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Acute kidney injury (AKI) is a prevalent pathological condition that is characterized by a precipitous decline in renal function. In
recent years, a growing body of studies have demonstrated that renal maladaptation following AKI results in chronic kidney
disease (CKD). Therefore, targeting the transition of AKI to CKD displays excellent therapeutic potential. However, the mechanism
of AKI to CKD is mediated by multifactor, and there is still a lack of effective treatments. Ferroptosis, a novel nonapoptotic form of
cell death, is believed to have a role in the AKI to CKD progression. In this study, we retrospectively examined the history and
characteristics of ferroptosis, summarized ferroptosis’s research progress in AKI and CKD, and discussed how ferroptosis
participates in regulating the pathological mechanism in the progression of AKI to CKD. Furthermore, we highlighted the
limitations of present research and projected the future evolution of ferroptosis. We hope this work will provide clues for further
studies of ferroptosis in AKI to CKD and contribute to the study of effective therapeutic targets to prevent the progression of
kidney diseases.
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FACTS

● Ferroptosis has developed rapidly since its discovery ten years
ago.

● Ferroptosis plays an important role in the transition from
acute kidney injury to chronic kidney injury.

● Targeting ferroptosis provides new promising targets for
preventing the progression of kidney injury.

● Studies on ferroptosis in the process of AKI to CKD are
warranted and of great necessity in the future.

INTRODUCTION
Acute kidney injury (AKI), one of the most prevalent and severe
clinical diseases with high morbidity and mortality, is char-
acterized by a sharp decline in renal filtration function. AKI is
reported in 12.2% of hospitalized patients [1], with an even
more significant number of people in low- and middle-income
countries. AKI causes kidney tissue damage, resulting in
elevated blood creatinine, increased urine protein, and
decreased urine volume. The AKI-related mortality in adults is
23.9%, and the rate will be higher in those receiving kidney
replacement therapy, resulting in irreversible losses to indivi-
duals and society [2].

The AKI etiology is complex and heterogeneous. Infection,
sepsis, hypoxia, nephrotoxic drugs, and many other factors can
cause AKI occurrence [3]. In response to nociceptive stimulation,
renal cells undergo G2/M cell cycle arrest, cell senescence, and
other processes by cell signal transduction and activate various
forms of programmed cell death, such as ferroptosis [4].
Subsequently, AKI patients may progress to chronic kidney
disease (CKD), and in some cases, die (Fig. 1). CKD, a significant
global health burden, affects up to 1.2 million people annually and
is projected to become the fifth leading cause of death worldwide
by 2040 due to its increasing prevalence [5, 6].
Previously, it was believed that AKI and CKD were only

distinguished by the duration of renal function decline.
However, in the last decade, increasing evidence has suggested
that AKI is an independent risk factor for CKD [7]. There is no
effective treatment for AKI except for renal replacement
therapy. When AKI progresses to CKD, it significantly affects
patients’ survival and quality of life. To understand its
pathogenesis, it is necessary to investigate the critical interval
between AKI and CKD.
Recently, as a new type of cell death, ferroptosis plays a unique

role in the progression from AKI to CKD, including tubular cell
regeneration and interstitial fibrosis [8]. Identifying the role of
ferroptosis can broaden our understanding of the pathogenesis
and lead to novel prevention strategies.
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AN OVERVIEW OF FERROPTOSIS
Cell death is vital in organism development, homeostasis
maintenance, and the occurrence and development of diseases
[9]. Ferroptosis, a novel form of cell death based on iron-
dependent lipid peroxidation, was first discovered in 2003 [10]
and formally named in 2012 [11]. Since then, the average annual
rise of ferroptosis-related studies has been a stunning 103.78%.
Bibliometric analysis is a well-established method for the
quantitative assessment of academic productivity. Nonetheless,
the productivity of ferroptosis research has been evaluated
infrequently to date. In the process of exploration in the field of
ferroptosis, the regulatory mechanism of ferroptosis has been
gradually discovered. Some landmark events and important
ferroptosis inhibitors are shown in Fig. 2.
Figure 3 displays the findings of our bibliometric analysis of the

research publications published on ferroptosis in the decade
following its formal designation in 2012.Based on the Web of
Science (www.isiknowledge.com/), we analyzed the scientific
output related to ferroptosis from 2012 to 2022. In total, 5578
articles relating to hypertension were identified in the Web of
Science. To further explore the research progress of ferroptosis in
the field of kidney diseases, we further added kidney-related
keywords, and the number of retrieved articles was 492.
We analyzed the trend of ferroptosis and ferroptosis-related

