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Tolerance of repeated toxic injuries of murine livers is
associated with steatosis and inflammation
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The human liver has a remarkable capacity to regenerate and thus compensate over decades for fibrosis caused by toxic chemicals,
drugs, alcohol, or malnutrition. To date, no protective mechanisms have been identified that help the liver tolerate these repeated
injuries. In this study, we revealed dysregulation of lipid metabolism and mild inflammation as protective mechanisms by studying
longitudinal multi-omic measurements of liver fibrosis induced by repeated CCl4 injections in mice (n= 45). Based on
comprehensive proteomics, transcriptomics, blood- and tissue-level profiling, we uncovered three phases of early disease
development—initiation, progression, and tolerance. Using novel multi-omic network analysis, we identified multi-level
mechanisms that are significantly dysregulated in the injury-tolerant response. Public data analysis shows that these profiles are
altered in human liver diseases, including fibrosis and early cirrhosis stages. Our findings mark the beginning of the tolerance phase
as the critical switching point in liver response to repetitive toxic doses. After fostering extracellular matrix accumulation as an acute
response, we observe a deposition of tiny lipid droplets in hepatocytes only in the Tolerant phase. Our comprehensive study shows
that lipid metabolism and mild inflammation may serve as biomarkers and are putative functional requirements to resist further
disease progression.
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INTRODUCTION
Chronic liver injury causes ongoing cell death of liver cells,
resulting in a gradual replacement of the normal liver with fibrotic
tissue, leading to cirrhosis in a long-term process [1, 2]. It triggers a
complex response cascade characterized by infiltration and
activation of the immune cells in the liver, leading to both
inflammatory and wound-healing responses and fibrogenesis
[3, 4]. In addition, hepatic stellate cells (HSC) change to a
myofibroblast phenotype characterized by (i) high proliferative
activity; (ii) expression of extracellular matrix (ECM) components;
(iii) gain of contractility, chemotaxis, and migratory properties; and
(iv) the production of large amounts of growth factors and
profibrogenic cytokines promoting fibrogenesis, e.g., TGF-β [5, 6].
Maintaining the balance between quiescence and activation of
HSC is a highly dynamic and convoluted process [7–9].

Accordingly, liver disease progression and regression are highly
variable and can take many years to develop progressed fibrosis/
cirrhosis at the patient’s level [1, 10, 11]. Fortunately, liver fibrosis
and even early cirrhosis are reversible, as shown previously in
experimental and clinical settings [12].
Previous studies on liver fibrosis in response to toxic injury

primarily compared stable disease states, like resistant versus
susceptible mouse strains, including four or six weeks of repetitive
toxic exposure, e.g., carbon tetrachloride (CCl4). Recently, Tuomi-
nen et al. [13] examined the susceptibility of 98 mouse strains (693
livers) to six weeks of fibrosis-inducing CCl4 administration using
transcriptomics. Their report assigned the top 300 down-regulated
genes to metabolic pathways, e.g., biological oxidations, steroids,
and lipids [13]. In addition, several studies analyzed the liver
responses to CCl4 after four to six weeks of administration
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[7, 14–16]. However, dynamic multi-level liver response changes to
repeated injuries and the critical time point in switching response
mechanisms have yet not been identified.
Our study shines a light on these knowledge gaps via

longitudinal multi-omic measurements of liver fibrosis-induced
mice. We established a mouse model with repetitive CCl4
injections twice a week, for ten weeks. We collected samples
(n= 3–6) each week using oil-treated mice (n= 6) in weeks zero
and ten as control. Bi-weekly profiling of proteomics, transcrip-
tomics, and weekly blood- and tissue-level profiling delineated
three independent phases of liver responses: Initiation phase as
immediate response patterns; Progression phase of accumulating
molecular changes; Tolerance phase to endure repeated injury. To
identify critical regulatory liver processes that dampen the effect
of fibrosis, we focused our analysis on the Tolerance phase. In
detail, we used a novel multi-omic network-based data integration
strategy [17] to reveal 13 tolerance-specific key mechanisms,
including lipid metabolism and mild inflammation. A comprehen-
sive histological and biochemical validation proved an increase in
the accumulation of tiny intracellular lipid droplets and mild
inflammation within the fibrotic tissue regions, especially during
the tolerance phase independent of lipophagy. Moreover, a
comparison to public datasets uncovered concordant regulation
patterns of these dysregulated injury-tolerant processes in human
liver diseases, including early fibrosis and compensated cirrhosis
stages. Our findings led us to speculate whether these processes
may act as autoprotective mechanisms to dampen the effects of
fibrosis and represent potential markers for diagnosing the
quiescent state of chronic liver diseases.

MATERIALS AND METHODS
Animal models of hepatic fibrosis
Adult male C57Bl/6N mice were obtained from the Janvier Labs (France),
housed three per cage in a temperature-controlled (24 °C) room with a 12-
h light/dark cycle, and given ad libitum access to water and laboratory diet
(Ssniff, Germany). Mice were maintained for seven days before carbon
tetrachloride (CCl4) intoxication. The dose of CCl4 (Sigma-Aldrich, Cat. no.
319961) was 1.6 g/kg body weight [18] and was prepared as follows: to
3ml of olive oil, 1 ml of CCl4 was added and mixed well. Mice received CCl4
intraperitoneally twice per week. In a time-resolved manner including
weeks 1–10, mice were sacrificed at day two after the last CCl4 injection. An
identical concentration of olive oil was injected into control groups for
10 weeks (Fig. 1a). At the indicated time point, blood and livers were
harvested. The liver lobes were separated as follows: the caudate lobe (for
hydroxyproline), right lobe (for proteomics and transcriptomics), and
median lobe (cryosectioning) were freshly frozen in liquid nitrogen and
stored at −80 °C. Further, left liver lobes were fixed in 4% paraformalde-
hyde (PFA) and embedded in paraffin for histopathological investigations.
The experimental protocols with animals were carried out in full
compliance with the guidelines for animal care and were approved by
the Animal Care Committee from the German government (Animal
permission number: 35.9185.81/G-216/16).

STAM mouse model
STAM mouse (background C57BL6/j) livers were purchased from Stelic
Institute and Co., Inc. (Japan). The mice were generated as described in
[19], and lipid accumulation was quantified [20]. Cryosections from 8 weeks
old mice (steatohepatitis stage) were prepared and stained with Bodipy as
a positive control for comparison with CCl4-exposed mice.

Clinical chemistry
Blood was collected in Li-Heparin vials from the retrobulbar plexus and
centrifuged at 13,000 rpm at 4 °C for 6 min. Plasma was subsequently
stored at − 80 °C until further analysis. Then, alanine aminotransferase
(ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP),
glucose (Gluc), triglycerides (TG), total protein (Prot), blood urea
nitrogen (BUN) and cholesterol (Chol) were measured using a Hitachi
automatic analyzer (Core facility-Medical Faculty Mannheim, Germany).

RNA isolation and transcriptome analysis
Pieces of the right liver lobes were used to perform mRNA isolation with
the InviTrap®Spin Universal RNA Mini Kit from Stratec (1060100300,
Birkenfeld, Germany) according to the manufacturer. RNA concentration
and integrity were summarized in Supplemental Table 1. Transcriptomics
using the isolated mRNA from liver tissues (0, 2, 4, 6, 8, and 10 weeks; n= 3
per time point) was performed by Affymetrix GeneChip®Mouse Gene 2.0
ST Arrays (902118). Affymetrix-based transcriptomics was performed at
NGS Core Facility, Medical Faculty of Mannheim, Germany (https://
www.umm.uni-heidelberg.de/core-facilities/next-generation-sequencing/
ngs/).

Transcriptomic data preprocessing and bioinformatic analysis
Gene expression data obtained by the whole-transcript array GeneChip
Mouse Gene 2.0 ST were pre-processed using ‘affyPLM’ packages of the
Bioconductor Software [21]. Genes with the strongest evidence of
differential expression were obtained using a linear model provided by
the limma-package [22]. Data obtained from untreated mice were used as
a reference. To annotate the microarrays, a custom chip definition file
version 22 from Brainarray [23] based on Entrez IDs was used. A false-
positive rate of α= 0.05 with false discovery rate (FDR) correction and a
fold change greater than 1.5 was taken as the level of significance. To
unravel patterns in the gene expression data for different pathways, the
heatmaps ‘ComplexHeatmap’ [24] package was used. The raw and
normalized gene expression profiling data have been deposited in NCBI’s
Gene Expression Omnibus and are accessible through GEO Series
accession number GSE222576 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE222576).

Reverse transcription-polymerase chain reaction (RT-PCR)
Using RNA isolated for transcriptomics analysis, cDNA was produced from
oligo(dT)18 primer (SO132, Thermo Scientific, Massachusetts, USA), dNTP
Mix (R0191, Thermo Scientific Massachusetts, USA), and RevertAid H Minus
Reverse Transcriptase (EP0451, Thermo Scientific, Massachusetts, USA), and
then used for real-time (rt)-PCR (5× HOT FIREPol EvaGreen qPCR Mix Plus
(ROX), 08-24-00020, Solis BioDyne, Tartu, Estonia) in a StepOne machine.
Sequences of primer pairs were listed in Supplemental Table 2. All primers
were purchased from Eurofins Genomics (Ebersberg, Germany). The mRNA
expression levels of the detected genes were normalized to that of Ppia.

Sample preparation for proteome analysis
The proteome profiling of liver tissue was performed at selected time
points (0, 1, 2, 4, 6, 8, and 10 weeks; n= 3 per time point). Liver tissue was
powdered using a Micro-Dismembrator (B.Braun, Micro-Dismembrator U
Ball Mill), and approximately 10mg aliquots of tissue powder were lysed in
100 µl SDS buffer (4% SDS, 1× Halt protein inhibitor, 40 mM TCEP, 160mM
CAA, 200mM TEAB) by sonication on ice (60 s, 80% amplitude, 0.1 s off/
0.5 s on) and centrifugation (15min, 14,000 rpm, 4 °C). The supernatant was
incubated at 95 °C for 5 min and 70 °C for 30min for reduction and
alkylation. Protein concentrations were determined by BCA assay, and
20 µg of total protein was used for subsequent tryptic digestion. Samples
were prepared using a modified version of the Single-pot, solid-phase-
enhanced sample preparation (SP3) protocol [25]. Briefly, a mix of Sera-
Mag SP3 beads was added to the protein samples in a 10:1 SP3 beads/
protein (wt/wt) ratio. Acetonitrile was added for a final concentration of
70% organic, and the mix was incubated for 18min at room temperature
(RT). Protein-bound beads were isolated on a magnetic rack and washed
twice with 70% ethanol. A third wash was performed using 100%
acetonitrile (ACN). Beads were air-dried and reconstituted in 100mM TEAB
buffer containing Trypsin Gold (Promega) in a 1:25 enzyme/protein (wt/wt)
ratio. Protein digestion was performed for 14 h at 37 °C. The digested
peptides were dried by vacuum centrifugation and stored at −20 °C until
further use. A sample pool, consisting of 5 µg of each sample in the
dataset, was generated. Peptides were then reconstituted in 50mm HEPES
(pH 8.5), and TMT10-plex reagents (ThermoFisher) were added to the
samples (stocks dissolved in 100% ACN) in a 1:10 sample/TMT (wt/wt) ratio.
The peptide–TMT mixture was incubated for 1 h at RT, and the labeling
reaction was stopped by the addition of 5% hydroxylamine to a final
concentration of 0.4%. Different samples were combined and the TMT-
plexes were fractionated into 6 fractions using stage-tip Strong cation-
exchange (SCX) fractionation. Stage-tips were manually prepared using 3
discs of SCX resin (Empore) and conditioned with MeOH, followed by 80%
ACN, 0.5% AcOH; 0.5% AcOH; 500mM NH4AcOH, 0.5% AcOH, 30% ACN;
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Fig. 1 Longitudinal blood, histopathological and biochemical analysis of liver fibrosis dynamics. a Experimental setup using carbon
tetrachloride (CCl4) administration in mice twice per week for 10 weeks. Blood and liver were collected weekly for further multi-level analysis.
Oil-treated mice of weeks zero and ten were used as control. b Kaplan–Meier curve for survival analysis. c Longitudinal blood-based analysis of
alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides, and cholesterol. Results are presented as the mean of 3–6
mice ± SD per week, and a significant difference to control is denoted via *p < 0.05, **p < 0.01. d Cytochrome P4502e1 (CYP2E1), alpha-smooth
muscle actin (α-SMA), picro-sirius red (PSR), and hematoxylin & eosin (HE) staining with positive quantified signals as a percentage of total
area. Scale bars are 100 µm. e Biochemical analysis of the Hydroxyproline level development over the ten-week treatment period.
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20mM NH4AcOH, 0.5% AcOH, 30% ACN, and was equilibrated with 0.5%
AcOH successively. Before SCX fractionation, samples were reconstituted in
0.5% AcOH, sonicated, incubated on a shaker, and loaded onto the stage
tips by centrifugation. Loaded stage tips were washed with 0.5% AcOH. For
elution, descending concentrations of elution buffers (20/40/70/100/250/
500mM of NH4AcOH, 0.5% AcOH, 30% ACN) were used and the flow-
through was collected. Fractions were dried by vacuum centrifugation and
stored at −20 °C.

LC-MS/MS Measurements
Nano-flow LC-MS/MS was performed by coupling an EASY-nLC (Thermo
Scientific, USA) to a Q Exactive HF-X—Orbitrap mass spectrometer (Thermo
Scientific, Germany). The fractions were dissolved in 11 µl loading buffer
(0.1% formic acid, 2% ACN in LC-MS grade water), sonicated, and
incubated on a shaker. 5 µl of each fraction was used for each
measurement. Peptides were delivered to an analytical column
(75 µm × 30 cm, packed in-house with Reprosil-Pur 120 C18-AQ, 1, 9 µm
resin, Dr. Maisch, