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Globally, colorectal cancer (CRC) is the third most prevalent cancer and the second leading cause of cancer-related deaths. Circular
RNAs (circRNAs) are single-stranded RNA with covalently closed-loop structures and are highly stable, conserved, and abundantly
expressed in various organs and tissues. Recent research found abnormal circRNA expression in CRC patients’ blood/serum, cells,
CRC tissues, and exosomes. Furthermore, mounting data demonstrated that circRNAs are crucial to the development of CRC.
CircRNAs have been shown to exert biological functions by acting as microRNA sponges, RNA-binding protein sponges, regulators
of gene splicing and transcription, and protein/peptide translators. These characteristics make circRNAs potential markers for CRC
diagnosis and prognosis, potential therapeutic targets, and circRNA-based therapies. However, further studies are still necessary to
improve the understanding of the roles and biological mechanisms of circRNAs in the development of CRC. In this review, up-to-
date research on the role of circRNAs in CRC was examined, focusing on their potential application in CRC diagnosis and targeted
therapy, which would advance the knowledge of the functions of circRNAs in the development and progression of CRC.
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FACTS

● CircRNAs are single-stranded RNA that may be used to treat or
prevent colorectal cancer.

● CircRNAs may service as useful biomarkers for cancer
diagnosis and therapy.

● CircRNAs are widely expressed in CRC patients’ blood/serum,
cells, CRC tissues, and exosomes.

● Some circRNAs exert a cancer-promoting effect in CRC, while
others are not.

OPEN QUESTIONS

● What is the roles and biological mechanisms of circRNAs in the
development of CRC?

● How do circRNAs contribute to the development and
progression of CRC by controlling alternative splicing?

● Can circRNAs be utilized as biomarkers to predict chemother-
apy resistance in CRC therapies?

INTRODUCTION
Globally, colorectal cancer (CRC) is the third most prevalent cancer
and the second leading cause of cancer-related deaths [1]. Recent
estimates indicate that over 1.9 million new cases and 93,000 CRC-

related deaths occurred in 2020, accounting for approximately
10% of all cancer cases and 9.4% of cancer-related deaths [2]. The
early detection of CRC can help minimize morbidity and mortality;
however, most CRCs are diagnosed at an advanced stage owing to
the lack of distinct early symptoms, limiting the opportunity for
effective early treatment. Therefore, it is imperative to identify
new therapeutic targets and biomarkers for effective early
detection, personalized treatment, and monitoring of CRC to
improve prognosis.
Both genetic and epigenetic alterations can cause CRC.

circRNAs, a novel type of non-coding RNAs, have been identified
as tumor-initiating and tumor-progressing factors. Compared with
linear RNAs, the closed structure of circRNAs makes them highly
stable and conserved [3]. Recently, bioinformatics analysis of RNA-
seq has facilitated the identification of several circRNAs in
eukaryotes and shown that circRNAs have tissue-specific expres-
sion patterns [4]. Ongoing studies have revealed that dysregula-
tion of circRNAs contributes to the development of various
cancers, including CRC [5], and lung [6], liver [7], and bladder
cancers [8]. Further investigations have identified several dysre-
gulated circRNAs that play important roles in CRC progression [9].
Additionally, circRNAs are abundantly found in exosomes, human
peripheral blood, and fluids, making them potential diagnostic
biomarkers and therapeutic targets [10]. Therefore, circRNAs may
serve as promising biomarkers for CRC.
This review highlights the current research progress on the

biogenesis and characteristics of circRNAs and their mechanisms
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in CRC. Additionally, the therapeutic and diagnostic potentials of
circRNAs in CRC were extensively discussed.

ALTERNATIVE MODES OF CIRCULAR RNA SPLICING
RNA splicing is a fundamental and highly regulated process in the
eukaryotic gene. The splicing of pre-messenger RNA (pre-mRNA) is
catalyzed via spliceosome, a highly dynamical ribonucleoprotein
(RNP) machinery that can remove introns and then join exons
together to form mature mRNA [11] (Fig. 1). Alternative splicing
involves the transcription of pre-mRNAs to generate different
mature mRNAs depending on how they are spliced, thereby
increasing protein diversity [12]. The normal pre-mRNA spliceoso-
mal mechanism, which involves the back-splicing of intronic,
exonic, or intergenic sequences, is necessary to synthesize
circRNAs. By backsplicing pre-mRNAs, which requires the covalent
interaction of an upstream 3′ splice site and a downstream 5′
splice site, circRNAs are selectively produced [13]. Through
controlling alternative splicing pathways, circRNAs have been
demonstrated to play crucial roles in carcinogenesis, according to
mounting evidence [14–16]. For example, Wang et al. discovered
circURI1, created by the back-splicing of exons 3 and 4 of URI1-14,
an unusual prefoldin RPB5 interactor. CircURI1 may control
alternative splicing to contribute to developing and spreading
gastric cancer [13].
Numerous RNA-binding splicing factors (RBFOX1/2/3) contain

an RNA-recognition motif that binds to this GCAUG element and
affects the regulation of various alternate splicing events [14, 15].
Recent studies have shown that RBFOX proteins can either repress
or activate alternate splicing, determining the binding location to
pre-mRNA exon [16]. Suppression of a splicing regulator RNA
binding protein fox-1 homolog 2 (RBFOX2) promoted preferential
splicing of the mRNA isoform, such as KIF1B beta [17], TEAD1 [16],
and TFRC [18]. Specifically, Zhang et al. found that circRAPGEF5
could interact with RBFOX2 and inhibit its binding to pre-mRNA,
thereby causing exon exclusion of TFRC in endometrial cancer
[18]. Moreover, although RBFOX2 is known to regulate some of
these genes, the role of RBFOX2-mediated splicing events on
signaling pathways in cancer remains largely unknown.

CIRCRNAS: BIOGENESIS AND CHARACTERISTICS
Based on their biogenesis mechanisms, circRNAs can be classified
as EcircRNAs, EIciRNAs, ciRNAs, and mecciRNAs [19–21]. The
biogenesis of circRNAs can be facilitated by pre-mRNAs containing
a reverse complement of Alu repeat flanking the circularized
exons [22]. RNA-seq and bioinformatic analysis has revealed the
relationship between flanking introns and reverse complementary
Alu repeats in mammalian circRNA biogenesis. CircRNA exons
often have long flanking intronic sequences and repetitive Alu
elements, both promoting circularisation by base pairing and
reducing the distance between potential back-splicing sites
[23, 24]. Moreover, loss of flanking Alu repeats inhibited the
circularization of circRNA in vitro, including CircERBB2 [25]. ALU
repeats present an underestimated risk, while enzymes such as
adenosine deaminases acting on RNA (ADARs) and DExH-Box
Helicase 9 (DHX9) are critical in destabilizing intron pairing during
the biogenesis of circRNAs [26, 27]. A study by Shen et al.
characterized ADARs as potent regulators of circular transcrip-
tomes by identifying over a thousand circRNAs in a bidirectional
manner [28]. The biogenesis of circRNAs and ADARs has been
found to be negatively correlated in recent studies. For example,
the knockdown of ADAR1 increased the intracellular circRNA
expression in the mammalian brain [29]. Furthermore, ADARs-
regulated circRNAs are ubiquitously expressed in numerous
cancer types, suggesting high functional relevance to cancer
[28]. Additionally, DHX9 deletion increased a subset of circRNA-
producing genes and amounts of circular RNA, repeat Alu

elements, and transcriptional rewiring of susceptible loci [26]. In
addition to the above-mentioned examples, RNA binding proteins
(RBPs), including muscleblind (MBL/MBNL1) and quaking (QKI),
have been shown to promote the biogenesis of circRNAs [30, 31].
Ashwal-Fluss et al. showed that ectopic expression of MBL/MBNL1
increased the expression of circMbl by binding to flanking introns;
however, downregulation of MBL/MBNL1 significantly decreased
CircMbl expression [24]. Thus, MBL/MBNL1 was involved in
circRNA biogenesis. Another important RBP, QKI, can also
positively regulate circRNA biogenesis. For instance, knockdown
of QKI inhibited circRNAs expression during circRNA biogenesis,
however, overexpression of QKI lead to the circRNA biogenesis in
human immortalized mammary epithelial cells [30]. Thus, the
biosynthesis of circRNAs is influenced by QKI.

CIRCRNA MECHANISMS OF ACTION
Recent studies have demonstrated that circRNAs can interact with
miRNAs, and RBPs serve as protein baits or antagonists to exert
the functions of circRNAs [32]. As regulators of gene expression,
circRNAs are involved in several biological processes, including
miRNA sponges [33], transcription and translation, RBPs, and
translation of peptides and proteins [34] (Fig. 2).

MIRNA SPONGES
Little non-coding RNAs called miRNAs play an important role in
physiological and pathological processes. They typically have a
base length of 21–25 nucleotides. CircRNAs may behave as miRNA
sponges, limiting miRNA action in the transcriptional and post-
transcriptional control of gene expression (for example, mRNA
stability) [35]. Cancer cells’ proliferation, migration, and angiogen-
esis have all been linked to this sponge process. For instance, by
functioning as a sponge for miR-328-5p and reversing its
repression of E2F1 [36], circSHKBP1 facilitated the advancement
of CRC. By activating the miR-142-3p/miR-506-3p-TGF-1 axis, CRC-
derived exosomal circPACRGL promoted cell proliferation, migra-
tion, invasion, and neutrophil differentiation [8]. This method has
also been described in other fields. For instance, circHIPK3
promoted the development of retinal vascular dysfunction in
diabetes mellitus by sponging miR-30a-3p [37] and modulated the
autophagy in STK11 mutant lung cancer by sponging miR-124-3p
[38]. In addition, circHIPK3 also suppressed CRC growth and
metastasis by sponging miR-7 [35]. However, some circRNAs have
been shown to function in multiple roles by sponging different
miRNAs. CircSLC8a1 exacerbated myocardial injury by sponging
miR-214-5p [36] and inhibited the progression of non-small cell
lung cancer (NSCLC) by sponging miR-106b-5p [39].

TRANSCRIPTION AND TRANSLATION
CircRNAs can regulate gene transcription in both a direct and
indirect manner. Moreover, certain circRNAs have been reported
to modulate gene transcription by interacting with the RNA
polymerase II complex and translating associated proteins. For
instance, circEIF3J and circPAIP2 promoted PAIP2 and EIF3J
transcription by interacting with U1 small nuclear ribonucleopro-
tein (snRNP) and RNA polymerase II [40]. However, circRNAs are
mainly cis-regulators of transcription in various physiological and
pathological processes. For instance, circRHOT1 inhibited the
progression of hepatocellular Carcinoma (HCC) via recruiting TIP60
to the NR2F6 promoter and subsequently initiating the transcrip-
tion of NR2F6 [41]. circMEMO1 can regulate TCF21 promoter
methylation and its gene expression to promote the progression
of HCC [42]. In another study, circAmotl1 promoted skin wound
repair by increasing STAT3 expression and nuclear translocation
[43]. It may be possible to provide clinical insight into skin wound
healing by the ectopic application of circ-Amotl1.
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Recently, Pamudurti et al. demonstrated that translating
ribosomes is associated with a set of circRNAs through ribosome
footprinting from fly heads [44]. Mass spectrometry also detected
a protein encoded by circRNA generated from the muscleblind
locus [44]. Additionally, exosomal circLPAR1 directly bound to
eIF3h and specifically suppressed the Interaction between METTL3
and eIF3h, which caused BRD4 translation to decrease [45].
CircVAMP3 interacted with CAPRIN1 and G3BP1 to trigger phase
separation of CAPRIN1 and promoted stress granule formation
[46]. CircVAMP3 can reduce the protein level of Myc proto‐

oncogene protein by inhibiting c‐Myc translation. Hence,
circVAMP3 suppressed tumor growth in HCC by inhibiting the
translation of c‐Myc.