research in the kidney using histograms and line graphs (Fig. 3A),
showing the same upward trend since its official naming in 2012,
particularly in 2019–2022. High-frequency keywords represent
the hot spots in a research field and reflect the status and
influence of the corresponding study content in the research
field. Through the analysis of high-frequency keywords in the
literature (Fig. 3B), we found that the top keywords in the order
of frequency and centrality were cell death (frequency: 129,
centrality: 0.02), oxidative stress (frequency: 115, centrality: 0.11)
and acute kidney injury (frequency: 81, centrality: 0.17). Other
keywords included lipid peroxidation, iron, mechanism, and
metabolism. A cluster analysis of cooccurring keywords revealed
the main themes using CiteSpace (Fig. 3C). The modularity of our
analysis is 0.7428, and the mean silhouette is 0.8802, supporting
that our clustering results are credible. The clustering results
showed that studies on ferroptosis in kidney diseases focused on
AKI, CKD, and ischemia‒reperfusion injury (IRI). Meanwhile, the
relevant research progress is mainly linked with the regulatory
roles of ferroptosis in kidney injury, renal fibrosis, inflammation,
and other mechanisms.

FERROPTOSIS AND OTHER TYPES OF CELL DEATH
As a recently discovered form of cell death, ferroptosis possesses
distinctive morphological and biochemical properties that distin-
guished it from apoptosis, autophagy, and necroptosis (Table 1).
Typical morphological changes of ferroptosis were revealed by
transmission electron microscope, which mainly showed shrunken
and damaged mitochondria with thickened membranes and a
reduction or loss of mitochondrial cristae [12]. The biochemical
characteristic of ferroptosis is intracellular iron accumulation and
excessive reactive oxygen species (ROS) burst, leading to lipid
peroxidation and mitochondrial dysfunction.
In addition, the crosstalk between ferroptosis and other forms

of cell death has been studied in recent years. A wave of noncell-
autonomous kidney tubular injury occurs during AKI, and
Belavgeni et al. suggested that necroptosis may initiate the
spread of cell death via ferroptosis [13]. Necroptosis to ferroptosis
may be achieved through phosphatidylethanolamine-binding
protein 1 and 15-lipoxygenase [14]. Based on the interconnected
relationship between necroptosis and ferroptosis, a combined
small molecule inhibitor Necrostatin-1f was created, which has a
strong inhibitory effect on necroptosis and a weak inhibitory
effect on ferroptosis [15]. There may also be a relationship
between pyroptosis and ferroptosis. Iron ions and ROS-induced
drugs induce pyroptosis through the ROS-Tom20-Caspase3-
GSDME signaling pathway [16]. There have been studies on the
simultaneous targeting of ferroptosis and pyroptosis for tumor
therapy [17], but there is a lack of more evidence on the crosstalk
between pyroptosis and ferroptosis in kidney disease models. We
look forward to related studies in the future to fill this gap.

KEY METABOLIC MECHANISMS OF FERROPTOSIS
The direct factor leading to ferroptosis is lipid peroxidation, which
is regulated by iron metabolism, system Xc-, antioxidant
molecules, and polyunsaturated fatty acids (PUFAs) generation
(Fig. 4). Herein, we systemically elaborate on the regulatory
mechanisms of ferroptosis in the following aspects.

Iron metabolism
Iron overload is a prerequisite for ferroptosis, and iron metabolism
is crucial in ferroptosis regulation. Iron is an essential element in
the human body and participates in many physiological activities
[18]. Iron homeostasis in cells is exquisitely regulated. Iron ions in
the food are absorbed by mesenteric cells in the form of Fe2+ and

Fig. 1 Evolution after kidney damage. Adverse stimuli such as infection, nephrotoxic drugs, and hypoperfusion induce a series of reactions,
including the immune system response and cell metabolic reprogramming in the kidney. Continuous and severe stimulation can lead to cell
death, organ failure, and end-stage renal disease (ESRD). Moreover, different responses to cell repair determine different prognoses. Some
cells are repaired, regenerated, and cured, while maladaptive cells undergo renal tubular atrophy, renal interstitial fibrosis, and
glomerulosclerosis through AKI to CKD and gradually enter the ESRD stage. EMT epithelial-mesenchymal transition, AKI acute kidney
injury, CKD chronic kidney disease, ESRD end-stage renal disease.
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then transformed into Fe3+ by ceruloplasmin. Fe3+ binds to
transferrin and is subsequently absorbed into renal cells via
transferrin receptor 1 [19]. In the endosome, Fe3+ is reduced to
Fe2+ by the six-transmembrane epithelial antigen of prostate 3,
which then transport to cytoplasm by divalent metal transporter 1
at the membrane [20]. Most excess iron is stored by ferritin in its
inactive form, and a small fraction of Fe2+ forms a labile iron pool
(LIP) [21]. Ferritin (Ft) is composed of FTH and FTL. The Fe2+-Ft
complex can be targeted by nuclear receptor coactivator 4 to
release iron by autolysosomal degradation, which triggers
ferritinophagy and ultimately increases cell susceptibility to
ferroptosis [22, 23]. Intracellular Fe2+ can react with hydrogen
peroxide and produce a large number of hydroxyl radicals with
strong oxidation by the Fenton reaction [24]. Under pathological

conditions, the accumulation of Fe2+ leads to excessive ROS
production and mediates ferroptosis [25].

