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Metabolic modelling-based in silico drug target prediction
identifies six novel repurposable drugs for melanoma
Tamara Bintener1,7, Maria Pires Pacheco 1,7, Demetra Philippidou1, Christiane Margue1, Ali Kishk1, Greta Del Mistro2,3, Luca Di Leo 4,
Maria Moscardó Garcia1, Rashi Halder 5, Lasse Sinkkonen 1, Daniela De Zio 4,6, Stephanie Kreis1, Dagmar Kulms 2,3 and
Thomas Sauter 1✉

© The Author(s) 2023

Despite high initial response rates to targeted kinase inhibitors, the majority of patients suffering from metastatic melanoma
present with high relapse rates, demanding for alternative therapeutic options. We have previously developed a drug repurposing
workflow to identify metabolic drug targets that, if depleted, inhibit the growth of cancer cells without harming healthy tissues. In
the current study, we have applied a refined version of the workflow to specifically predict both, common essential genes across
various cancer types, and melanoma-specific essential genes that could potentially be used as drug targets for melanoma
treatment. The in silico single gene deletion step was adapted to simulate the knock-out of all targets of a drug on an objective
function such as growth or energy balance. Based on publicly available, and in-house, large-scale transcriptomic data metabolic
models for melanoma were reconstructed enabling the prediction of 28 candidate drugs and estimating their respective efficacy.
Twelve highly efficacious drugs with low half-maximal inhibitory concentration values for the treatment of other cancers, which are
not yet approved for melanoma treatment, were used for in vitro validation using melanoma cell lines. Combination of the top 4
out of 6 promising candidate drugs with BRAF or MEK inhibitors, partially showed synergistic growth inhibition compared to
individual BRAF/MEK inhibition. Hence, the repurposing of drugs may enable an increase in therapeutic options e.g., for non-
responders or upon acquired resistance to conventional melanoma treatments.
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INTRODUCTION
Deregulation of two major signalling pathways, the RAS-RAF-MEK-
ERK and PI3K-AKT-PTEN, are key drivers of melanoma develop-
ment and progression [1], with ~50% and ~25% of patients
expressing constitutively active mutants of MAP-kinases BRAF and
NRAS, respectively [2]. Combined targeted inhibition of mutated
BRAF and downstream MEK kinases, or alternatively immune
checkpoint inhibition, currently provide good therapeutic options
for the systemic treatment of melanoma, offering a long-term
survival to ~30% of the patients. Unfortunately, relapse rates to
targeted kinase inhibition are high, still causing the death of ~70%
of melanoma patients suffering from an advanced melanoma
stage due to enhanced re-growth of treatment-resistant metas-
tases [3]. To date, intervention strategies are based on the
individual mutation status of the BRAF and NRAS oncogenes.
However, other pathophysiological modifications within mela-
noma cells may contribute to therapy resistance [4, 5], demanding
for large-scale computational models to simulate the complex
physiology of a tumour in an integrated manner and comprehen-
sively foster the identification of alternative therapeutic vulner-
abilities applying high throughput in silico approaches [6, 7].

In melanoma, the oncogenic mutation of BRAF promotes
metabolic reprogramming [8, 9], thereby often favouring glyco-
lysis for energy production. Moreover, BRAF inhibition (BRAFi)-
resistant melanoma cells were shown to present with deregulation
of the fatty acid synthase (FASN) [10], which was proposed as a
metabolic target for melanoma, prostate, and breast cancer
treatment [11]. Accordingly, statins have been investigated as
alternative treatment options for melanoma [12, 13], and other
cancer types [14, 15]. These drugs act by limiting the availability of
lipids and consequently reducing proliferation [12, 13]. In this
context, lovastatin, a β-Hydroxy β-methylglutaryl-coenzyme A
reductase (HMGCR) inhibitor, was shown to induce apoptosis in
several BRAF-mutated and metastases-derived melanoma cell
lines [16]. Furthermore, slow-cycling tumour cells are addicted to
glutamine-fuelled oxidative phosphorylation (OXPHOS) and rely
on lipidome adaptations, particularly fatty acid oxidation path-
ways [17] for cell migration and invasion [18].
To describe and analyse metabolism in general and metabolic

alterations specifically at a genome-scale level, metabolic network
modelling using constraint-based approaches has been success-
fully applied for various cancer [19, 20] and many other diseases,
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e.g. COVID-19 [21]. The respective mathematical models can be
utilised for identifying sensitive network targets as well as drug
candidates for repurposing [19]. Thereby, metabolic modelling
allows predicting cancer-specific targets required to sustain higher
proliferation rates as well as pronounced systemic migration.
Drugs shutting down these metabolic targets alone or in
combination with currently applied therapeutics, have the
potential to deprive fast-cycling cells of nucleotides and lipids
required to gain increase in tumour mass [19]. Hence, drugs
affecting nitric oxide homeostasis and production (NO-based
drugs), that showed promising results for metastatic melanoma
patients, might extend the panel of treatment options for non-
responders to current therapies and relapse cases [22].
To capture cancer-specific metabolic alterations on a genome

scale, and to examine how these alterations could be exploited to
derive novel melanoma treatment regimens, we have recon-
structed over 10,000 metabolic models, and computationally
identified 54 putative gene targets and 12 drug candidates for
melanoma treatment. We compared our candidate drugs to
known anti-melanoma and NO-based drugs using publicly
available drugs screens and high-throughput CRISPR data and
experimentally validated six of these candidates in BRAF and NRAS
mutated cell lines in mono and combination treatment with BRAF/
MEK inhibitors.

MATERIAL AND METHODS
Cell culture (IN-HOUSE dataset and validation)
See Supplementary Methods (Supplementary File 1).

Data
For the present study, publicly available RNA-seq data from The Cancer
Genome Atlas programme (TCGA patient data (GEO: GSE62944) [23], and
the Cancer Cell Line Encyclopaedia (CCLE)) were combined with IN-HOUSE
generated RNAseq data according to Table 1 and Supplementary File 1.

Models
The metabolic models were reconstructed with a member of the
FASTCORE family [24, 25]: the rFASTCORMICS workflow [19] (https://
github.com/sysbiolux/rFASTCORMICS) (Fig. 1 and Table 1) using Recon 2.04
as input reconstruction, RPMI composition as medium constraint and the
biomass function and ATP maintenance as objective functions. Recon 2.04
was chosen as it outperformed Recon3D [26] for essential genes prediction
in previous studies [27].
Two types of models were built: (1) sample-specific models, where

each RNA-seq sample was used individually to reconstruct a model
representing the metabolism of the given sample. (2) (a) A consensus
model of samples originating from the same condition. Samples from one
condition were pooled together and only reactions being active in 90%
of the samples were considered for reconstruction. (b) A consensus
model of cell lines, in which replicates were pooled to obtain a cell line
model. See Table 1 for the numbers on sample-specific and consensus
models. As the raw data from the TCGA and CCLE were not easily
accessible, the analyses were performed on the processed data for these
datasets. Consequently, due to batch effects, the three datasets were
considered independently.
Consensus models per cancer type were built to predict essential genes

that could potentially serve as drug targets. Sample-specific models were
used as quality control (Supplementary Figs. 1 and 2), to assess the drug
efficacy and predict the population of patients responding to a given drug.
More specifically, RNA-seq data from skin cancer patient samples (Skin
Cutaneous Melanoma, SKCM) of TCGA and melanoma cell lines from CCLE
were employed to reconstruct metabolic models and identify melanoma-
specific essential genes arising from metabolic rewiring. Furthermore, data
of melanoma metastasis (IN-HOUSE), melanocytes (IN-HOUSE-CONTROL),
and different drug-sensitive and resistant melanoma cell lines, were used
to assess the effect of the predicted essential genes in advanced stages of
melanoma.
Patients’ data derived from other cancer types within TCGA database

were included to distinguish between genes commonly dysregulated in
cancer, and melanoma-specific essential genes. Finally, models of
healthy control including liver (TCGA-CONTROL-LIVER) and
kidney (TCGA-CONTROL-KIDNEY) samples were built to assess the
potential negative impact of the respective drug on essential healthy
tissues (Fig. 1).

Table 1. Overview of the data sets, their characteristics, and the respective number of models which were built.

Dataset Type Number
of
samples

Number
of
replicates

Description Number of models
(consensus/
sample-specific)

Data Models

Cancer

TCGA 23 Cancer types
patients

8792 mostly 1 RNA-seq data of tumour samples from various cancer types of
TCGA consortium reprocessed by ref. [33]

23/8792

SKCM Melanoma
patients

472 1 RNA-seq data of SKCM tumour samples of TCGA consortium
reprocessed by [33] from different stages

1/472

IN-HOUSE Melanoma
cell lines

9 cell
lines (28
samples)

3–4 RNA-seq data of the A375, A375IZI, MALME 3M, WM1346,
WM1366, MeWo and SK-Mel5 melnaoma cell lines, and TUMEL
patient-derived melanoma isolates

9/28

CCLE Melanoma
cell lines

49 1 RNA-seq data from 49 cell lines of CCLE collection −/49

Control

TCGA-
CONTROL

Healthy control
tissues for 19
cancer types
patients

740 1 RNA-seq data from the TCGA consortium of samples taken from 19
normal tissues near the tumour

19/740

TCGA-
CONTROL-
LIVER

Liver control
patients

50 1 RNA-seq data from the TCGA consortium of liver samples near a
LIHC tumour

1/50

TCGA-
CONTROL-
KIDNEY

Kidney control
patients

129 1 RNA-seq data from the TCGA consortium of kidney samples KIRC,
KIRP, KICH tumours

3/129

IN-
HOUSE-
CONTROL

Melanocytes 1 cell
line (3
samples)

3 RNA-seq data from melanocytes 1/3

See “Material and methods” section for more details on the used cell lines and growth conditions.
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Gene essential analysis and in silico drug prediction
In silico essential drug prediction was performed on all models using a
modified version of the singleGeneDeletion function from the COBRA
toolbox [28] and the biomass and ATP production as an objective function
for cancer and control models, respectively. For the consensus model, a
gene was considered essential if the growth ratio between the wild type
and the knock-out was below 50% for the cancer and at least 90% for the
healthy models.
For the sample-specific models, the same growth ratios needed to be

observed in at least 50% of the cancer and 10% of the healthy models to
consider a gene to be essential.
In parallel, the effect of the drugs were simulated using an adapted

version of the singleGeneDeletion of the COBRA toolbox [28] (Drug
Deletion function): Therefore, DrugBank v5.1.3 [29] was mined to identify
1175 drugs inhibiting metabolic genes (genes present in Recon 2.04) and
their targets that were then used as input for the Drug Deletion function.

The targets were mapped to the model genes and based on the gene-
protein-reaction (GPR) rules, the associated reactions were inactivated by
setting their bounds to 0. The thresholds from the essential gene analysis
were used to find drugs with an effect on the cancer biomass but not on
healthy ATP models.
For the sample-specific models per dataset, a drug essentiality score was

calculated for each drug by determining the number of samples in which
the drug reduced the biomass or the ATP production below the desired
threshold for cancer and healthy models, respectively. A drug essentiality
score of 1 signifies that the drug shuts down essential genes in 100% of
the samples. Enrichment scores for cancer drugs were calculated (as
described in ref. [19]).

Drug prioritisation
See Supplementary Methods (Supplementary File 1).

Fig. 1 In silico knock-outs across various melanoma datasets allow pinpointing common metabolic targets. Melanoma cell line gene
expression data from CCLE, and melanoma patient gene expression data from the TCGA (SKCM) and an in-house dataset (IN-HOUSE)
composed of melanocytes, melanoma metastatic patient samples, resistant and sensitive melanoma cell lines were used to reconstruct
melanoma cell line and patient sample and consensus models. Single in silico knock-outs and drug deletion were performed to identify
cancer-common essential genes, and candidate drugs that are common between patient- and cell line-derived data. The predicted essential
genes were validated against existing knowledge and publicly available CRISPR high-throughput screens and the most promising drug
candidates were validated in vitro.
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Experimental validation
Dose response curves and determination of IC50 values were assessed for
the 12 candidate drugs using 3-fold dilution series (see Supplementary
Methods (Supplementary File 1) for more details). Additionally, four drugs
(cladribine, gemcitabine, lovastatin and fluvastatin) were combined with
1 µM palbociclib for their IC50 determination. Cell viability was assessed
with the PrestoBlue Cell Viability Reagent (ThermoFisher Scientific) on a
Cytation 5 (Biotek). Determination of IC50 was performed as described
before [30].
Synergy tests with SynergyFinder: melanoma cells were treated with a

combination of BRAF, MEK- and CDK- inhibitors at 8 concentrations (in a
1:2 or 1:1.5 dilution range) based on their respective IC50 values. Synergy
scoring was performed as published before [30]. Zero Interaction Potency
(ZIP) scores <−10 and >10 correspond to an antagonist and synergetic
effect, respectively. For details on cell viability, proliferation, Propidium
Iodide (PI) dead cell staining and caspase 3/7 Ac-DEVD-AFC apoptosis
assays, see Supplementary Methods (Supplementary File 1).

RESULTS
Cancer cells, including melanoma, depend on de novo
metabolic synthesis pathways to sustain high proliferation
levels
Consensus metabolic networks were reconstructed at the
genome-scale for the TCGA, SKCM and IN-HOUSE datasets to
capture metabolic alterations in cancer in general and in
melanoma specifically. The median number of reactions in the
respective models were 1780, 1773 and 1686, respectively.

Applying in silico essentiality analysis, 39 genes were predicted
to reduce the biomass production by at least 50% in the TCGA,
44 in SKCM and 40 in IN-HOUSE models, with 35 essential genes
being shared between all three datasets (Fig. 2A). This suggests
the existence of common essential genes across all cancer types
being indicative of commonly implemented metabolic rewiring
strategies. In all, 13 out of the 35 predicted common essential
genes were shown to be involved in the cholesterol biosynth-
esis pathway, 1 in cardiolipin synthesis, 2 in glyceropho-
spholipids, 5 in sphingolipid metabolism, 6 in de novo
synthesis of nucleotides (CMPK1, TXNRD1, CAD, DHODH, UMPS,
GUK1), and 5 genes in de novo synthesis of fatty acids (ACACA,
LCAT, LIPA, FASN HSD17B4), respectively (Supplementary Table
2). Noteworthy, fotemustine that is approved in some countries
against melanoma brain metastasis, inhibits Thioredoxin
Reductase 1 (TXNRD1) [31]. The three remaining genes
represented two solute carrier transporters (SLC27A1 and
SLC7A5) for amino acids [32] and fatty acids and one membrane
bound protease (ANPEP) that plays a role in tumour invasion
and metastasis [33].
Only one gene, namely RPIA (coding for the Ribose-5-

phosphate isomerase), required for ATP maintenance according
to the TCGA and SCKM models, was also found to be essential in
the TCGA-CONTROL-LIVER model (Supplementary Fig. 4) and
hence no side-effects on the liver metabolism were predicted by
our analysis.

Fig. 2 Essential genes across multiple melanoma and cancer cell types are promising drug targets. In silico knock-outs were performed to
identify vulnerabilities present in most melanoma samples. A Venn diagram presenting essential genes among TCGA, SKCM and IN-HOUSE
models. B In silico gene deletion analysis on the sample-specific IN-HOUSE models that shows the number of models that are affected by the
deleted gene. The colour code indicates the ratio of the predicted biomass in knock-out vs. wild-type, with dark red indicating a fully effective
and white a non-effective knock-out. The y-axis represents the IN-HOUSE essential genes sorted by efficacy (fraction of affected models). The
upper part of the left panel includes genes (in blue) whose deletion disables the biomass reaction in all of the 28 cancer models of the IN-
HOUSE dataset. Below are genes (in green) that disable the biomass reaction in most cancer models but not all. The effect of gene deletion on
the ATP production of the monocytes (IN-HOUSE-CONTROL) models is depicted in the right panel. Genes in black are not part of the shared 35
genes predicted by the consensus models.
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We further assessed if the genes predicted with the consensus
models are likely to be effective in inducing cell death in different
melanoma backgrounds. However, as no clear separation could be
observed in a principal component analysis between the
metabolic gene expression of the primary and metastatic samples
in the TCGA and CCLE samples (Supplementary Fig. 3), the
respective models could not be used to identify metastatic
specific metabolic alterations.
Thus, knock-out of metabolic genes (mainly the 35 genes

predicted to be essential by the consensus models) was
performed utilising the IN-HOUSE (Fig. 2B) and TCGA, SKCM and
CCLE sample-specific models (Supplementary Figs. 5 and 6) that
have a higher sensitivity as being reconstructed from one sample
than consensus models that are obtained after pooling all the
samples of a condition. This allows predicting the drug efficacy in
these various patients and cell line backgrounds and estimating
the number of patients needed to be treated before seeing a
positive outcome (Number Needed to Treat, NNT). As control,
knock-outs of our predicted targets were performed in healthy
melanocyte sample-specific models (IN-HOUSE-CONTROL) to
assess the impact on ATP maintenance (Fig. 2B).
Out of the 35 predicted essential genes (Fig. 2A), the knock-out

of 10 of these genes completely shut down biomass production in
all 28 melanoma sample-specific models within the IN-HOUSE
dataset (Fig. 2B left, in blue), as well as TCGA, SKCM and CCLE
models (Supplementary Figs. 5 and 6), without affecting the ATP
production in the IN-HOUSE-CONTROL sample-specific models
(Fig. 2B right), and only minimally affected the ATP production of
the TCGA-CONTROL dataset. The gene products of these top ten
genes include enzymes implicated in the de novo synthesis of
nucleotides, cardiolipins, and glycerophospholipid metabolism
and sphingolipid metabolism (Supplementary Table 2).
Another set of essential genes (Fig. 2B left, in green,

Supplementary Table 2) reduced the biomass production to zero
in most - but not all - IN-HOUSE models without significantly
affecting the control models (Fig. 2B right) and are partially shared
among all cancer models (Supplementary Figs. 5 and 6). These
genes mainly regulate the cholesterol, and fatty acid metabolism
and biosynthesis, and the nucleotide interconversion which is
coherent with the need to generate lipids and nucleotides in fast-
cycling cells. Thus, these genes are less likely to affect cancer cells

with a lower proliferation, explaining the lack of response in some
models (Fig. 2B left, in green). Other predicted essential genes
(PKM2, PISD) are linked to oxidative phosphorylation (OXPHOS).
Additionally, in an extended list (top 100) based on the INHOUSE,
CCLE and SKCM sample-specific models (Supplementary Figs. 6
and 7, in purple), another large set of 20 essential genes was
identified, which are involved in controlling the final steps within
the respiratory electron transport chain and the ubiquinol-6
cytochrome C reductase (CYOR u10m) to different degrees. This
strong dependency on OXPHOS suggests an enrichment of slow-
cycling cells [17, 18] in the IN-HOUSE and to some extent in SKCM
and CCLE datasets. These data turned the switch between
glycolysis and OXPHOS to a relevant topic for further
investigation.
Taken together, the predicted 35 common essential genes

(Fig. 2A) are part of metabolic pathways (mostly of lipids,
carbohydrates and amino acids) required to sustain high
proliferation rates. These genes were predicted to be essential
across all tested datasets, making them promising drug targets
across different melanoma backgrounds.

12 candidate drugs, among them cladribine, gemcitabine,
lovastatin and tamoxifen, are predicted to be efficient for
most cancer types as targeting common vulnerabilities of
cancer cells
Like gene essentiality analysis, drug target deletion in cancer and
healthy control models was used to identify drugs reducing
biomass production, and thus proliferation specifically of cancer
cells without affecting healthy cells. Furthermore, it allows
identifying drugs that are synthetically lethal by targeting different
metabolic branches.
Applying this drug deletion pipeline on the consensus IN-

HOUSE models, 41 out of around 3000 DrugBank-retrieved FDA-
approved drugs were predicted to reduce melanoma growth rate
below 50% (Fig. 3A), without affecting primary melanocytes (IN-
HOUSE-CONTROL), TCGA-CONTROL-LIVER or TCGA-CONTROL-
KIDNEY models. However, these 41 drugs were also found
effective in affecting other than melanoma cancer models within
the TCGA database (Fig. 3A). These drugs predicted by the
consensus models were also found essential throughout at least
50% of the sample-specific models, suggesting that these are

Fig. 3 28 drugs targeting biosynthetic pathways are predicted to reduce growth in all melanoma datasets. A 28 predicted drugs are
shared between IN-HOUSE, TCGA, SKCM consensus models . B Out of the 28 drugs, 12 have been marked as anticancer drugs by at least one
database (Supplementary Table 3). These 12 drugs have many diverse targets in a variety of different pathways as defined in Recon 2.04.
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likely to have an impact on broad melanoma backgrounds
(Supplementary Figs. 8–10).
Nevertheless, 28 out of these 41 drugs were also predicted to

be effective in the SKCM model, thus representing promising
treatment options particularly for melanoma (Fig. 3A). Significant
enrichment of this set of 28 drugs, already being in use for cancer
treatment, was found across various databases like SEER (https://
seer.cancer.gov/), Cancer GOV (https://www.cancer.gov/) and
centerwatch (https://www.centerwatch.com/; Supplementary
Table 3). Furthermore, the 28 drugs revealed 54 known metabolic
targets in the generic metabolic reconstruction Recon 2.04 and
proved to be responsible for the inhibition of 134 reactions across
16 pathways (Fig. 3B). 49 of these reactions occur in the nucleotide
interconversion pathway as well as additional targets within the
extracellular transport, and the cholesterol and fatty acid synthesis
pathways. The latter is not yet targeted by approved drugs
according to currently available databases and might therefore be
interesting for drug repurposing efforts.
To further consolidate the most promising drugs regarding

melanoma treatment, their efficacy was predicted on the sample-
specific TCGA, SKCM, IN-HOUSE and CCLE models, as well as on
the control sample-specific models (Fig. 4). Overall high efficacy in
growth reduction in the cancer models and low impact on the
control models could be confirmed. The top two drugs cladribine
and gemcitabine were predicted to be effective in every cancer
model and thus to be universal drug candidates, while having only
minimal effect on the ATP maintenance of any control model
(Fig. 4). Both gemcitabine and cladribine represent established
chemotherapeutic drugs that inhibit reactions in the nucleotide
interconversion pathway, responsible for DNA replication, and
hence affect cell proliferation and biomass production. The 28
predicted drugs for melanoma treatment showed biomass-
reducing effects also on models reconstructed for other cancer

types according to TCGA datasets (Fig. 4). Thus, common
alterations appear to render cancer metabolism less robust and
make multiple cancer types susceptible to these drugs.
Taken together, 28 drug candidates predicted by the SKCM and

IN-HOUSE consensus models were predicted to be efficient in
most of the melanoma sample-level models, making these
promising candidates for experimental validation.

Cladribine, gemcitabine, lovastatin and tamoxifen have an
inhibitory effect on melanoma cell lines in vitro, also in
combination with conventional targeted kinase inhibitors
To identify the most promising drug candidates for in vitro testing,
we filtered the predicted drugs based on their predicted efficacy,
prior evidence from high-throughput CRISPR [34] and drug screens
[35], IC50 values in melanoma and other cancer types, known
metabolic targets, mechanisms and availability of clinical trial data
in phase II or higher (Table 2 and Supplementary File 2). Among the
predicted drugs, cladribine, fluvastatin and gemcitabine showed a
stronger viability reduction in the primary PRISM database [35] than
anti-melanoma and NO-based drugs in both metastatic (Supple-
mentary Fig. 11) and treatment-resistant cell lines (Supplementary
Figs. 12 and 13). Only main targets in the Drug Repurposing Hub
database were considered for an in-depth discussion [36]. The main
targets of the predicted drugs and our list of predicted essential
genes had a higher median dependency probability (likelihood that
the knock-out of a gene reduces cell growth or induces cell death)
than targets of known anti-melanoma drugs (Fig. 5A and
Supplementary Figs. 14 and 15). Among NO-related genes, ASS1
has the highest dependency probability (30%) and only dipheny-
leneiodonium induced a reduction of viability above 50% (Fig. 5B
and Supplementary Fig. 14). Similarly, NO-based drugs and genes
induced a low viability reduction and dependency, also in resistant
cell lines (Supplementary Figs. 13 and 15).

Fig. 4 25 out of 28 drugs are predicted to reduce growth of over 70% of the sample models. The fraction of sample-specific models per
dataset predicted to respond to the 28 candidate drugs has been determined for the cancer models (TCGA, SKCM, IN-HOUSE, CCLE, right-
hand-side) and control models (left-hand-side). Drugs were sorted by their efficacy on the IN-HOUSE dataset. On the x-axis the fractions of the
models are shown that responded to the drugs in the y-axis. These fractions are estimates for the respective drug efficacy ranging from 0 (not
efficacious) to 1 (fully efficacious). For the control, a fraction to −1 indicates a prediction of adverse effects on ATP maintenance in the control
samples, while fractions close to 0 indicates no such effects.
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Furthermore, tamoxifen was found to improve overall complete
and partial response in combination with chemotherapies without
improving 1-year survival in advanced melanoma in a meta-
analysis of nine clinical trials [37]. On the contrary, melatonin (NO-

based drug) combined with dacarbazine failed to show an
additive effect compared to dacarbazine alone in an early
terminated phase 2 trial of metastatic melanoma [38]. Interest-
ingly, a phase 2 placebo-controlled preventive trial found that

Table 2. Overview of the candidate drugs selected for in vitro validation.

Drug Approved
as cancer
drug

Metabolic
targets (Recon
2.04)

Main
metabolic
targets

Non-
metabolic
main targets

Indication Mode of action Use in cancer research

Fluvastatin No HMGCR,
CYP3A4,
SLC15A1,
CYP2C8,
SLCO1B1,
CYP2C9,
CYP2C19

HMGCR – Hypercholesterolemia HMG-CoA
reductase
Inhibitor

Anti-proliferative effects in
breast cancer (Garwood et al.
[76]), could prevent the onset
of renal cancer (Horiguchi et al.
[12]), potential synergistic
effects with gemcitabine (Bocci
et al. [77]) and cisplatin (Taylor-
Harding et al. [78])

Ellagic Acid No CYP2E1, CA6,
SQLE, CA12,
CA3, CA9,
CYP1A1, CA1,
CA4, CA5B,
CA5A, CA7,
CA2, CA14

CA6, SQLE,
CA12, CA3,
CA9, CA1,
CA4, CA5B,
CA5A, CA7,
CA2, CA14

CSNK2A1,
GSK3B,
PRKACA,
PRKCA,
PRKCB, SYK

Phytochemical
abundant in fruits
and vegetables

Squalene
epoxidase (SQLE)
inhibitor)

Apoptotic and anti-angiogenic
effects in cancer cells (Losso
et al. [60])

Icatibant No ANPEP – BDKRB2 Orphan drug used for
hereditary
angioedema
treatment
(Cicardi et al. [79])

Alanyl
Aminopeptidase
protein (ANPEP)
Inhibitor

–

Terbinafine No CYP19A1,
SQLE,
CYP11A1,
CYP2D6

SQLE – Antifungal agent Possibly by
targeting
SQLE

Demonstrated anticancer
effects in vitro (Chien et al. [80];
Lee et al. [81])

Tioconazole No CYP2E1,
CYP19A1,
CYP51A1,
CYP3A4,
CYP2C8,
CYP2C19

– – Antifungal agent Inhibits the
ergosterol
synthesis

Desensitises cancer cells to
chemotherapy (P.-F. Liu et al.
[65]))

Lovastatin No HMGCR,
CYP3A4,
SLCO1A2,
CYP2D6,
CYP2C8,
SLCO1B1,
CYP2C9

HMGCR HDAC2,
ITGAL, NR1I2

Hypercholesterolemia Mevalonate
pathway and
cholesterol
synthesis
inhibitor

Anti-proliferative properties in
cancers (Agarwal et al. [82];
Martirosyan et al. [83]),

Gemcitabine Yes TYMS, CMPK1,
RRM1

TYMS,
CMPK1,
RRM1

– Pyrimidine analogue – Inhibits DNA replication (Noble
and Goa, [84]) and has been
approved for the treatment of
several cancers

Cladribine Yes RRM1, RRM2,
RRM2B

RRM1,
RRM2,
RRM2B

POLA1, POLE,
POLE2,
POLE3, POLE4

Purine analogue Ribonuclease
reductase
inhibitor

Used in the treatment of hairy
cell leukaemia (Bryson and
Sorkin, [85])

Butenafine No SQLE SQLE – Antifungal SQLE inhibitor Reduces cancer proliferation
(Cirmena et al. [86])

Cerulenin No FASN FASN – Antifungal FASN inhibitor Induces apoptosis in human
breast cancer (Liu et al. [87];
Thupari et al. [88]) and in A375
melanoma cell line (Ho et al.
[89]). Suppression of colon
cancer metastasis in mice liver
(Murata et al. [90])

Atovaquone No DHODH,
CYP2C9

– – Ubiquinone analogue
used for malaria

DHODH inhibitor Inhibits oxidative
phosphorylation in cancer
(Fiorillo et al. [61]), (Ashton
et al. [91])

Tamoxifen Yes CYP19A1
CYP1B1, EBP,
CYP3A4,
CYP2B6,
CYP2D6,
CYP2C8,
ABCB11,
CYP2C9

EBP ESR1, ESR2,
GPER1,
PRKCA,
PRKCB,
PRKCD,
PRKCE,
PRKCG, PRKCI,
PRKCQ,
PRKCZ

Anti-oestrogen – Developed to treat breast
cancer (Buckley and Goa [92])

12 candidate drugs for repurposing in melanoma were selected for experimental validation. Half of the drugs are already FDA-approved as anticancer agents.
Metabolic targets represent inhibited targets in the generic metabolic reconstruction Recon 2.04. The main metabolic targets in addition to non-metabolic
targets were identified from the manually curated database Drug Repurposing Hub. Indication, mode of action, and use in cancer research were retrieved
from Drug Bank and from literature.
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lovastatin may decrease the incidence of melanoma without
reducing melanoma biomarkers [39]. Gemcitabine and itracona-
zole in non-melanoma skin cancer phase 2 trials show no response
but stable disease in a subset of the treated patients (35% in
gemcitabine [40] and 21% [41] to 91% [42] in itraconazole the
disease remained stable) (see Supplementary File 2). While
cladribine is still untested in a clinical trial for melanoma, it can
be administered subcutaneously for cancer [43]. Using IC50 values
and prior knowledge as criteria, we selected 12 out of the 28
predicted drugs (3 FDA-approved non-melanoma anticancer and
9 FDA-approved for other diseases) for experimental validation.
Two predicted drugs (gemcitabine and cladribine) and one NO-
based drug (diphenyleneiodonium) have a reported median IC50
below 0.4 µM in melanoma cell lines, this being comparable to
known anti-melanoma drugs (Supplementary Fig. 16A). Unlike
targeted anti-melanoma drugs that tend to be more effective for
either BRAF-mutant or NRAS-wildtype cell lines (Supplementary
Fig. 17), cladribine and other predicted drugs show good efficacy
regardless of the mutation status with narrow IC50 ranges (see
Supplementary File 2 for the IC50 values found in the databases
and the literature and additional information on clinical trials). The

selected 12 drugs were then tested in a cell viability assay on
NRAS (IPC298, SKMel30) and BRAF (A375, 624Mel) mutated
melanoma cell lines and the IC50 values for each drug and cell
line were computed. Four out of the six selected drugs (cladribine,
gemcitabine, lovastatin (approved for other diseases), and
tamoxifen) showed an inhibitory effect on the viability of all four
melanoma cell lines (Fig. 6). Fluvastatin and cerulenin, which
target HMGCR and FASN, respectively, were drugs approved for
non-cancer-related diseases that reduced viability of melanoma
cell lines. The remaining six experimentally tested drugs did not
have an inhibitory effect based on the measured dose-response
curves (Supplementary Table 4).
To further examine if the six effective drugs could be

beneficially combined with conventional targeted kinase inhibi-
tors as used in the clinic, we tested the effect of gemcitabine,
cladribine, fluvastatin, and lovastatin on the viability of different
melanoma cell lines, respectively. Similarly, each of the four drugs
were tested in combination with three BRAF inhibitors (vemur-
afenib, dabrafenib, encorafenib), one MEK inhibitor (binimetinib),
and one selective inhibitor of the cyclin-dependent kinases CDK4
and CDK6 (palbociclib), each. The combination of BRAF inhibitors