RBPS
Besides their miRNA sponge and transcription and translation
function, circRNAs with RBP binding sites may function as protein
sponges or decoys in regulating gene expression [47]. CircRNAs
can directly interact with one or different proteins and act as

Fig. 1 Biosynthesis and metabolism of circRNA. A Possibility of looped structures generation either by base-pairing among complementary
sequences that flank the circularized exons or via RBPs. To generate EcRNAs and EIciRNAs, the intron sequences can be deleted or kept
respectively in the loop structure. B The exon-skipping events generate certain EcRNAs, whereas a lariat is internally spliced to remove intronic
sequences. C The intron-containing pre-tRNA is cleaved at the BHB motif into half of the exon and intron part. A mature tRNA is formed by
joining the halves of the exons, and a tricRNA is produced by joining the termini of the introns. D miRNA directly binds at the AGO2-
dependant cleavage site of targeted mRNA molecules in a complementary way. E RNase mitochondrial RNA processing (RNase MRP)
promotes the cleavage of m6A-possessing circRNAs via the activities of YTHDF2 and HRSP12. F When infected by viruses, active RNase L
degrades circRNA. AGO2 argonaute 2, BHB motif bulge-helix-bulge motif, ciRNA circular intronic RNA, EcRNAs exonic circRNAs, EIciRNAs exon-
intron circRNAs, RBP RNA-binding protein, YTHDF2 YT521-B homology domain family 2, tricRNA tRNA intronic circular RNA.
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“scaffolding” protein complexes to form an RNA-protein complex.
For example, circRHOBTB3 suppressed lung metastasis by binding
to the HuR protein and promoting β-Trcp1-mediated ubiquitina-
tion of HuR, improving the stability of polypyrimidine tract-
binding protein 1 (PTBP1) [48]. In cancer cells, Chen et al. found
circAGO2 promoted cancer progression by interacting with HuR
protein and inhibiting the functions of AGO2-miRNA complexes
[49]. In addition, circRNA can also affect their biological function
by sequestering proteins [50]. For example, circPABPN1 reduced
ATG16L1 production by inhibiting HuR binding to Atg16l1 mRNA
[51]. However, scaffolding enhanced direct protein interactions in
contrast to their sequestering function. For example, circFOXO3
functioned as a scaffolding molecule that enhanced the Interac-
tion between CDK2 and p21 [52]. CircACC1 can directly bind to the
β and γ subunits of AMPK, enhancing its stability and enzymatic
activity [53].

PEPTIDES AND PROTEINS
Based on bioinformatics platforms and computational analysis,
some circRNAs have open reading frames (ORFs) and can encode
proteins [44]. Some other circRNAs also encode proteins or
peptides with tumor-suppressive or oncogenic properties. Pre-
sently, hundreds of peptides encoded by circRNAs have been
detected by liquid chromatography coupled with mass spectro-
metry (LC-MS), indicating that circRNAs can translate proteins.
CircPLCE1 encoded a novel circPLCE1-411 protein that inhibited
tumor proliferation and metastasis in CRC cells [54]. Exosomal
CircATG4B encoded a novel protein and induced oxaliplatin
resistance in CRC by promoting autophagy [55]. In addition,
circular RNAs can be classified as IRES-dependent or IRES-
independent translational machinery. For example, circSHPRH
can encode an SHPRH-146aa protein in an IRES-dependent
manner [56]. It was found that SHPRH-146aa is a tumor suppressor
protein that prevents SHPRH full-length protein from degradation
[56], suggesting that aberrant translation of circSHPRH affects
tumor malignancy. Lastly, some circRNAs are capable of encoding
peptides without requiring IRES. Recent studies have discovered
that consensus N6-methyladenine (m6A) modification motifs are
enriched in circRNAs, and one m6A site can initiate translation [57].

For example, YTHDF3, an m6A reader protein, modulates circ-
ZNF609 to translate two proteins using two alternative START
codons [58]. Overall, the protein-coding capacity of circRNA is of
great significance to human disease diagnosis and treatment.

DYSREGULATION OF CIRCRNA IN CRC
Recently, the roles of circRNAs in tumorigenesis and other
diseases have received considerable research attention. Accumu-
lating evidence indicates that abnormalities in circRNAs are
associated with colorectal malignancies (Table 1; Fig. 3). For
instance, circHERC4 was highly elevated in CRC tissues and
positively associated with lymph node metastasis and advanced
tumor [59]. In contrast, circPLCE1 was downregulated in CRC
tissues and was linked to poor survival and advanced clinical
stages [54]. Interestingly, the expression levels of circRNAs vary in
different cancer types, indicating their distinct biological roles. For
example, circHIPK3 was significantly upregulated in gastric cancer,
HCC, breast cancer, CRC, and lung cancer tissues and cell lines
[35, 60–62], but downregulated in bladder cancer [63]. Although
several studies have reported abnormal expression of circRNAs in
various cancers [6]; the possible causes of circRNA dysregulation
remain largely unknown and require further investigation.
The dysregulated circRNA expression in CRC could be due to

abnormal expression of host genes, such as chromosomal
amplification, depletion, or translocation. CircPRKCI is a proto-
oncogenic circRNA located in the 3q26.2 amplicon in several
cancers, including lung cancer, glioma, and esophageal cancer
[64]. Therefore, circPRKCI upregulation in cancers may be due to
PRKCI amplification. Fusion-circRNAs (F-circRNAs) are products of
cancer-associated chromosomal translocations in host genes [65].
For example, two novel circRNAs (F-circSR1 and F-circSR2)
generated from oncogenic SLC34A2-ROS1 fusion gene, promoted
cell migration in non-small cell lung cancer [66]. Additionally,
F-circEA generated from oncogenic EML4-ALK fusion facilitated
cell migration and invasion in lung cancer [67]. The fusion genes
produce functional proteins that contribute to oncogenesis.
Several studies have demonstrated the elimination of circRNAs

by RNase L following the release of extracellular vesicles, viral
infection, or poly I: C stimulation. Degradation of circRNAs by