Amino acid metabolism
The system Xc--GPX4 axis is the earliest and most important
regulator in suppressing ferroptosis and is crucial in antioxidant
system. System Xc-, also named cystine/glutamate antiporter, is a
transmembrane transport complex that is composed of a catalytic
subunit solute carrier family 7 member 11 (SLC7A11) and a
regulatory subunit solute carrier family 3 member 2 (SLC3A2)
[26, 27], which can transfer glutamate output to the cell and
cysteine to the cell in a ratio of 1:1 [27]. Cysteine is the rate-
limiting precursor for the biosynthesis of reduced glutathione
(GSH) [28]. GSH is composed of glutamate, cysteine, and glycine,

Fig. 2 Timeline of the development of key discoveries in ferroptosis regulatory mechanisms and inhibitors. This figure depicts a timeline
of significant discoveries in the regulation of ferroptosis and the creation of inhibitors for it. The timeline emphasizes crucial events, such as
the initial identification of ferroptosis in cells, in animal models, and in kidney disease. The purpose of this figure is to provide a
comprehensive summary of the advancements made in comprehending and treating ferroptosis from different perspectives.
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Fig. 3 Bibliometric analyses of ferroptosis in the kidney. Data were extracted from the Web of Science database, and bibliometric analysis
was performed using CiteSpace, a web-based Java application for data analysis and visualization. The keywords finally identified as follows:
1st: [TS= ferroptosis or TS= ferroptotic) and ((PY= (2012–2022)) AND DT= (Article OR Review)) AND LA= (English). 2nd: [TS= ferroptosis or
TS= ferroptotic) and (((((TS= (kidney)) OR TS= (renal)) OR TS= (nephr*)) OR TS= (Glomer*)) OR TS= (podocyte)) OR TS = (“Proximal
tubular”) and ((PY= (2012–2022)) AND DT = (Article OR Review)) AND LA= (English) (A) Number of publications per year; (B) Keywords co-
occurrence analysis; (C) Keywords cluster view.
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and it can remove membrane lipid peroxides under the synergistic
action of glutathione peroxidase 4 (GPX4) [29]. GPX4 catalysts the
reduction process and detoxifies lipid ROS production [30].
Phospholipid hydroperoxides (PLOOH) are an oxidative product
of PUFAs and an activator of the peroxidation chain reaction [31].
GPX4 has PLOOH-neutralizing enzyme activity and can reduce
PLOOHs to PLOHs with the assistance of GSH [31]. The antioxidant
effects of the system Xc--GPX4 axis are mainly manifested in
maintaining cell homeostasis, reducing oxidative stress, and
inhibiting ferroptosis. Erastin is a classical ferroptosis activator,
which can inhibit activity of system Xc- [10], thereby resulting in
GSH exhaust, lipid peroxide accumulation, and eventually causing
cell death. GPX4 is also a star molecule in ferroptosis regulation
that can effectively inhibit the occurrence of ferroptosis and has
been considered a promising therapeutic target in many diseases
[29]. RSL3 is another ferroptosis activator, which can bind to and
inactivate GPX4 [30]. Knockout of GPX4 in mice induces AKI [32].
Several recent studies have proven that p53 regulates ferroptosis
through system Xc- and GPX4 [33].
In addition to being regulated by the system Xc-, GSH is also

regulated by dipeptidase-1(DPEP-1). DPEP-1 is prominently
expressed on proximal tubular epithelial cell (PTEC) and
peritubular capillaries of the kidney, where it functions as a
significant adhesion receptor for neutrophils. Previous studies
have found that DPEP-1 can assist in the renal tubular
reabsorption of contrast agents that exacerbate cisplatin-
induced AKI, and regulate the adhesion of neutrophils and
monocytes to peritubular capillaries during kidney IRI, thus
playing an important role in the inflammatory response of IRI-
AKI [34, 35]. In addition, DPEP-1 can degrade GSH and participates
in the regulation of oxidative stress [36]. Interestingly, in 2022,
von Mässenhausen et al. found that dexamethasone decreased
GSH expression by upregulating DPEP-1, thereby increasing the
sensitivity of PTEC to ferroptosis [37]. However, the current
evidence supports the regulatory effect of DPEP-1 on ferroptosis
is far less than that of system Xc-, and DPEP-1 inhibitors or
knockout of DPEP-1 cannot reverse the erastin-induced ferrop-
tosis. Whether the overexpression of DPEP-1 can induce
ferroptosis or not, and the comparison of DPEP-1 with other
ferroptotic triggers needs to be further studied.
In addition to the system Xc-/GPX4 antioxidant axis, recent

