that had the same cell type as
the investigated one. The epithelial- and B cell-dominated spots
had remarkably higher consistency scores in the tumor tissues
than the normal tissues as expected, and the endothelial spots
showed opposite changes (Fig. 5c), suggesting that these cell
types spatially re-organized during benign-malignant transforma-
tion. When comparing two different lesions from the same patient,
the consistency scores for B, fibroblast and T&NK cells were also
significantly different in the three patients (P1–P3); the other cell
types also showed patient-specific changes (Fig. 5d and supple-
mentary Fig. 7d), indicating the inter-lesion spatial heterogeneity
distribution of the cell types in MPLCs.
In addition, we also examined which two cell types were more

likely to be near each other in spatial (Methods, supplementary Fig.
8a, b). For example, there was a higher proportion of T&NK–myeloid
pairs in the TM_R_P1 sample than the TI_R_P1 sample. On

Fig. 1 scRNA-seq based tumor heterogeneity overview of MPLCs. a Overview about the integrative data resources. b Number of cells in each
sample after quality control. c Uniform Manifold Approximation and Projection (UMAP) of the 133923 cells based on scRNA-seq data. The cell
types were annotated based on canonical cell type markers. d The proportions of different cell types within each measured sample. The y-axis
represents the samples, and x-axis represents the percentage or total count. The proportions were estimated based on a bootstrap method, and
represented in the form of mean ± s.d. The colors represent cell types. e The change of the cell type proportion between samples from different
tumor lesions (red) or tumor-adjacent tissues (blue) within the same MPLCs patient. |·| means absolute value. Data represent mean ± s.d. t test,
unpaired, one-sided. f Clustering both the samples collected by this study and the other LUAD tumor and adjacent normal tissue samples from
an independent study (GEO dataset ID: GSE131907, n= 11 for both tumor and normal samples) based on the Spearman correlations between
the cell type composition of two samples. See also Supplementary Fig. 2 for the clustering details. The sample names from GEO131907 begin
with GEO, while the MPLC sample names begin with T or N. The letters L and R in the MPLC sample names represent left and right lung.
g Boxplot of the correlations between different types of samples. t test, paired and one sided for comparing T-Within and N-Within, unpaired
and two sided for the other comparisons. h The similarities between different samples within the same MPLCs patient. The similarity is based on
the Spearman correlation coefficients between the average expressions of variable genes in two samples. MPLC multiple primary lung cancer,
IPM intrapulmonary metastasis, ST spatial transcriptomics, IHC immunohistochemistry, TI tumor sample from the inferior lobe, TM tumor tissue
from middle lobe, TS tumor tissue from superior lobe, NI normal tissue adjacent to TI, NM normal tissue adjacent to TM, NS normal tissue
adjacent to TS, Log2FC log2-transformed fold change. N-within: correlations between normal samples within the same MPLCs patient. T-within:
correlations between different tumor lesions within the same MPLCs patient. T-independent: correlations between different tumor tissues from
different LUAD patients from GSE131907. corr: Spearman correlation coefficient between the cell type compositions of two samples.
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clustering these samples according to the proportion profiles of
all the pairwise cell types, we found that not only were the
normal and tumor tissues completely separated, but also
different lesion tissues from the same patients were not clustered
nearby each other (supplementary Fig. 8c). These differences

between tumor and normal tissues were especially significant in
terms of the co-localization between endothelial and several
other cell types, i.e., endothelial–mast, endothelial–endothelial,
endothelial–epithelial, and endothelial–myeloid, as well as
B-mast (supplementary Fig. 8d).

Y. Wang et al.

5

Cell Death and Disease          (2023) 14:462 



The dominant epithelial subtypes were also annotated (Fig. 5e).
The spatial consistent scores of these sub-types were also
computed. The alveolar cells including AT1, AT2 and CLDN2+

AT2 cells showed significantly lower consistent scores than the
basal, ciliated and club cells (Fig. 5f), indicating that the basal
ciliated and club cells were more spatially aggregated than the
alveolar cells. Meanwhile, all these subtypes showed significant
changes in the consistent scores between the tumor and normal
tissues in the MPLC patients. The alveolar cells showed remarkable
higher levels of spatial aggregation in the tumor tissues, while the
other three sub-types showed reversed alterations (Fig. 5g), these
differences suggest again the remarkable alterations of cellular
spatial architecture during benign-malignant transformation.
Meanwhile, separate lesions of the same MPLCs patient also
showed significant differences in spatial aggregations (Supple-
mentary Fig. 8e).

Spatial and cellular characterization of LUAD
histopathological patterns
In MPLC-LUAD, disease progression, and prognosis are associated
with the appearance of morphologically diverse tumor regions
[18, 19], termed histopathological patterns, and classified as
lepidic, acinar, papillary, micropapillary, and solid [20]. The
malignant regions in the MPLC-LUAD patients (P2 and P3) were
further divided into lepidic (PR1), acinar (PR2), micropapillary
(PR3), minimally invasive (MIA, PRm), and adenocarcinoma in situ
(AIS, PRa) according to the latest WHO classification [21] (Fig. 6a).
Mapping these regions onto the spatially resolved cell types
revealed that although these regions were mainly composed of
epithelial cells, as expected, there were also immune and
mesenchymal cells, and the cell type proportions varied with
both pathological sub-types and tumor tissues (Fig. 6b). Among
the epithelial sub-populations, there was also marked hetero-
geneity in both histopathological pattern and in different samples
(Supplementary Fig. 9a). Notably, the CLDN2+ AT2 cells showed
higher proportions in the histopathological patterns than multiple
sub-types (Fig. 6c), but AT2 cells simply showed significant higher
proportions than the ciliated cells, which implies CLDN2+ AT2 cells
represent a malignant epithelial sub-type.
For each of the individual histopathological region marked

sample, we calculated the marker genes of each histopathological
region based on ST data (Supplementary Fig. 9b and Supplemen-
tary Table 3). Comparing the marker genes of the same
pathological region among different samples revealed that only
one PR1 marker gene and 28 marker genes of PR3 were shared by
the three samples (supplementary Fig. 9c). PDZK1IP1 (also called
MAP17) is a ROS-dependent oncogene [22], and its expression
levels can predict the sensitivity of platinum-based therapy, EGFR
inhibitors and proteasome inhibitors in LUAD patients [23]. Here, it
was identified as one potential marker of lepidic pattern in MPLC-
LUAD, as it showed higher expression in PR1 than PR2 and PR3 for
all three samples (Fig. 6d). The high expression of PDZK1IP1 was

associated with better prognosis in LUAD (Fig. 6e). The shared PR3
marker genes not only showed higher expression in the PR3
regions than the PR1 and PR2 regions (Fig. 6f), most of them also
showed significantly higher expression in the tumor tissues than
normal tissues based on the TCGA-LUAD bulk RNA-seq data
(supplementary Fig. 9d). High expression of three of them,
including RANBP1, MDH2, and LSM5, was associated with poor
prognosis in LUAD (Fig. 6g, h and supplementary Fig. 9e). This is
somewhat consistent with the fact that the LUAD micropapillary
sub-type is associated with unfavorable prognosis clinically [24].
Additionally, the surrounding environment of the histopatho-

logic patterns, i.e., the nearest three circles round the selected
histopathological regions based on the spatial spots, were also
examined (Fig. 6i). The surrounding environment was enriched by
significantly different cell compositions from the histopathological
regions (Fig. 6j), where less epithelial cells but more endothelial,
fibroblast, myeloid, B and T&NK cells were observed. Furthermore,
relatively more B, fibroblast, endothelial, and T&NK cells were
observed in the other spatial regions (Supplementary Fig. 9f).

Investigation of the molecular commonness and differences
between different lesions in MPLCs patients
The gene expressional changes between cells from the tumor and
tumor-adjacent normal tissues can help gain insights into the
potential key molecular mechanisms underlying the development
and progression of MPLCs. Each of the four patients had one tumor
sample from the inferior lobe (TI); we first compared the gene
expression profiles of cells from TI to its adjacent normal sample
(TIVSNI), calculated the average log2FC (avg_logFC) and p-values,
and performed this calculation for the other lesions (TOthersVSN-
Others) from the same patient. Each gene was assigned two sets of
differential expression analysis results, and the avg_logFCs calcu-
lated based on TIVSNI and TOthersVSNOthers were represented by
the x and y axes, respectively (Fig. 7a). Scatters falling in the first and
third quadrants mainly represented genes with similar expressional
changes for the two lesions, while those in the other quadrants
showed opposite changes. The genes were further classified into
five types, including Same (different lesions show the same trends in
the gene expressional changes), NotSig (not significant), OP
(different lesions show opposite trends in gene expressional
changes), TI (the gene expressional changes are specific to TI), and
TOthers (the gene expressional changes are specific to TOthers).
More genes were identified as OP, TI or TOthers types rather than
the Same type (Fig. 7b). Notably, only two genes including regulator
of G-protein signaling 1 (RGS1) and CD82 were classified into the
Same type for all four MPLCs patients with higher expression in
tumor tissues than normal tissues (Fig. 7a). High expression of RGS1
indicated favorable prognosis in LUAD (Supplementary Fig. 10a).
CD82 was reported to suppress lung cancer metastasis [25, 26] and
its high expression was associated with poor LUAD prognosis.
Therefore, the high co-expression of RGS1 and CD82 in MPLC lesions
may serve as a diagnostic biomarker for MPLCs.

Fig. 2 Subclassification and characterization of epithelial cells in MPLCs. a Heatmap of CNV profiles estimated from scRNA-seq of tumor
lesions from each patient. The vertical axis is arranged by origin patients, samples, cell malignant or not, and on the CNV-based clustering
results. The horizontal axis displays all chromosomes in numerical order. kmCluster: the k-means clustering results of epithelial cells based on
the CNV profiles. cellMN: whether the cell is malignant or not. b UMAP plot colored by the sub-populations of epithelial cells. c Dot plot of the
expression of marker genes for the epithelial cell sub-populations. d Bar plot of the bootstrap proportions of epithelial cell sub-populations
within each measured sample. e The epithelial cell sub-population proportions in tumor lesions (red) or the adjacent normal tissues (blue)
from the four MPLC patients. Data represent mean ± s.d. **P < 0.01, t test, unpaired. f UMAP view of the clustering results (left) and CLDN2+

AT2 signatures (right) of epithelial cells from both the MPLCs patients and the dataset GSE131907. Batch effects were removed by harmony.
The CLDN2+ AT2 signature was calculated based on the cell-wise gene set variation analysis, and the top15 ranked (based on P-values) marker
genes for the CLDN2+ AT2 subtype were utilized as the signature gene set. g Pie plot of the data source of cells in Cluster 5 in (f). h Box plot of
the differential expressions of CLDN2 between cells from the MPLC patients and GSE131907. Wilcox test, unpaired. i Immunohistochemistry
(IHC) of CLDN2 expressions on the MPLCs samples. Samples NM_R_P2 and TM_R_P2 were taken as examples. Red border area was magnified
and presented on the right. j Box plot of the differential CLDN2 IHC scores in MPLCs, IPM and solitary LUAD. Each IPM or MPLCs patient
possessed two LUAD lesions at ipsilateral different lobes. Wilcox test, unpaired.
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Fig. 3 The CLDN2+ AT2 cells possess a stationary state. a, b Pseudotime trajectories of malignant epithelial cells in patient P2 are colored by
the pseudotime (a) and states (b). c Pseudotime trajectories splitted by epithelial cell subtypes in patient P2. d Box plot of differences in
pseudotimes between AT2 and CLDN2+ AT2 cells. Wilcox test, unpaired. e Heatmap of the pseudotime-dependent expression alterations of
epithelial subtype marker genes. f Pathway enrichment results based on the marker genes of each epithelial subtype. Colors represent
different subtypes. P: hypergeometric distribution. g Violin plot of the expressions of CLDN2-relevant cellular senescence marker genes in
different epithelial cell subtypes. h Violin plot of the differential expression of CLDN2-relevant cellular senescence marker genes between
CLDN2+ AT2 cells from the tumor and normal tissues. Wilcox test, unpaired. ****P < 0.0001.
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Fig. 4 Cell–cell interactions in MPLCs. a Heatmap of the cell–cell interactions between different cell types. The row and column, respectively,
stand for the source and target cell types of the interactions. The top and right colored bar plot respectively represent the sum of column and
row of values displayed in the heatmap. b Scatter plot of the interaction strength of different cell types. c Bubble plot of the interactions
originated from the CLDN2+ AT2 cells and mediated by MDK. d Bar plot of the summarized communication probabilities on signaling
pathways based on the interactions from fibroblast cells to CLDN2+ AT2 cells. e UMAP plot of the subpopulations of fibroblast cells. Myo:
myofibroblast, SMC: smooth muscle cells. f Bar plot of the average proportions of each fibroblast cell sub-population in tumor and tumor-
adjacent tissues. Data represent mean ± s.d. *P < 0.05, t test, unpaired.
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Cell-type-specific gene expressional alterations were also
investigated (Supplementary Fig. 10b). Similarly, there were also
more OP, TI, and TOthers types of changes than the Same type
(Fig. 7c), indicating again the high molecular heterogeneity of

different lesions of the same MPLCs patient. Various genes that
were significantly changed, such as CD79B, CLDN2, SPP1 and
IGHG3 (Fig. 7d and Supplementary Fig. 10b) were the marker
genes of the identified cell types or sub-populations, probably

Fig. 5 Spatial features of different cell types in MPLCs. a UMAP plot of 37616 spatial spots colored by cell types. The cell types of each spot
were predicted by integrating the ST-seq data with the scRNA-seq data. b Spatial RNA-seq barcoded spots of the samples from patients P1
and P2, labeled by the predicted cell types. c Box plot of the difference of consistent scores of spots from tumor and normal tissues of the
same patient in terms of different dominant cell types. d Box plot of the difference of consistent scores of spots from different tumor lesions of
the same patient in terms of different dominant cell types. e Spatial spots colored by the predicted dominant epithelial cell subtypes. Four
samples were displayed as examples. f Box plot of the difference of consistent scores of the spatial spots dominated by different epithelial cell
subtypes. g Violin plot of the difference of consistent scores of spots from tumor and normal tissues in terms of different dominant epithelial
cell subtypes. Kruskal test, unpaired.
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owing to the high heterogeneity in cellular compositions across
the tumor samples, as observed above. Regarding the expression
of genes with concordant results across all four MPLCs patients
(Fig. 7d), we noted that expression levels of WIF1 and TNFRSF18
were decreased or increased, in the epithelial and T&NK cells of

both lesions, respectively. In addition, ALOX15B, LCN2, PRSS12,
CD79B and ITSN2 showed tumor lesion-specific changes for all four
patients. The aforementioned seven genes also showed significant
expressional changes between the tumor and normal tissues
based on the TCGA-LUAD bulk RNA-seq data (Fig. 7e).
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TNFRSF18, also known as glucocorticoid-induced TNF receptor
(GITR), a cell surface receptor expressed by immune cells (mainly
Tregs), acts as a key regulator in inflammatory and immune
responses [27] and is an emerging molecular target in cancer
immunotherapy [28, 29]. Notably, it showed significant higher
expressions in the tumor tissues than the normal ones based on
four independent LUAD cohorts (Supplementary Fig. 10c), and its
high expression was associated with poor LUAD prognosis
(Supplementary Fig. 10d). Among the T&NK cells of MPLCs samples,
TNFRSF18 showed high expressions in the Treg, Tfh, and Th1-like
cells (Fig. 7f and Supplementary Fig. 11a–c). Meanwhile, it was
constitutively expressed at higher levels in the T&NK cells of tumor
tissues than normal tissues based on both the scRNA-seq data (Fig.
7g) and spatial transcriptomics (Fig. 7h). Therefore, TNFRSF18 can
be a promising target in immunotherapy of unresectable MPLCs.

DISCUSSION
A diagnostic challenge in MPLCs is to distinguish MPLCs from
intrapulmonary metastasis [3]. Meanwhile, the cellular and spatial
characteristics of MPLCs are still unclear. Here, we constructed the
cellular composition and spatial architecture of human MPLCs by
integrating scRNA-seq with ST, and potential biomarkers were
identified. Our study also investigated the molecular and cellular
basis of MPLCs, and described the inter-lesion heterogeneity of
MPLCs, thereby throwing lights on potential clinical diagnostic
biomarkers and therapeutic targets of MPLC.
We showed that separate tumors from the same MPLCs patient

were different from each other in cellular composition and gene
expression profiles. Additionally, CNV analysis indicated that
malignant epithelial cells within different tumor lesions were
originated from different chromosomal variations, which provided
a strong evidence of nonhomologous evolution as a determinant
of MPLCs progression. By integrating with ST, we found that the
spatial organization of multiple cell types were different between
the separate tumor lesions of the same patient.
Defining the specific characteristics of MPLCs is also crucial for

diagnosis and treatment in clinic. In this study, a major finding is
that a newly identified CLDN2+ AT2 sub-type is specifically
enriched in MPLCs. Besides the extra marker genes (CLDN2,
CXCL14, CEACAM5, CEACAM6, and MDK), several remarkable
features of CLDN2+ AT2 were identified. Firstly, CLDN2+ AT2 cells
were more significantly enriched in the tumor tissues than the
normal tissues, especially in three MPLC-LUAD patients. Secondly,
the CLDN2+ AT2 cells possessed a stationary state as this type of
cells showed significant later pseudotimes and high expressions of
cellular senescence marker genes. This stationary state may
prevent the metastasis of the cancer cells in MPLCs. Thirdly, the
CLDN2+ AT2 cells play key roles in cellular communication,
especially as signal receivers, where a COL6A3+ fibroblast cell
type was its main signal source. Spatially, this CLDN2+ AT2 cell type
was also significantly enriched in the malignant histopathological
patterns of MPLCs. Moreover, this CLDN2+ AT2 cell type preferred
to aggregate spatially in the tumor tissues. Intriguingly, none of the
other five independent lung or lung cancer scRNA-seq datasets

showed high CLDN2+ AT2 signatures. Meanwhile, the CLDN2
protein expression can help distinguish MPLCs from IPM and
solitary LUAD. Taken together, the CLDN2+ AT2 cell may be an
exclusive epithelial cell sub-type in MPLC patients. However, the
latent mechanisms that driven the emergence of CLDN2+ AT2 cells
and contribute to MPLCs need further experimental investigations.
In the last decade, high-throughput sequencing technologies have

revolutionized lung cancer research by the whole genome genotyp-
ing [30], targeted NGS mutation detection [31], and high yield RNA
sequencing [32]. NGS can help distinguish MPLCs from IPM based on
whether the separate tumors harbored different driver mutations 3,
however, direct diagnostic biomarkers were not determined.
Integrating scRNA and ST, can not only help identify potential
biomarkers or targets, but also contributes to a comprehensive
cellular and spatial description of MPLCs at the single cell level. To
our knowledge, this is the first study to investigate the specific
cellular biomarkers in MPLCs by integrating scRNA-seq and ST.
The infiltrated immune cells are important constituents of the

tumor microenvironment and adjuvant or neoadjuvant immu-
notherapy has greatly improved the prognosis of lung cancer
[33, 34]. However, many patients still do not respond to anti-CTLA4
or anti-PD-1/PD-L1 blockade in clinical practice [35]. Here, we
discovered a key regulator in inflammatory and immune response
factor, TNFRSF18 (GITR) [36–38], that was constitutively highly
expressed in the T&NK cells of tumor tissues than normal tissues.
TNFRSF18 was found highly expressed in Tregs of lung cancer
tumor tissues which were non-responsive to anti-PD-1 therapy [39].
Recently, the first in-human phase-I trial of anti-TNFRSF18 (TRX518)
was initiated in stage III or IV malignant melanoma (NCT01239134)
[40]. Therefore, we would suggest that TNFRSF18 may be a
potential target for immunotherapy in inoperable MPLC patients.
In addition, we also found that RGS1 and CD82 were co-over-

expressed by all tumor lesions for all four MPLCs patients. RGS1 serves
as a prognostic marker for poor outcomes in multiple types of
cancers, including myeloma [41], gastric cancer [42], and B cell
lymphoma [43]. However, in LUAD, we found that high expression of
RGS1 was associated with a favorable prognosis. CD82, also known as
KAI1, is an established metastasis suppressor in various malignancies,
including lung cancer [44]. Therefore, the co-high-expression of RGS1
and CD82 implies less likelihood of the presence of IPM and may
serve as a latent diagnostic biomarker for MPLCs.
Overall, our work reconciles molecular and phenotypic hetero-

geneity based on scRNA-seq and ST in MPLCs and demonstrates a
new approach to identify the relationship between tumor lesions
in multiple lung cancers. Our findings described here serve as a
resource to better understand the development and progression
of MPLCs, and the complex targeted therapeutic strategies.
Moreover, the identified characteristics in molecular and cellular
profiles are pertinent to the diagnosis of MPLCs.

MATERIALS AND METHODS
MPLCs Patients
Four patients with synchronous two lung lesions undergone R0 surgical
resection in Liaoning Cancer Hospital & Institute between December

Fig. 6 The cellular and molecular profiles of different histologic patterns in MPLC-LUAD. a Pathological classification of malignant regions
into histologic patterns including lepidic type (PR1), acinar type (PR2), micropapillary type (PR3), minimally invasive (PRm) and
adenocarcinoma in situ (PRa). b The main cell type compositions of the pathological regions across the four investigated samples.
c Boxplot of the proportions of different epithelial cell sub-populations in the pathological regions across all the investigated samples. t test,
unpaired. AT2 and CLDN2+ AT2 are, respectively, compared to the other sub-populations. d Violin plot of the spatially resolved high expression
of PDZK1IP1 in the region PR1. e KM-plot of the survival curves of patients in GSE30219. The patients were separated into two groups based on
the expression of PDZK1IP1. f Bar plot of the mean fold change of PR3 marker genes shared by the three observed samples. g, h KM-plot of the
survival curves of TCGA-LUAD patients. The patients were separated into two groups according to whether the expression of RANBP1 (g) and
MDH2 (h) was higher than the median level. i. Spatial neighbors (the nearest three circles of spots) of the malignant regions. Colors represent
different malignant regions. Sample TM_R_P3 is displayed as one example. j Box plot of the difference of cell compositions between the
malignant regions and corresponding spatial neighbors. t test, unpaired.
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2020 and November 2021 were collected. None of them had received
neoadjuvant radiotherapy, chemotherapy or immunotherapy before
surgical resection. All patients were preoperatively diagnosed as MPLCs
based on HRCT [45] by a multidisciplinary team (MTD) including a
radiologist, thoracic surgeon, and oncologist. The multidimensional
postoperative diagnostic criteria were based on CHA [5] and NGS [6].

The clinicopathologic characteristics and NGS data were respectively
presented in Supplementary Tables 1 and 2. The project protocol was
approved by the Institutional Ethics Committee of Liaoning Cancer
Hospital & Institute before the initiation of the study. All patients
provided informed consent for the use of the tumor tissues for
research.
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Single-cell sample preparation
The resected tumor tissues or paracancer tissues were washed with
phosphate-buffered saline (PBS) and completely immersed in MASC tissue
storage solution (Miltenyi, Germany) at 4 °C. Single-cell suspensions were
prepared according to 10x Genomics (US) Single Cell Protocols (CG000053,
https://support.10xgenomics.com/).

Single-cell RNA sequencing
The single-cell suspension was loaded into Chromium microfluidic chips
with 3’ v2 chemistry and barcoded with a 10× Chromium Controller (10X
Genomics, US). RNA from the barcoded cells was subsequently reverse-
transcribed and sequencing libraries were constructed with reagents from
a Chromium Single Cell 3’ v2 reagent kit (10X Genomics, US) according to
the manufacturer’s instructions. Sequencing was performed with Illumina
(US) according to the manufacturer’s instructions.

Sample preparation for Visium spatial transcriptomics
sequencing
Fresh tissues were concurrently frozen and embedded in optical cutting
tissue (OCT) compound in solid carbon dioxide. The RNA quality of the
OCT-embedded sample was assessed by Agilent 2100 (US). RNA integrity
number (RIN) of samples greater than 7 were used for follow-up stRNA-seq.
Cryosections (10 μm) were performed on a Leica CM3050 (Germany) and
bright-field images were taken on a Leica Aperio Versa8 whole-slide
scanner (Germany) at 20× resolution.

Tissue optimization
The Visium Spatial Tissue Optimization Slide & Reagent kit (10X Genomics,
US) was used to optimize permeabilization conditions for the tissues
according to the Visium Spatial Tissue Optimization User Guide (CG000238,
https://support.10xgenomics.com/). Briefly, the Visium Spatial Tissue
Optimization workflow includes placing tissue sections on 7 Capture
Areas on a Visium Tissue Optimization slide. The sections were fixed,
stained, and then permeabilized at different times. mRNA released during
permeabilization binds to oligonucleotides on the Capture Areas.
Fluorescent cDNA was synthesized on the slide and imaged. The
permeabilization time that results in maximum fluorescence signal with
the lowest signal diffusion is optimal. If the signal was the same at two
time points, the longer permeabilization time was considered optimal.

Visium sequencing libraries preparation
The Visium Spatial Gene Expression Slide & Reagent kit (10X Genomics, US)
was used to construct sequencing libraries according to the Visium Spatial
Gene Expression User Guide (CG000239, https://support.10xgenomics.com/
). A 10 μm frozen tissue section was placed on one of the Visium gene
expression slide capture areas in a slide. After tissue Hematoxylin and Eosin
(H&E) staining, bright-field images were acquired. Tissue permeabilization
was performed for optimal minutes, as established in the Tissue
Optimization procedure. Then reverse transcription experiment was
conducted and sequencing libraries were prepared following the
manufacturer’s protocol.

Sequencing and raw data processing for ST
Sequencing was performed with a Novaseq PE150 platform according to
the manufacturer’s instructions (Illumina, US) at an average depth of 300
million read-pairs per sample. For raw data processing, we used an in-
house script to perform basic statistics, and evaluate the data quality and
GC content along the sequencing cycles. Raw FASTQ files and histology
images were processed by sample with the Space Ranger (version

spaceranger-1.2.0, 10X Genomics, US). The filtered gene-spots matrix and
the fiducial-aligned low-resolution image were used for down-stream
analysis.

DNA Extraction and Library Construction for Next Generation
Sequencing
DNA was extracted by the QIAamp DNA FFPE Tissue KIT (QIAGEN,
Germany) with modified protocols. The purified DNA is quantified by a
Picogreen fluorescence assay using the provided lambda DNA standards
(Invitrogen, USA). Then, library construction with the KAPA Hyper DNA
Library Prep Kit (KAPA Biosystems, USA), containing mixes for end repair,
dA addition and ligation, were performed in 96-well plates (Eppendorf,
Germany). Dual-indexed sequencing libraries are PCR amplified for 4-7
cycles.

Hybrid Selection and Ultra-deep Next Generation Sequencing
of DNA
The PCR master mix is added to directly amplify (6-8 cycles) the captured
library from the washed beads. After amplification, the samples are
purified by AMPure XP beads, quantified by KAPA qPCR Library
Quantification (KAPA Biosystems, USA) and sized on bioanalyzer 2100
(Agilent, USA). Libraries are normalized to 2.5 nM and pooled. Deep
Sequencing is performed on Illumina HiSeq 4000 using PE75 V1 Kit. Cluster
generation and sequencing is performed according to the manufacturer’s
protocol.

Immunohistochemical (IHC) analysis
CLDN2 protein expression was analyzed in tissue microarrays. Each MPLCs
or IPM patient sampled 4 paraffin sections respectively from 2 tumor
tissues and two corresponding adjacent tissues. Each solitary LUAD patient
sampled 2 paraffin sections respectively from tumor tissues and adjacent
normal tissues. The tissue microarrays were deparaffinized in xylene and
dehydrated in gradient alcohol before antigen retrieval with an autoclave.
Hydrogen peroxide (0.3%) was used to block endogenous peroxidase
activity and nonspecific immunoglobulin-binding sites were blocked by
incubation with normal goat serum for 30min at 37 °C. The tissue
microarrays were incubated with rabbit anti-CLDN2 (1:400, No.ab53032,
Abcam) overnight at 4 °C. Then, the sections were incubated with
biotinylated goat anti-rabbit IgG as a secondary antibody (Maixin Kit,
China) for 1 hour at room temperature, followed by incubation with
horseradish peroxidase-conjugated streptavidin-biotin (Maixin Kit, China)
for 30minutes at room temperature. The peroxidase reaction was
developed with 3’-diaminobenzidine tetrahydrochloride (Maixin Kit, China).

Semi-quantitative assessment and scoring
The CLDN2 IHC score = percent positivity × staining intensity. Cells were
considered positive for CLDN2 if the cytomembrane was stained. The value
of the percent positivity was defined as “0” if 0%, “1” if 1-10%, “2” if 11-50%,
“3” if 51-80%, and “4” if >80%. The staining intensity was scored as “0” (no
staining), “1” (weakly stained), “2” (moderately stained) and “3” (strongly
stained). Both the percent positivity and the staining intensity were
assessed by two doubly blinded investigators.

Data processing, batch correction, cluster annotation, and
data integration
The Seurat v.3.2.0 package was utilized for the scRNA-seq data analysis.
Basically, cells with less than 250 unique genes or more than 25%
mitochondrial transcripts or log10(nFeature_RNA)/log10(nCount_RNA) <=
0.75 and genes including MALAT1, mitochondrial genes, ribosomal genes

Fig. 7 Molecular and cellular commonness and differences between lesions within the same MPLCs patient. a Scatter plot of the
differential expressions of genes in the two different tumor lesions comparing to the corresponding adjacent normal tissues in each of the
four MPLC patients. The x-axis represents the average log2FC (avg_logFC) computed by comparing the tumor and normal tissues in the
inferior lobe (TIVSNI) of one patient. The y-axis represents the average log2FC (avg_logFC) computed by comparing the tumor and normal
tissues in the other diseased lobe (TOthersVSNOthers) of one patient. The point colors represent the significance type. b Summary of the
number of different significant types of genes identified based on each patient. c Summary of the number of different significant types of
genes identified based on each cell type and each patient. d Seven Genes showed expressional change in all four MPLCs patients in certain
cell types. e Box plot of the seven gene expressions in normal and tumor tissues based on the TCGA-LUAD dataset (p-value: kruskal test).
f Violin plot of the expressions of TNFRSF18 across T&NK cell subpopulations. g Violin plot of the expressions of TNFRSF18 across all samples.
h Spatially featured plot of the expressions of TNFRSF18 in two samples of P1.
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and hemoglobin genes were excluded. Next, we utilized the Normal-
izeData and FindVariableFeatures functions with default parameters to do
data normalization and choose the top-2000 variable genes. We used the
ScaleData function to regress out the nFeature_RNA and percent_mito
variable during scaling. Next, principal component analysis (PCA) was
performed on the normalized and scaled gene expression matrix to do
dimensionality reduction and the batch effects were removed by the
harmony method based on the top 50 principal components from PCA
(Seurat v3.2.0 and harmony v0.1.0 packages). UMAP was performed based
on the harmony reduction space to do further dimension reduction. The
cells were clustered on the harmony reduction space using the Lovain
algorithm on k-nearest neighbors graph utilizing the FindNeighbors
(reduction = ‘harmony’ and dims = 1:30) and FindClusters (resolution=0.5)
functions. We used the FindAllMarkers function (logfc.threshold = 0.5,
test.use = "wilcox", min.pct = 0.2, only.pos = TRUE, assay = "RNA") to get a
list of differentially expressed genes for each cluster. Then, the clusters
were annotated based on canonical cell type marker genes.
For the ST, spots with less than 250 unique genes or more than 20%

mitochondrial transcripts or more than 1% hemoglobin transcripts and
genes including MALAT1, mitochondrial genes, ribosomal genes, and
hemoglobin genes were also excluded. Seurat package was also utilized
for data normalization, dimensionality reduction, clustering and identifica-
tion of cluster marker genes. Different from the scRNA-seq data, batch
effects here were removed by the anchors-based integration method [46]
of the Seurat package. We utilized the function FindIntegrationAnchors to
identify anchors (pairs of cells from each dataset that are contained within
each other’s neighborhoods) between all the collected samples, and then
utilized the function IntegrateData to complete the dataset integration.
Integration of the scRNA-seq data and spatial transcriptomics was also

performed by the anchors-based integration method 48. Firstly, we utilized
the function FindIntegrationAnchors to identify anchors between the cells
and spots from the scRNA-seq and ST. Then, the function TransferData was
utilized to help transfer the cell type labels defined by the scRNA-seq data
to the spots of the ST, and predicted probabilities of each cell type for the
spots were saved as an assay and used for further analysis.

CNV analysis
For each patient, the CNVs of cells from tumor tissue samples were
estimated by the inferCNV [47] v.1.2.1 package where T&NK cells were used
as the reference cells, and the epithelial cells of the tumor samples were
used for the observations. To identify malignant and non-malignant
epithelial cells, we clustered the reference and observation cells at the same
time based on the inferred CNV profiles by the k-means method (k= 7),
and epithelial cells grouped into the clusters dominated by the reference
cells were defined as the non-malignant cells while the others were defined
as the malignant ones. To compare the epithelial cell CNVs of the multiple
lesions of the same patient, the CNV profiles of the epithelial cells were re-
clustered by the k-means method (k= 4 here), and then lesion-specific
clusters were identified by comparing the clusters enriched by each lesion.

Pseudotime trajectory analysis
Firstly, we extracted the scRNA-seq data of the epithelial cells of the tumor
samples. Next, we utilized the Monocle2 [48] package to determine the
pseudotime trajectories of each patient separately, where the cell-gene
expression matrix in the form of UMI counts was used as input of
Monocle2. The estimateSizeFactors and estimateDispersions functions with
default parameters were used to preprocess the UMI count matrix, and the
detectGenes function with a parameter of min_expr = 0.1 was used to
retain genes expressed in more than 10% cells. The DDRTree-based
reduction was performed by the reduceDimension function of Monocle2
with the parameters of max_components = 2 and method = ‘DDRTree’.
The cell ordering was performed by the orderCells function, and the state
enriched by the basal cells was selected as the root state since basal cells
are progenitors of the airway epithelium [49].

Identification of the sub-populations of each major cell type
We identified the sub-populations of the epithelial and fibroblast cells. For
each cell type, we extracted the scRNA-seq data of the corresponding cells,
and re-analyzed these cells by performing data normalization, scaling,
dimensionality reduction, batch effects correction, clustering and identi-
fication of cluster marker genes based on Seurat v.3.2.0 with the same
parameters as described for analyzing the whole scRNA-seq dataset except
that the resolutions for clustering epithelial and fibroblast cells were

respectively 0.1 and 0.3. Then, the re-clustered groups were annotated
based on the identified marker genes.

ST-based consistency score and co-localization profile
For each spot, we obtained its direct neighbor spots based on the row and
column coordinates of these spots arranged in a checkerboard pattern
spatially, and calculated the proportion of spots with the same predicted
cell type as the input one, and this was defined as the consistency score for
the spot. Meanwhile, for all the spots of one sample, we identified all
pairwise neighborhood spots and calculated the proportions of cell type
pairs as the co-localization profile.

Comparison of the gene expressional changes between the
multiple lesions of the same patient
Each of the four patients had one tumor sample from the inferior lobe (TI),
we first compared the gene expression profiles of cells from this tumor
sample to its adjacent normal sample (TIVSNI), calculated the average
log2FC (avg_logFC) and p-values using FindMarkers function of the Seurat
package, and next did this calculation based on the other disease lesions
(TOthersVSNOthers) from the same patient. Considering both avg_logFCs
and p-values, the genes were further classified into five significant types
including Same (p_TIVSNI < 0.01, p_TOthersVSNOthers <0.01, |TIVSNI
avg_logFC| > 0.25, |TOthersVSNOthers avg_logFC| > 0.25, and in the first
or third quadrants, i.e., with the same trends in the gene expressional
changes for two lesions), NotSig (p_TIVSNI > 0.01 or p_TOthersVSNOthers
> 0.01 or |TIVSNI avg_logFC| < 0.25 and |TOthersVSNOthers avg_logFC| <
0.25), OP (p_TIVSNI < 0.01 and p_TOthersVSNOthers <0.01, |TIVSNI
avg_logFC| > 0.25, |TOthersVSNOthers avg_logFC| > 0.25, and in the
second or fourth quadrants, i.e., with opposite trends in gene expressional
changes for two lesions), TI (p_TIVSNI < 0.01, |TIVSNI avg_logFC| > 0.25, and
not included in Same or OP, i.e., the gene expressional changes are specific
to TI), and TOthers (p_TOthersVSNOthers <0.01, |TOthersVSNOthers
avg_logFC| > 0.25, and not included in Same or OP, i.e., the gene
expressional changes are specific to TOthers).

Pathway enrichment analysis
Based on the marker genes of each subtype, we performed pathway
enrichment by the enricher function of the clusterProfiler [50] v3.14.3
package, and pathway information was obtained from the KEGG database.

Statistics
Detailed computational and statistical methods are reported in the
Methods or figure legends. All statistical analyses were performed by R
(v 3.6.3), and the t test in R was Welch t test by default which did not
require the two samples have similar variances. The statistical tests were
two-sided by default, and one-sided tests were specifically stated.
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