Fig. 5 Predicted drug targets and drug candidates rank among the top metabolic candidates in the PRISM and DepMap databases.
A Genes are ranked by their median dependency probability on the DepMap CRISPR screens [36] in the metastatic melanoma cell lines.
Predicted essential genes (in bold), targets of anti-melanoma drugs (“Anti-melanoma target”) and NO-related genes were included as well.
Essential genes with no predicted drugs (“Predicted non-druggable essential”) were coloured in yellow. B Drugs are ranked by their median
reduction in viability relative to DMSO in the metastatic melanoma cell lines. Genes and drugs in A and B with a score >50% in metastatic cell
lines are displayed (see Supplementary Figs. 11 and 14 for the complete drug ranking).
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and the candidate drugs tested on BRAF-mutated cell lines yielded
additive (ZIP > 0) or even synergistic effects (ZIP > 10) on cell
viability, with scores between 1.8 and 15.4 (Supplementary Table
5). The A375 cell line yielded ZIP scores of 13.1, 3.0 and 6.8 for the
combinations of fluvastatin-vemurafenib (Fig. 7), gemcitabine-
vemurafenib, and fluvastatin-encorafenib, respectively. The
624Mel cell line was slightly more responsive with ZIP scores of
15.4, 14.0, 13.4 in response to the same three drug combinations
(Supplementary Table 5). For the MEK inhibitor binimetinib
combinations with gemcitabine, cladribine, fluvastatin, and
lovastatin, yielded mostly additive effects on cell viability of the
four tested NRAS or BRAF-mutated cell lines (Supplementary Table
6). However, the CDK4/6i palbociclib acted antagonistically in all
the tested cell lines (Supplementary Fig. 18), and therefore could
be excluded from the panel.
Furthermore, cell death and proliferation assays were per-

formed for these four drugs (cladribine, gemcitabine, fluvastatin,
and lovastatin) in mono- and combination therapy with targeted
inhibitors in two cell lines (624Mel, BRAF mutated and SKMel30,
NRAS mutated). Cladribine decreased proliferation and increased
the PI dead cell count, while inducing apoptosis (Fig. 8;
Supplementary Fig. 21). Whereas gemcitabine also showed some
promising results in SKMel30 cells, the other two drugs, fluvastatin
and lovastatin, as well as the combination with palbociclib (CDK4/
6i), binimetinib (MEKi) or vemurafenib (BRAFi) did not further
increase apoptosis or the PI dead cell count (Supplementary Figs.
19–27). However, the proliferation assays showed a significant
decrease in proliferation for all candidate drugs when combined
with binimetinib (MEKi; Supplementary Fig. 19).
Taken together, we have identified four drugs that show an

additive/synergistic inhibitory effect in the proliferation assay and
as monotherapy in the viability screen in all four tested melanoma

cell lines. These drugs should be considered to be used as an
extension to the panel of conventional drugs for combined
melanoma treatment.

DISCUSSION
In this study, we used metabolic network modelling to identify
drug targets and candidate drugs for alternative melanoma
treatment to be used individually or in combination with
conventional targeted kinase inhibition. Most of the drugs
identified by applying our workflow could potentially act as
pan-cancer drugs, which target de novo nucleotide and fatty acids
synthesis pathways as well as oxidative phosphorylation.
Cancer cells often rely on pathways that are under tight

regulation in healthy tissues, including the de novo cholesterol,
lipid, and nucleotide synthesis pathways [25, 44, 45] to increase
tumour mass and sustain high proliferation [46]. Some of the
predicted drug targets by our refined workflow, namely HMGCR,
FASN and SQLE are key regulators of cholesterol and lipid
homeostasis. These genes were shown to be overexpressed in
several cancers [47] favouring cell migration and proliferation [48].
FASN is also an unfavourable prognostic marker for various
cancers including melanoma [49] and high expression values for
this gene correlates with advanced stages of colon, breast, and
prostate cancer [50]. Besides contributing to the increase of
tumour mass, the rewiring of cholesterol and sphingolipids
metabolism alters the composition of lipid rafts that play an
important role in other hallmarks of cancer such as oncogenic
signalling, migration, proliferation, adhesion, invasiveness, meta-
static spread, apoptosis evasion [51], vesicular trafficking and drug
resistance [52]. Furthermore, an imbalance in cholesterol and
sphingolipids metabolism allows cancer cells to proliferate, to

Fig. 6 Six drugs show an inhibitory effect with a low IC50 values in a melanoma cell line panel. Cell viability assay at eight concentrations
were performed on the 12 most promising predicted drugs. Dose response curves (representative experiment of 3) are depicted for the six
most responsive drugs. IC50 values (indicated in red) were averaged from three experiments. Two FDA-approved drugs for non-cancer-related
diseases, cerulenin and fluvastatin (blue background), showed comparable inhibiting effects on melanoma cell lines as FDA-approved
anticancer (non-melanoma) drugs (white background). For lovastatin on SKMel30, the IC50 value could not be determined (NA).
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escape the immune system [53] and to invade other tissues [54].
Hence our predicted drugs could allow targeting several hallmarks
of cancer simultaneously.
Cancer cells have high energy demands. Although fast-

cycling cells mostly rely on the Warburg effect, a minority of
cancer cells still prefers OXPHOS, especially in advanced stages
and upon acquired drug resistance [55]. Accordingly, genes
implicated in and regulating OXPHOS, like PISD and PKM2, were
also predicted as potential drug targets in our model analysis. In
general, the efficacy of a drug to fight metastatic cells might
depend on the preferred source of energy in concert with the
proliferation efficacy. Drugs that reduce the proliferation of fast-
cycling cells might be less effective in migrating cells, which
often rely on OXPHOS and hence are not as dependent on de
novo synthesis pathways and DNA replication. Current therapies
based on MEK, BRAF and CDK4/6 inhibitors tend to induce
resistance by activating OXPHOS and fatty acid oxidation, thus
reducing the tumour mass but increasing the risk of relapse
[56].
Most drug targets identified using our drug deletion pipeline

overlap with the predicted essential genes like SQLE, FASN and
HMGCR or are members of the same pathways. However, in some
cases drugs are only predicted to be effective if multiple of their
targets are knocked out in the drug deletion pipeline. This is
notably the case for CYP proteins and the Carbonic Anhydrase
(CA) family of zinc metalloenzymes. CYPs play a role in tumour
initiation, drug activation and clearance [57]. CAs were shown to
promote tumorigenesis by maintaining the pH in a favourable
range for the tumours and promote metastasis by reducing cell
adhesion [58].
In the experimental validation, we have shown that six out of

the 12 selected drugs had an inhibitory effect on melanoma cell
viability. For the remaining six drugs literature evidence supports
their predicted efficacy. Three drugs (butenafine, terbinafine,
ellagic acid) did not show an effect, despite their drug target
(SQLE) being considered a promising target in cancer therapy [59].
Ellagic acid showed anticancer properties by decreasing the levels
of ATP within different cancer cells [60] and was registered in a
clinical trial for dietary intervention in follicular lymphoma