studies have found that GPX4-independent systems, such as the
ferroptosis suppressor protein 1 (FSP1)/coenzyme Q10 (CoQ10) axis
and the dihydroorotate dehydrogenase (DHODH)/CoQ10 axis [38].
The FSP1/CoQ10 axis was discovered in 2019 [39, 40]. Accumulat-
ing evidence suggests that FSP1 is likely to be the second pillar of
ferroptosis regulation after GPX4. The antioxidant effect of FSP1 is
achieved by reducing CoQ10 to CoQ10H2, which produces
lipophilic free radicals that capture antioxidants and decrease
lipid peroxide accumulation in tissue. In recent years, it has
demonstrated that FSP1 can catalyze the reduction of vitamin K to
produce VKH2 to capture free radicals and prevent lipid
peroxidation and ferroptosis [41]. DHODH, a mitochondrial inner
membrane enzyme that catalyzes the synthesis of de novo
pyrimidine ribonucleotides, was recently found to act as an
antioxidant and target ferroptosis by reducing CoQ10 in a manner
independent of mitochondrial GPX4 [42].

Lipid metabolism
The lethal accumulation of lipid ROS is a vital link in ferroptosis.
There are many different classes of lipids in cells, including fatty
acids, phospholipids, and cholesterol, among which PUFAs are
more sensitive to lipid peroxidation [43]. PUFAs on the lipid
membrane react with ROS and are then oxidized, driving the
occurrence of ferroptosis [44]. Studies have shown that phospha-
tidylethanolamine (PE), a PUFA-related phospholipid that contains
arachidonic acid (AA) or its derivative adrenaline, is the essential
phospholipid that induces cell ferroptosis [45].Ta
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Acyl-CoA synthetase long-chain family member 4 (ACSL4) and
lysophosphatidylcholine acyltransferase 3 (LPCAT3) play essential
roles in the PUFAs metabolism regulation. Free PUFAs must be
esterified to membrane phospholipids and oxidized to transmit
ferroptosis signals, and ACSL4 and LPCAT3 can regulate the
conversion of free PUFAs to membrane phospholipids [46].
Knockdown or inhibition of ACSL4 can alleviate ferroptosis-
induced tissue injury after IRI by reducing lipid peroxidation [47].
Lipoxygenases (LOXs) are a class of dioxygenases that can

directly oxidize PUFAs and PUFA-containing lipids in biofilms [43]
and are also promising regulators of ferroptosis. Ferroptosis was
inhibited by LOX inhibitors or siRNA-mediated silencing of
ALOX15, suggesting a link between LOXs and ferroptosis [48].
However, the ALOX15 knockout in GPX4 conditional knockout
mice did not prevent ferroptosis [32]. Therefore, the precise role of
LOXs in ferroptosis remains unknown and requires further study.

THE ROLE OF FERROPTOSIS IN THE PATHOGENESIS OF AKI TO
CKD PROGRESSION
Cellular noxious stimulation triggers harmful molecule release,
mitochondrial damage, immunocyte and fibroblast activation. The
body activates protective mechanisms, promoting cellular repair
and regeneration.The process from AKI to CKD is essentially a

process of cellular maladaptation [49]. Once the disease enters the
chronic phase, restoring damaged tissues to normal is difficult,
which is associated with organ dysfunction, high morbidity and
high mortality. A potential strategy to overcome this challenge is
targeting common mechanisms and core pathways with central
pathophysiological relevance in different pathological alterations
in AKI to CKD [50]. Ferroptosis plays a vital role in regulating
various cellular processes, such as inflammation [51], mitochon-
drial dysfunction [52], fibrosis [53], and renal cell regeneration [54],
and has been considered a promising therapeutic target in the
progression of AKI to CKD.

Inflammation
Inflammation is a complex biological response of the body to
pathogens or tissue damage. The pattern recognition receptors
(PRRs) of immune systemcan recognize pathogen-associated
molecular patterns (PAMPs) to defend against infection and tissue
damage [55]. In addition, the immune system can respond to
intracellular damage by sensing endogenous stimuli called
danger-associated molecular patterns (DAMPs) [56]. After AKI,
the inflammatory cascade occurs in the acute phase; however,
persistent chronic inflammation stimulation promotes AKI to CKD
[57]. This section discusses the crosstalk between inflammation
and ferroptosis in AKI to CKD (Fig. 5).

Fig. 4 Schematic diagram of the primary regulatory mechanisms associated with ferroptosis. Lipid peroxidation is necessary for ferroptosis
in individual cells, in which iron-induced ROS burst and the decrease of antioxidation are required. Several molecular mechanisms were
reported to regulate the occurrence of ferroptosis, such as the system Xc-/GPX4 antioxidant axis, iron regulons NCOA4 and DMT1.
Furthermore, ACSL4, LPCAT3, and ALOXs induced ferroptosis by influencing the levels of cellular lipid peroxides. ROS reactive oxygen species,
Cys2 cystine, Cys cysteine, Glu glutamate, GSH glutathione, Gln glutamine, TCA cycle tricarboxylic acid cycle, DHODH dihydroorotate
dehydrogenase, CoQ coenzyme Q, GPX4 glutathione peroxidase 4, PUFAs polyunsaturated fatty acids, ACSL4 acyl-CoA synthetase long-chain
family member 4, LPCAT3 lysophosphatidylcholine acyltransferase 3, FSP1, ferroptosis suppressor protein 1, ALOX arachidonate 5-
lipoxygenase, TF transferrin, TFR1 transferrin receptor 1, DMT1 divalent metal transporter 1, Ft ferritin, FTH1 ferritin heavy chain, FTL ferritin
light chain, NCOA4 nuclear receptor coactivator 4, Fer-1 ferrostatin-1, FPN ferroportin, LIP labile iron pool, SLC7A11 solute carrier family 7
member 11, SLC3A2 solute carrier family 3 member 2, STEAP3 six-transmembrane epithelial antigen of the prostate 3.
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Ferroptosis can be exacerbated by inflammation. Although AKI is
caused by numerous pathogenic factors, cell damage can induce
inflammatory cascades that lead to cell death. In the initial stage
of injury, some DAMPs (e.g., heat shock proteins and histones) are
released to the outside of the cell, which causes tissue-resident
cells such as dendritic cells and fibroblasts to secrete proin-
flammatory cytokines and chemokines by activating PRRs, thus
causing cell death [58]. Therefore, ferroptosis is closely associated
with the inflammatory state, which may be related to metabolic
disorders of iron, lipid and energy in the organism during severe
infection [59]. Increased levels of LIP caused by increased iron
transport and decreased iron export during sepsis can lead to
ferroptosis [60]. Moreover, the inflammatory state is related to the
production of high-energy metabolites such as lactate and free
fatty acids, which may also be a key factor for the vulnerability of
the kidney to ferroptosis in the inflammatory state [61]. Recent
studies showed that the inflammatory state of PTEC after injury
could aggravate ferroptosis and damage cells by downregulating
glutathione metabolism genes [62].

Ferroptosis promotes an inflammatory response. Ferroptosis is
highly immunogenic and can induce the release of inflammatory
mediators and DAMPs [63]. The recognition of immune system to
DAMPs leads to a persistent immune response and inflammatory
state, thereby inducing the progress of the disease. High-mobility
group box 1 (HMGB1) is a released DAMP in ferroptosis that
mediates the inflammatory response activation, but it can be
blocked by ferroptosis inhibitors [64]. However, how DAMPs are
released during ferroptosis is unclear. ACSL4-dependent lipid
biosynthesis is essential in ferroptosis, and its expression positively
correlates with ferroptosis process [65]. Meanwhile ACSL4 is also
involved in inflammation, and its expression positively correlates
with the abundance of immunocytes, such as macrophages,
dendritic cells, neutrophils [66]. The transcription factor nuclear
factor-κB (NF-κB) can be activated by the proinflammatory
cytokine tumor necrosis factor α (TNF-α) and plays a crucial role
in immunomodulation [67]. High intracellular ROS levels are

involved in lipid peroxidation during ferroptosis and can activate
the NF-κB signaling pathway [68, 69]. In mammals, GPX4 can
prevent TNF-α-mediated NF-κB signaling pathway activation and
attenuate necrotizing inflammation [70]. PUFAs and their meta-
bolic enzymes are crucial in ferroptosis as substrates of lipid
peroxidation. Arachidonic acid induces the inflammatory cascade
as a prerequisite for proinflammatory mediators when cells are
exposed to stimuli, which proves that PUFAs also play an essential
role in inflammation [71–73].
In summary, when renal tissues or cells are subjected to harmful

stimuli, many endogenous DAMPs and proinflammatory media-
tors are released, stimulating immunocytes to trigger inflamma-
tory cascades [74–76]. Activated immunocytes release cytokines
such as IL-6 and TNF-α, thus promoting the migration of antigen-
presenting cells (APCs). Continuous high levels of inflammatory
infiltration will accelerate cell death and organ damage [77, 78].
The dead cells release DAMPs to further aggravate the progress of
tissue damage. However, a comprehensive map of the DAMPs
released during ferroptosis has yet to be compiled.
Moreover, the precise processes through which ferroptosis

regulates necrotizing inflammation remain unknown. Does the
ferroptosis inhibitor alleviate inflammation by reducing ferroptosis,
or can it directly act on inflammatory signaling pathways? This
question is still unknown. Therefore, the crosstalk between
ferroptosis and necrotizing inflammation needs further exploration.

Mitochondrial dysfunction
Under physiological conditions, fatty acid metabolism and ATP
production in mitochondria are essential for maintaining normal
kidney function. However, mitochondrial dysfunction after kidney
injury aggravates pathological changes [79]. Currently, mitochon-
drial dysfunction is considered to be an essential factor in the
progression of AKI to CKD. Mitochondrial damage occurs in the
early stage of AKI which leads to ATP deficiency, excessive ROS
production, and loss of renal function [80].
Mitochondria play a central role in ferroptosis [81]. Mitochon-

drial morphological changes are the distinctive morphological

Fig. 5 The crosstalk between inflammation and ferroptosis. As a major representative cell of the inflammatory response, macrophages are
activated in response to PAMPs and DAMPs after intense noxious stimulation. The inflammatory state may have led to an energy disorder,
increased the level of LIP, and attenuated the beneficial effect of antioxidants, which further triggered ferroptosis. Cell death leads to the
release of DAMPs which stimulate inflammation. Thus a positive feedback loop forms and ultimately leads to organ injury.
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hallmarks of ferroptosis, and mitochondria are engaged in crucial
processes such as lipid and energy metabolism [52, 82]. Mitochon-
dria can utilize iron to synthesize iron-sulfur clusters or heme
prosthetic groups and then regulate their distribution and
utilization in cells, which play a central role in iron homeostasis
[83, 84]. Excessive iron leads to oxidative stress and mitochondrial
dynamics disorder, mainly manifested as increased ROS production,
decreased ATP produce, and increased glycolysis to replenish the
reduced ATP, all of which promote ferroptosis [52, 85]. The disorder
of fatty acid metabolism in mitochondria will lead to lipotoxicity
and cell stress after AKI, which is prone to progress to CKD [86].
Furthermore, necrotic cells release mitochondria that can act as
DAMPs to affect neighboring cells [87], which has been implicated
in the inflammatory response in kidney injury. The most significant
morphological changes in ferroptotic cells under electron micro-
scopy were morphological changes in mitochondria [12, 88].
Mitochondrial ferritin (FtMt) is an iron storage protein in

mitochondria. Overexpression of FtMt can inhibit erastin-
induced ferroptosis by increasing iron storage and reducing LIP
[89, 90]. Improving mitochondrial homeostasis and restoring FAO
can reduce renal injury after IRI [91]. Additionally, there exists a set
of antioxidant systems in mitochondria independent of the
cytoplasm antioxidant systems. DHODH and mitochondrial GPX4
are the two central defense systems for mitochondrial lipid
peroxide elimination [42]. Loss of one system forces the cell to
become more dependent on the other, while loss of both
protective systems induces ferroptosis, mainly induced by
mitochondrial lipid peroxidation.
Therefore, mitochondrial dysfunction leads to a weakened role

in defending against iron death, increased LIP levels and induced
mitochondrial lipid peroxidation. This suggests mitochondria may
be a promising therapeutic target for reducing ferroptosis and
improving patient outcomes.

Fibrosis
Renal tubulointerstitial fibrosis is a feature of incomplete epithelial
repair and a significant factor in AKI and CKD. Fibrosis is an
overaccumulation of the extracellular matrix, which can respond
to chronic injuries in various organs, such as the liver, kidney, and
heart, and is associated with poor response to treatment [92].
Thus, there is an urgent need to understand the mechanisms of
fibrosis and develop new therapeutic strategies. Recent in-depth
studies on ferroptosis have revealed a growing body of evidence
that highlights the crucial role of ferroptosis in the pathophysio-
logical process of fibrosis [93].
Ferroptosis and fibrosis share common metabolic pathways. In

the process of fibrosis, there is metabolic reprogramming of
fibroblasts caused by increased glycolysis, excessive breakdown of
glutamine, and enhanced fatty acid oxidation (FAO) [94], which is
also related to ferroptosis. During amino acid starvation, the increase
in the glutamine-based tricarboxylic acid (TCA) cycle triggers
ferroptosis [95]. Similarly, AKI leads to increased glycolysis and
FAO, which are also associated with ferroptosis [85]. Ferroptosis and
fibrosis have the same pathological mechanisms [96]. A decrease in
FTH can be observed in epithelial-mesenchymal transition (EMT),
which is an essential link in interstitial fibrosis. Then, ferritin releases
free iron ions, and the increase in LIP is closely related to the rise in
ROS levels and the occurrence of ferroptosis [97]. Elevated levels of
LIP and ROS not only arise from fibrosis, but also play a role as
mediators in regulating fibrosis occurrence. When exogenous
supplementation of FTH was reduced during EMT, the degree of
fibrosis was reduced [97]. ROS production due to the profibrotic
cytokine transforming growth factor beta (TGF-β) leads to redox
imbalance and mediates the fibrotic effects of TGF-β [98, 99].
This common pathological mechanism is well-represented in

kidney diseases. In a folic acid-induced animal model of AKI,
ferroptosis has been implicated in the development of renal
fibrosis [100, 101]. Moreover, recent studies have shown that

ferroptosis activation can promote fibrosis, and ferroptosis is also
accompanied with the fibrotic process, thus forming a vicious
cycle [102]. During ferroptosis, human kidney-2 (HK-2) cells secrete
various profibrotic factors. When HK-2 cells were cultured with
ferroptosis activator RSL3 and subsequently co-incubated with
renal fibroblasts, the fibroblasts could be activated and prolifer-
ated, whereas ferroptosis inhibitor liproxstatin-1 attenuated the
profibrotic effects [103]. The same results were observed in mice
with IRI [104].
Current research proves that ferroptosis is closely linked to renal

fibrosis with shared metabolic pathways and pathological mechan-
isms. Ferroptosis inhibitors can prevent or delay renal fibrosis and
mediate interstitial fibroblasts’ fibrotic response. Ferroptosis can
occur and mediate further aggravation of fibrosis during the
progression of the renal fibrosis model. Therefore, during the
progression from AKI to CKD, the risk factors causing AKI sequentially
activate the ferroptosis and fibrosis pathways, and their interaction
further aggravates kidney injury. Early prevention of ferroptosis can
reduce renal maladaptation and delay/rescue fibrosis.

Renal tubular epithelial cell regeneration
The proximal tubule, a potential determinant of the risk and
outcomes of kidney diseases [105], is a primary site for both
ferroptosis and AKI. The proximal tubule is responsible for the vital
function of material transport and the reabsorption [106, 107].
Therefore, PTEC have the highest energy demand and mainly
relies on fatty acids as an energy source. PTEC do not undergo
glycolysis under physiological conditions; however, kidney injury
can lead to metabolic disorders, and glycolysis is increased shortly
after injury to compensate for energy loss [108]. The timely supply
of energy can protect the kidney to some extent, but the long-
term effect is not optimistic. Glycolysis in PTEC can inhibit the
proliferation and differentiation of podocytes and aggravate renal
interstitial fibrosis [109].
Moreover, the proximal tubules are rich in mitochondria, which

are required for the oxidation of fatty acids to produce ATP. Renal
tubules are damaged during AKI, leading to mitochondrial
dysfunction and high levels of mitochondrial reactive oxygen
species (mtROS), which contribute to ferroptosis [110, 111].
Moreover, PTEC injury is related to their dedifferentiation and cell
cycle arrest, causing interstitial fibrosis and glomerular lesions.
The intrinsic repair ability of the proximal tubule after noxious

stimulation makes it less damaged. After damage, PTEC dediffer-
entiate and proliferate to restore the nephron [112]. A clinical
study showed that approximately 12.6% of patients with severe
AKI recovered normal renal function after renal replacement
therapy [113]. However, it is not clear what determines the
outcome in different patients. Previous studies have confirmed
that ferroptosis activation impairs skeletal muscle regeneration
[114], affects bone remodeling in osteoporosis [115] and prevents
wound healing in diabetic ulcers [116, 117]. GPX4 is involved in
wound repair of the corneal epithelium [118]. Ferroptosis
inhibitors can repair spinal cord and facial nerve injury and
promote wound healing in diabetic patients [119–121].
However, studies on the role of ferroptosis in renal repair in AKI

and CKD are still rare. Recent genetic and single-cell transcriptome
analysis in mice revealed that ferroptosis determined cell plasticity
and that the Nuclear factor erythroid 2-related factor 2 (Nrf2)-
mediated antioxidant system protected against renal repair failure
following AKI by controlling ferroptosis [122]. This study suggests
that targeting ferroptosis may be the key to explaining the poor
prognosis of AKI patients, but further studies are still needed.