Fig. 2 Mechanisms of circRNA functions. A CircRNAs can act as sponges or decoys for miRNAs. MiRNA binding to circRNAs may release
target mRNAs from miRNA-dependent degradation, resulting in more effective translation. B circRNAs containing RBP motifs (such as HuR,
EIF4A3, P21, and CDK2) may act either as sponges or decoys for the aforementioned proteins while regulating their functions. C circRNAs may
interact with the RNA polymerase II (Pol II) complex containing the U1 snRNP in the promoter region of targeted genes, and significantly
enhance its function. D circRNAs contain ribosome entry sites that may be translated to produce unique peptides under specific conditions.
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RNase L activation can increase protein kinase R (PKR) phosphor-
ylation. Apart from degradation, circRNAs can also be eliminated
from cells via exocytosis. Additionally, circRNAs in exosomes may
be involved in the communication mechanism, indicating the
need for further studies on the degradation and extracellular
transportation of circRNAs. Moreover, circRNAs are abundant in
the cytoplasm and can be transported to exosomes from the
cytoplasm.
Recently, some studies reported that RNA modification at the

m6A site was associated with circRNA degradation, translation,
and expression in cancer cells [68]. The most prevalent internal
alteration associated with eukaryotic ncRNAs is m6A, which
influences RNA stability, splicing, export, translation, and degrada-
tion, all of which affect biological activities. MALAT1 is highly
methylated at m6A, and its two residues can block local RNA
structure formation and facilitate the recognition and binding of
heterogeneous nuclear ribonucleoprotein C (HNRNPC) through an
“m6A switch” mechanism [68]. m6A alteration accelerated
circNSUN2 transport to the cytoplasm and increased the stability
of HMGA2 mRNA to induce CRC metastasis by creating a
circNSUN2/IGF2BP2/HMGA2 complex in the cytoplasm [69].
Recently, m6A-modified circRNAs have been identified using
cell-type-specific methylation patterns. m6A recruits YTHDF3 and
eIF4G2 to regulate protein synthesis from circRNAs. ALKBH5 (m6A
eraser) and METTL3 (m6A writer) can affect circRNA biosynthesis
by altering the m6A levels. For instance, the m6A levels of circRNA-
SORE were elevated in sorafenib-resistant cells and

downregulated when m6A modification was suppressed [70].
Recent findings showed that circCUX1 expression was stabilized
by METTL3-mediated m6A modification [71]. Thus, the loss of m6A
sites or removal of m6A from circRNAs can decrease their
methylation levels, resulting in the dysregulation of circRNAs.
Furthermore, the deregulation of critical components during the
degradation of circRNAs might result in abnormal circRNA
expression.
Super enhancers (SEs) comprises of large putative enhancer

clusters that are enriched to bind key master transcription factors.
These enhancer clusters play key roles in driving tumorigenesis
and act as causal mechanisms for regeneration by regulating
circRNA expression. SEs are frequently dysregulated in cancer and
are central to the maintenance of cancer cell identity. SEs are
important for controlling tumor metastasis, proliferation, and
chemoresistance. SEs are abnormally activated in various tumors,
regulate key target genes in cancer, and promote tumorigenesis
and development. For example, EphA2-SE at core active regions
contains an E1-enhancing component that induces cell prolifera-
tion and metastasis via the involvement of TCF7L2 and FOSL2 to
upregulate EphA2 expression [72]. RNA-seq combined with in vitro
functional experiments revealed that EphA2-SE deletion mediated
the suppression of cell growth and metastasis in HCT-116, HeLa,
and MCF-7 cells, whereas EphA2 overexpression in EphA2-SE−/−

clones reversed EphA2-SE knockdown-induced effects on cell
proliferation and metastasis [72]. Recent studies have shown that
circRNAs are potential SEs that modulate gene expression and are

Fig. 3 Aberrant expressions of circRNAs in CRC patients. circRNAs are aberrantly expressed in blood/serum, cells, CRC tissues, and exosomes
from CRC patients. circRNA dysregulations are highlighted in the figure; ‘Up’ indicates upregulated, ‘Down’ indicates downregulated.
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involved in the pathogenesis of several diseases. Thus, SEs are
likely to control tumor metastasis and chemoresistance by
controlling circRNA expression.

CIRCRNAS PARTICIPATE IN THE PROGRESSION OF CRC
Tumor invasion and metastasis are multistep, complex dynamic
processes involving growth, invasion, metastasis, and intravasation,
and are responsible for most CRC-associated mortalities. Transcrip-
tome analysis identified 80 differentially expressed circRNAs,
including 33 upregulated and 47 downregulated circRNAs, between
CRC and para-cancerous tissues. Circ3823 and circRNA_0000392
were significantly upregulated in CRC tissues and cell lines,
indicating that higher circ3823 and circRNA_0000392 expression
levels could predict poor prognosis in CRC patients [73, 74]. Several
studies have shown that circRNAs can regulate CRC metastasis
primarily by influencing key factors that regulate several pathways
closely associated with CRC metastasis. The mechanism of circRNAs
in CRC metastasis is diverse and includes acting as miRNA sponges,
interacting with RBPs, regulating gene splicing or transcription,
translating proteins, and regulating epigenetics.
CircRNAs are stable in tissues and cells owing to their closed-

loop structure with no 5′ or 3′ ends, thereby preventing
ribonuclease degradation. Additionally, circular sequences include
several miRNA response elements that facilitate the binding of
circRNAs and miRNAs. CircRNAs might therefore function as
natural miRNA sponges to modulate target gene expression. For
example, circ3823 acted as a sponge for miR-30c-5p and regulated
its target TCF7 expression, which increased the expression of MYC
and CCND1 and promoted CRC progression [73]. Additionally,
circRNA_0000392 promoted the proliferation and invasion of CRC
cells through the miR-193a-5p/PIK3R3/Akt axis [74], indicating the
potential of circRNA_0000392 as a prospective therapeutic target
for CRC therapy as well as a prediction marker. However, most
circRNAs are less abundant than miRNAs and may fail to meet the
stoichiometric requirement for a sponge effect.
In addition to acting as miRNA sponges, certain circRNAs with RBP

binding sites may act as protein sponges or decoys. Studies have
shown that circRNAs can bind to RBPs, such as Quaking (QKI), HuR
(ELAVL1), eukaryotic translation initiation factor 4A3 (EIF4A3), and
AlkB homolog H5 (ALKBH5), to play important roles in tumor
progression. circRNAs can interact with regulatory RBPs to influence
the destiny of their target mRNAs. For example, circRHOBTB3 acted
as a HuR sponge and facilitated HuR-mediated PTBP1mRNA stability
[48], indicating that circRHOBTB3 exerted a suppressive effect on
CRC. An increase in AMPK activation in CRC tissues is related to
elevated expression of circACC1, and circACC1 has been demon-
strated to stabilize and enhance AMPK holoenzyme activity by
forming a complex with regulatory β and γ subunits [53]. RNA pull-
down and RNA immunoprecipitation (RIP) assays showed that
hsa_circ_0068631 can bind to EIF4A3 and recruit EIF4A3 to increase
c-Myc mRNA stability in breast cancer [75]. Additionally, cIARS
(hsa_circ_0008367) physically interacted with ALKBH5 and markedly
promoted sorafenib-induced ferroptosis in HCC via inhibition of
ALKBH5-mediated autophagy [76]. Recent research suggests that
distinct RBPs may play varied or opposing functions in the back-
splicing process. For instance, circRNA synthesis can be enhanced by
the RBPs highlighted above; in contrast, circRNA synthesis can be
inhibited by the RNA-editing enzyme ADAR1. ADAR1 significantly
and specifically inhibited the biogenesis of circHIPK3, which altered
the precursor of circHIPK3 secondary structure [77].

CIRCRNAS AS POTENTIAL BIOMARKERS FOR CRC DIAGNOSIS
AND PROGNOSIS
CRC screening and early detection are crucial in enhancing
treatment effectiveness and reducing CRC-related mortalities. CRC
can be undetected over a long period, and only a few cases are

diagnosed after presenting classic symptoms, such as weight loss,
change in bowel habits, and perirectal bleeding. However,
although stool occult blood tests, electronic colonoscopy, and
digital rectal examination have improved the detection of CRC,
effective biomarkers for CRC are necessary for early detection.
Identifying either blood/serum or urine-based epigenetic biomar-
kers could be a promising diagnostic tool, as it would be
noninvasive and inexpensive (Fig. 4).
The sensitivity and specificity of circRNAs provide a valuable

biomarker for CRC diagnosis for several reasons. First, due to
their lack of 5′ or 3′ prime ends, circRNAs are highly resistant to
exonuclease degradation and are extremely stable; thus, they
are highly specific for tissues and diseases [78]. Secondly,
circRNAs are found in cancer cells, solid tumors, peripheral
blood, exosomes, and body fluids such as serum, plasma, and
saliva [79]. For example, circ1662 and circPACRGL were
significantly higher in patients with CRC, implying their
specificity to cancer [8, 80]. Due to their resistance to
degradation and presence in body fluids, circRNAs are the
perfect candidate for noninvasive liquid biopsy, and therefore
they have a high diagnostic potential. Recently, circ-KLDHC10
was successfully detected in serum samples, which can be used
to distinguish patients with and without CRC [78]. A high level
of CircALG1 expression was observed in CRC patients’ periph-
eral blood and tumor tissues and correlated with CRC
metastasis [81], suggesting it may be an important biomarker
for cancer. The importance of circRNAs as biomarkers for CRC
diagnosis and prognosis is emphasized in this research because
they regulate cancer signaling pathways. Numerous studies
have demonstrated the critical roles that circRNAs play in
cancer signaling pathways, including the PI3K/Akt, JAK/STAT,
GEF-H1/RhoA, Wnt/-Catenin, and TGF-/Smad pathways, by
upregulating oncogene expression, downregulating tumor
suppressor genes, and/or downregulating downstream proteins
[82–86]. Thus, circRNAs may be a valuable biomarker for CRC
diagnosis.
CircRNAs possess potential applications as clinical biomarkers

for liquid biopsies considering their resistance to RNase R
digestion, presence as covalently closed continuous loops, and
wide existence in eukaryotes. Particularly, circRNAs are promising
biomarkers for the clinical diagnosis and prognosis of cancer
because they can easily be detected using qualitative real-time
PCR (qRT-PCR), and are highly stable and abundant in bodily
fluids, such as serum/blood, saliva, and urine (Fig. 4). Current
findings have shown that circRNAs exhibit aberrant expression,
increased disease specificity, and clinical implications, making
them potential candidates for CRC diagnosis. For example,
circ3823 upregulation in CRC tissues was correlated with increased
cell proliferation, metastasis, and angiogenesis and was an
independent predictor of poor prognosis in patients with CRC
[73]. Human circRNA microarray analysis indicated an increase in
the expression of 30 circRNAs between CRC and normal tissues,
which may be used as prognostic biomarkers for overall survival
[87]. Additionally, five circRNAs (circ_0003906, circCDC66, cir-
cITGA7, circ_0000567, and circ_0001649) have been identified in
CRC tissues and clinically validated using qRT-PCR and RNA-seq
[88], and area under the curve (AUC) values were 0.818, 0.884,
0.879, 0.865, and 0.857, respectively, indicating their potential as
diagnostic biomarkers. Notably, circ_0001178 had an AUC value of
0.945 [88], indicating a highly effective value for accurate
diagnosis. Additionally, circPTK2 overexpression in CRC tissue
and blood serum was positively linked to metastasis, clinical stage,
and chemoresistance [87]. Moreover, circ5615 upregulation in CRC
tissues was highly correlated with T stage and poor prognosis in
CRC patients [89]. However, circPTEN1 is downregulated in the
peritumoral and tumor tissues of patients with CRC [85].
Decreased expression of circRNA has been reported to facilitate
metastasis and promote cell invasion in PDX models and is an
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independent predictor of poor survival in patients [85]. These
findings suggest that circRNAs possess promising applications as
diagnostic biomarkers for CRC.
Furthermore, certain circRNAs possess potential applications as

prognostic biomarkers for CRC. circHIPK3 significantly promoted
CRC cell proliferation, migration, and invasion, induced apoptosis
in vitro, and facilitated CRC growth and metastasis in vivo [62].
Additionally, circHIPK3 was highly upregulated in CRC tissues and
cell lines, and positively correlated with metastasis and advanced
clinical stages, indicating the potential of circHIPK3 as a predictive
biomarker of CRC. Similarly, Geng et al. observed that
circ_0009361 downregulation promoted proliferation, migration,
invasion, and epithelial-mesenchymal transition (EMT) in CRC cells
[90]. In contrast, circ_0009361 overexpression significantly inhib-
ited CRC growth and metastasis, indicating that circ_0009361
could act as a prognostic biomarker for CRC. Additionally,
circSPARC expression was upregulated in CRC cells and positively
correlated with advanced tumor node metastasis (TNM) stage,
lymph node metastases, and poor survival in patients [83].
Furthermore, correlation analysis indicated that circSPARC expres-
sion was associated with tumor size, invasion, lymphatic
metastasis, distant metastasis, and clinical stage [83]. Kaplan-
Meier analysis showed that high circSPARC levels were associated
with a decrease in overall survival [83], indicating its potential as a
predictive biomarker for CRC.
These findings confirm that certain circRNAs possess promising

potential as diagnostic biomarkers for CRC. However, although
these circRNAs are differentially expressed in tissues, they cannot
be detected in the blood/plasma or serum. Therefore, detecting
circRNAs circulating in liquid biopsies, such as blood/plasma and/

or serum, could facilitate the development of valid test procedures
to distinguish between CRC patients and healthy individuals.
However, several limitations are associated with the clinical

application of circRNAs for cancer as biomarkers. Circular RNAs are
difficult to detect since their sequences are nearly identical to
linear RNAs. Circular RNAs must be distinguished from linear RNA
species using appropriate methods, and these methods need to
be sensitive enough to detect the closed-loop structure of
circRNAs efficiently. For example, circular RNAs can be detected
with qRT-PCR, but when primers are designed using a linear
genome as a template, circRNAs cannot be distinguished from
linear RNAs. Microarray technology is an effective and relatively
sensitive technique for quantifying circRNA expression, but it can
only detect known circRNAs and cannot detect unknown circRNAs
[91]. Apart from the qRT-PCR and Microarray technology, high-
throughput sequencing techniques have become increasingly
popular, such as second-generation high-throughput sequencing
(NGS) and third-generation high-throughput sequencing (HTS).
Thousands of circRNAs in human cells have recently been
identified by applying high-throughput RNA sequencing technol-
ogy and bioinformatics methods [92].
Although several circRNAs can be potential tumor biomarkers,

studies investigating circRNAs as CRC biomarkers are limited. Due
to their lack of sensitivity or specificity, most circRNA biomarkers
are unlikely to be suitable for clinical application. Importantly,
numerous clinical studies should be conducted on circRNAs as
biomarkers will require standardized techniques and bioinfor-
matics methods for their detection. For example, sophisticated
large-scale prospective studies involving collecting serial samples
and establishing time points and intervals are necessary before

Fig. 4 circRNAs as potential biomarkers for the diagnosis and treatment of CRC. circRNAs can act as an indicator of the differentiation of
benign and malignant tumors. Serum circRNAs levels can act as potential biomarkers in CRC diagnosis, providing information for the selection
of appropriate therapeutic strategies by clinicians. The circRNA levels of blood, serum, and urine samples could also serve as important clinical
markers for CRC monitoring, treatment, and prediction of patient outcomes.
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circRNAs can be used as biomarkers. Additionally, circRNA
standardization is a crucial factor in liquid biopsies. Repeated
experiments are necessary to determine the optimal time and
cutoff value for circRNAs to be consistent with patient demands.
Regardless of the challenges, these findings suggest that circRNAs
possess promising applications as diagnostic biomarkers for CRC.

CIRCRNAS AS POTENTIAL THERAPEUTIC TARGETS
More than 70 upregulated circRNAs are actively involved in CRC
tumorigenesis and progression, and silencing them exerts
opposite effects in vitro and in vivo [93]. Thus, these oncogenic
circRNAs may serve as potential therapeutic targets, and target
oncogenic circRNAs’ unique back-splice junctions for degradation
by siRNAs may have anti-tumor properties. Numerous animal
studies have revealed that siRNAs or short hairpin RNAs (shRNAs)
specifically targeting oncogenic circRNAs have been shown to
effectively inhibit the growth, proliferation, and metastasis of CRC
[81, 94, 95]. For example, treatment with an shRNA targeting
circMETTL3 inhibited tumor growth and metastasis in nude mice
xenograft models [96], suggesting that the oncogenic circMETTL3
may serve as a potential therapeutic target. A PDX model for
tumor metastasis was used by Chen et al. to confirm that the
knockdown of circNSUN2 significantly reduced tumor metastasis
in either liver or lung metastasis models [69].
Similarly, targeting circLONP2 by antisense oligonucleotide

(ASO) significantly reduced the penetrance of CRC metastasis to
foreign organs in vivo, including a reduction in both nodule size
and number [97]. Interestingly, Wang et al. confirmed that an
exosome-delivered siRNA targeting hsa_circ_0005963 sensitized
CRC-resistant mice [98], implying a novel approach for reversing
oxaliplatin resistance in CRC. Furthermore, certain drugs and
compounds may exert anticancer activity through circRNA-
associated pathways. For instance, lidocaine treatment inhibited
the proliferation, and metastasis and induced cell apoptosis via
regulating the circITFG2/miR-1204/SOCS2 axis, providing a novel
treatment in improving CRC therapy [99]. Peptide 17 is a YAP-
specific inhibitor that significantly inhibited the proliferation and
metastasis-promoting effect of circPPP1R12A-73aa on colon
cancer cells [100].
It is well known that numerous downregulated circRNAs

negatively regulate CRC growth and metastasis. Due to their high
stability and long half-life, tumor suppressor circRNAs may have
significant anti-tumor effects when expressed in CRC cells or
tissues. Zheng et al. observed that circLPAR1 was downregulated
in CRC tissues and circLPAR1 overexpression treatment reduced
tumor weight and size, implying that it portends poor prognosis
[45]. Moreover, exogenous circRNAs may be delivered by specific
vectors containing gene expression cassettes designed to express
circRNAs or by transfection of purified in vitro-generated circRNAs.
Recent studies have confirmed the synthesis and cloning of
circRNA sequences into special vectors (such as lentiviruses
vectors [LV] and recombinant adeno-associated viral [AAV]
vectors) to produce LV or AAV to transfect CRC cell lines or
animal model and constitutively overexpress the desired circRNAs
[101]; the exogenous circRNA then acted as a tumor suppressor by
sponging multiple miRNAs [102–104]. Engineered circRNAs could
serve as sponges for specific oncogenic miRNAs in CRC cells or
tissues, representing an efficient and innovative treatment
approach for the disease in the future.
Some circRNAs such as circRS-122, circ_001680, circ_0002813,

circ_101277, circ_0000236, and circ-ZEB1 are associated with
chemotherapy resistance (e.g., fluorouracil (5-Fu), oxaliplatin,
cisplatin, and irinotecan) in CRC [55, 98, 105–108]. For this reason,
detecting the expression of these circRNAs may be useful for
predicting the sensitivity of patients with CRC to chemoradiother-
apy in the clinic. In addition, some circRNAs, such as circIFNGR2
and circLHFPL2, are related to drug resistance (e.g., cetuximab and

MEK inhibitor) in CRC [95, 109]. Circular RNAs may be useful for
predicting drug resistance in patients with CRC. Moreover, therapy
targeting these circRNAs may also improve chemoradiotherapy
and drug resistance in patients with CRC. For the treatment of
CRC, antisense oligonucleotides (ASOs) were also developed that
target circularization and secretion elements of circRNAs, includ-
ing circRHOBTB3 [22]. Immunotherapy for CRC patients might be
more effective with interventions targeting circular RNA CDR1-AS
by PD-1/PD-L1 blocking therapies [110]. Finally, a combination of
sh-circQSOX1 and anti-T-lymphocyte-associated antigen-4 (CTLA-
4) could be more effective for overcoming the resistance to
immune therapies mediated by Treg cells in CRC [111].

CIRCRNA THERAPIES
The use of RNA-based therapeutics may provide a potential
treatment for various human diseases, including infectious
diseases, cancers, and lipid-related diseases. For instance, mRNA
vaccines can induce specific immune responses to protect against
infectious diseases and cancers in animal models and humans
[112]. Various RNA-based therapies, such as antisense oligonu-
cleotides (ASOs), siRNAs, ASO anti-microRNAs (anti-miRs), miRNA
mimics, miRNA sponges, circRNA therapies and CRISPR-Cas9-
based gene editing, are performed and found to improve the
quality of life and prolongs the lifespan of patients with various
disease [113, 114]. The FDA and/or European Medicines Agency
(EMA) have approved 11 RNA-based therapeutics targeting
multiple patient tissues and organs [113]. Furthermore, their
study and ours indicated that siRNA is a useful tool for silencing
genes [115, 116]; four siRNA drug candidates (Patisiran, Givosiran,
Lumasiran, and Inclisiran) have been approved by FDA and/or
EMA [114]. Yu et al. designed synthesized chrysotile nanotubes
(SCNTs) to encapsulate siRNA (SCNTs/si-circPRMT5) against the
oncogenic circPRMT5 expression and then inhibited bladder
cancer growth and metastasis [117]. Hence, SCNTs/si-circPRMT5
may have therapeutic value in treating bladder cancer.
Like other RNA therapeutics, circRNA has the potential effects of

modulating gene expression or carrying out modular functions.
CircRNAs served as miRNA sponges, further broadening the
possibilities for inhibiting the oncogenic RNA function. For
example, hsa_circ_001783 promoted breast cancer progression
via sponging miR-200c-3p [118]. Synthetic circRNAs have attracted
more attention due to their strong and stable translation in
eukaryotic cells [119, 120]. Recently, Li et al. developed a novel
circRNA vaccine platform to stimulate robust innate and adaptive
immune responses for the anti-tumor effect in multiple mouse
tumor models [121]. Qu et al. presented the circRNA vaccine
against SARS-CoV-2 encoding the spike protein to protect against
SARSCoV-2 infection [122]. Moreover, they also demonstrated the
use of synthetic circRNAs to produce neutralizing antibodies
against SARS-CoV-2 and hACE2 decoys to neutralize pseudovirus
particles [122]. However, synthesized circRNAs still face many
challenges for their development as therapeutic agents, such as
avoiding sustained overexpression due to their exceptional
properties, the production of highly purified artificial circRNAs,
and their specific delivery. Therefore, further research should be
required to address and overcome these challenges.
In another application, engineered circRNA purified by high-

performance liquid chromatography demonstrated outstanding
protein production quality in both quantity and stability produc-
tion in eukaryotic cells [123]. Thus, circRNA is a viable alternative
to linear mRNA. In addition to engineered circRNAs, CircaRNA-
based aptamers are produced by twister-optimized RNA for
durable overexpression (Tornado) that circularizes RNA to produce
aptamers capable of binding proteins [124]. Despite significant
progress in the research and application of circRNAs, most
candidates are currently in the discovery or preclinical stages. So
far, no circRNA therapeutic candidate has entered clinical trials.
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Numerous medical and research applications exist for CircRNA,
including cancer therapy, protein replacement therapy, and
prophylactic vaccines. In addition, it is important to note that
circRNAs can also be targeted for modulation using other
methods, such as CRISPR-Cas9 or siRNA, and native circRNAs can
be used as biomarkers or sponging agents for various diseases,
especially cancer. Nevertheless, RNA therapeutics, like mRNA-
based therapies, can be translatable to circRNA-based therapies
and provide valuable insights into the development of circRNAs as
therapeutic agents.

CHALLENGES AND FUTURE PERSPECTIVES
Although the biological role of circRNA in CRC has received
increased research attention recently, the role of circRNAs in CRC
treatment has not yet been extensively explored, indicating the
need for further studies. For instance, the biological and molecular
mechanisms of only a few circRNAs in CRC have been elucidated.
Further research is needed to determine the exact mechanisms of
circRNA circularization, degradation, extracellular transport, and
subcellular localization in CRC. Owing to the potential for alternative
splicing of pre-mRNA [125], the internal structure of circRNAs
remains unclear. Recently, a novel algorithm called CircSplice has
been developed and is capable of identifying alternate splicing in
circRNAs and comparing distinct circRNA splicing events [126]. The
patterns of cancer-specific circRNA alternative splicing (circ-AS)
could be characterized using CircSplice, providing a promising
resource for elucidating the regulation and functional implications of
circRNAs in cancers. Several studies on circRNAs mainly focus on
their role as miRNA sponges, RBP sponges, and regulators of mRNA
expression. However, circRNA function may also be regulated by
mechanisms other than those mentioned above. Additionally,
studies are yet to clarify whether circRNAs can be simultaneously
regulated by different molecular mechanisms.
Furthermore, several studies have shown that TME is closely

related to colorectal tumor initiation and progression [127]. In
several cancers, including CRC, the characteristics of the TME
strongly influence tumor invasion, metastasis, proliferation, and
drug resistance [128]. Therefore, research on the role of circRNAs
in TME in patients with colorectal cancer may provide potential
novel biomarkers and therapeutic targets for CRC treatment.
Currently, the clinical applications of circRNA biomarkers are
limited because of their lack of sensitivity and specificity,
indicating the need for further studies using standardized
techniques and bioinformatics approaches.
Although some circRNAs are located in the nucleus (such as

intronic and exon-intron circRNAs) [40], most circRNAs accu-
mulate in the cytoplasm [23]. Numerous studies have demon-
strated that circRNAs can be exported from the nucleus to the
cytoplasm to perform regulatory functions [129, 130]. However,
it is unclear how circRNAs are exported from the nucleus since
they lack characteristics used by RNA export pathways.
Surprisingly, Huang et al. discovered a novel, evolutionarily
conserved pathway for circRNA export [131]. Deleting the
Drosophila DExH/D-box helicase Hel25E accumulates long
(more than 800 nucleotides) circular RNAs in the nucleus
[131]. In recent studies, DDX39B and DDX39A, components of
TREX, Exportin 4 (XPO4), are shown to regulate the export of
exonic circular RNAs, while NXF1/NXT1 determines the export
of cytoplasmic circular RNAs [132]. The NXF1-NXT1 pathway
modulates toxic DPR production through the nuclear export of
circular introns [129]. Researchers have identified DDX39A and
DDX39B as regulators of ecircRNA nuclear export [131]. Recent
studies have shown that DDX39B could unwind R-loops, and
DDX39 participated in ecircRNA export by resolving ciR-loops
[133]. In addition, Chen et al. reported that the conserved XPO4
is linked to the nuclear export of circRNAs in metazoans [134].
Knockout of XPO4 led to the ecircRNA accumulation in the

nucleus [134]. Moreover, Chen et al. identified an N6-methyla-
denosine (m6A) modified circRNA, which can affect cytoplasmic
export and CRC development. For example, m6A modification of
circNSUN2 increased its export to the cytoplasm, forming a
cirNSUN2/IGF2BP2/ HMGA2 RNA-protein ternary complex in the
cytoplasm and promoting CRC by enhancing the stability of
HMGA2 mRNA [69]. Thus, export of circRNA from the nucleus to
the cytoplasm is required for its proper function.
Finally, further studies are required to develop effective circRNA

delivery systems to tumor cells to regulate cancer progression
without immune rejection and with sustained long-term effects.
The applications of circRNAs may be remarkably improved by
exosomes. Several eukaryotic cells and cancerous cells release
extracellular vesicles, known as exosomes, that mediate inter-
cellular communication via the transport of signaling molecules,
including circRNAs, to cancer cells [135]. Exosomes have been
confirmed to contain circRNAs, including circPACRGL, circSHKBP1,
circUHRF1, and ciRS-122 [136]. Interestingly, serum exosomal
circSATB2 levels can be used to identify patients with lung cancer
with high sensitivity and specificity [78]; however, the biological
functions of exosomal circRNAs in CRC requires further study.

CONCLUSIONS
This review extensively discusses the biogenesis, characteristics,
and mechanisms of circRNA in CRC. Particularly, the potential
clinical applications of circRNA as biomarkers for CRC diagnosis
and prognosis and as therapeutic targets for CRC treatment were
highlighted. However, the understanding of the activities of
circRNAs and how they initiate CRC is lacking, indicating the need
for further research.
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