Fig. 7 Additive and synergistic effects were observed for the
combination of fluvastatin and vemurafenib in a cell viability
assay for the A375 cell line. Dose-response landscape is shown as
calculated by SynergyFinder and indicating Zero Interaction Potency
(ZIP) scores (indicated in the colour bar, see “Methods” section).
Additive/synergistic and antagonistic dose regions are represented
in red (ZIP > 0) and green colours (ZIP < 0), respectively, and allow for
the determination of the best concentrations for drug combination.
The most synergistic area (ZIP > 10) is depicted with a grey box. The
concentration bounds of the region of highest synergy are marked
by green boxes on the x and y-axis.

Fig. 8 Cladribine induces cell death as single treatment. Proliferation (A), Propidium Iodide (PI) dead cell staining (B) and Caspase 3/7 Ac-DEVD-
AFC apoptosis assays (C) of cladribine and binimetinib are shown for the 624Mel cell line. Assays were performed as detailed in Supplementary File 1.
ANOVA analysis was performed on n= 2 replicates. Statistical significance is indicated as: nsp≥ 0.05, *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001.
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(NCT00455416). It might still show an inhibitory effect at higher
concentrations. The other three drugs which failed in the
experimental validation were atovaquone, icatibant and tiocona-
zole, but showed promising results in other studies: atovaquone
was previously shown to inhibit cellular respiration in breast
cancer cells at a concentration of 5 µM [61], to increase
oxygenation of tumours [62] and platinum-mediated cell death
due to oxidative stress. Icatibant can be used to prevent the
accumulation of fluids in the peritoneal cavity of patients suffering
from ovarian cancer [63, 64] and tioconazole was shown to
increase the cytotoxic effects of doxorubicin [65]. Also, one of the
metabolic targets of icatibant is ANPEP, which is a prognostic
marker for prostate cancer [33]. Finally, FASN has long been a
promising target for anticancer therapy, but so far no drug has
proceeded to the clinics [66]. The predicted drug cerulenin
targeting FASN showed in our screen IC50 values above the
recommended therapeutic plasma concentration of 10 µM and it
has therefore not been considered for further synergy testing.
Cladribine, gemcitabine, lovastatin, and tamoxifen overall have
lower IC50 than the NO-based drugs, which are part of a few
cancer and melanoma clinical trials (NCT00060710, NCT05502900)
and pronouncedly reduced viability in both, metastatic and
therapy-resistant melanoma cell lines (see Supplementary File 1).
These four compounds additive and partially synergistic effects

with BRAFi or MEKi. For example, gemcitabine showed promising
results in combination with the MEKi binimetinib in NRAS mutant
cells. However, the effects of the individual drugs and the
combinations applied appeared to have cytostatic rather than
cytotoxic effects. Fluvastatin and lovastatin target the cholesterol
pathway that plays a role in the prenylation of members of the
PI3K/AKT/mTOR pathway and RAS, which could impact on the
ability of RAS to activate BRAF [67], eventually causing a
proliferation arrest. Cladribine is an antimetabolite that causes
cell arrest in G1 in B-cell lymphoma cells by modulating the
activity of apoptotic proteins, notably c-FlipL, Bax, and Death
receptor 4 (DR4) and Caspase 8. Cladribine furthermore activates
endoplasmic reticulum stress, further inducing apoptosis [68].
Gemcitabine induces cell-cycle arrest concomitant with caspase-3-
mediated apoptosis [69]. Interestingly, gemcitabine has already
been proposed as an adjuvant in combination with another MEKi,
trametinib, in adenocarcinoma treatment, but due to low efficacy,
the studies were terminated [70]. A recent study showed that
gemcitabine combined with cobimetinib might effectively treat
KRAS-mutated pancreatic cancer [71]. While gemcitabine was
found inactive in a phase 2 trial against non-melanoma skin
cancer with 35% stable disease and short 6 months median overall
survival, it is still to be investigated in melanoma [40]. Fluvastatin,
in turn, presented with high synergy scores in combination with
three tested BRAFi, whereas cladribine showed effectiveness in
combination with both, BRAFi and MEKi. Concerning statins,
studies have demonstrated their anti-tumour effects in several
cancer [15, 72] including on melanoma as single drug [13, 16] or in
combination with cisplatin [73]. In addition, a recent study
identified cladribine as a possible repurposable drug in CDKN2A
mutated melanoma using data mining followed by in vitro
validation [74]. Hence, cladribine showed efficacy with narrow IC50
regardless of the melanoma cell lines' resistance, metastasis or
mutation status, making it a promising candidate for melanoma
clinical trials.
Taken together, our study demonstrates how in silico drug

target prediction based on metabolic modelling can be a useful
complement in the selection of tailored treatments to improve
the therapeutic outcome of melanoma patients especially for
those that relapse or do not respond to current melanoma
treatments. The low computational demands and the robust-
ness of rFASTCORMICS allowed the reconstruction of thousands
of sample models that allow assessing how many patients share
a metabolic alteration that can be exploited as drug target and

hence allow us to identify metabolic rewiring strategies that are
common across cancer patients and more particularly across
melanoma patients.
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