THE POTENTIAL OF FERROPTOSIS-RELATED DRUGS IN THE
TREATMENT OF AKI TO CKD
As mentioned above, many small molecular compounds are
known to act on ferroptosis-related molecules and thus exert
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nephroprotective effects. In 2014, Skouta et al. first verified the
role of ferrostatin-1 in inhibiting ferroptosis in rhabdomyolysis-
induced AKI model [123]. In addition, new ferroptosis inhibitor
UAMC-3203 has been verified to possess better therapeutic
potential than ferrostatin-1, but it has not been evaluated in AKI
and CKD models [124]. In this section, we will summarize and
elaborate on the current research progress of ferroptosis-related
drugs in treating AKI to CKD (Table 2).
Inhibition of ferroptosis alleviates the inflammationafter renal

tissue injury, and this improvement may be attributed to the
decreased release of DAMPs. In conclusion, animals with AKI
produced by ischemia‒reperfusion or oxalate crystals exhibit
decreased leukocyte migration when treated with ferroptosis
inhibitor ferrostatin 16-86 [125]. Furthermore, inhibiting PTEC
ferroptosis reduced monocyte chemoattractant protein-1 (MCP-1)
secretion and macrophage chemotaxis [104].
Some ferroptosis inhibitors also ameliorate fibrosis. Both

ferroptosis and fibrosis were ameliorated after administration of
ferroptosis inhibitor liproxstatin-1 in radiation-induced lung
fibrosis [126] in an IRI model [104] and a unilateral ureteral
obstruction (UUO) model [103]. In addition to ferroptosis
inhibitors, other drugs can exert both antiferroptotic and anti-
fibrotic effects. Nrf2 is a transcription factor that regulates the
activity of many genes involved in iron metabolism [127]. FG-4592
plays a protective role in folic acid-induced renal injury and delays
the progression of renal fibrosis by activating Nrf2 to inhibtit
ferroptosis [101]. Tocilizumab and small-molecule drugs from
traditional Chinese medicine ingredients such as nobiletin and
tectorigenin have all been shown to inhibit fibrosis and ferroptosis
progression [128–130].
Considering safety and other concerns, research on these

medications is currently limited to the experimental stage, and
their clinical application is still restricted. Targeting the site of
injury without disrupting normal metabolic pathways remains a
challenge. Nonetheless, understanding ferroptosis and AKI in CKD
is benefit in exploring new therapeutic approaches.

OUTLOOK
In this review, we have explored the fundamentals of ferroptosis
and how it governs interstitial fibrosis, mitochondrial dysfunction,
inflammatory responses, tubular cell regeneration, and other
cellular processes in the progression of AKI to CKD. Finally, we
briefly describe the crosstalk between these mechanisms. We

concluded that ferroptosis might be a driver in converting renal
maladaptation to CKD and was a promising therapeutic target to
halt disease progression.
Still and all, several questions need to be addressed in the

future. The efficacy of ferroptosis inhibitors is yet to be blank in
clinical settings. Although compounds like ferrostatin-1 and
liproxstatin-1 have shown positive results in animal models,
further studies are necessary to ensure their safety and feasibility
for human use. It’s regrettable that research on some clinically
used drugs is still confined to animal models, althought their
characteristics well documented. For example, recent studies
showed that paricalcitol inhibits cisplatin-induced AKI by
activating the vitamin D receptor to regulate the antioxidant
effect of GPX4 [131]. Iron chelators deferoxamine could alleviate
ferroptosis and fibrosis in CKD rats [132]. Antioxidants, like
vitamin E and melatonin, face similar challenges. Notably, there
are currently no particular markers to identify ferroptosis in vivo,
and numerous other kinds of cell death are implicated in the
pathophysiology of kidney injury. Therefore, direct evidence of
ferroptosis attenuation in vivo after drug treatment is still
lacking, and more in-depth studies are needed [133]. The
mechanisms involved in ferroptosis also need to be further
explored. In addition to ferroptosis occurring in the tubules
themselves, it has been shown that glomerular injury in patients
with lupus nephritis triggers ferroptosis in tubules [134], there-
fore we hypothesized that the interaction between glomeruli
and renal tubules plays an important role in the progression
from AKI to CKD, and we await further studies on this topic with
much anticipation.
Despite the concerns, we strongly believe that investigating the

role of ferroptosis in kidney injury is vital and worthwhile. We
anticipate that large-scale studies in this field will help us to
comprehend the pathogenesis and heterogeneity of AKI to CKD
and provide the groundwork for preventing disease progression
and identifying viable treatment targets.
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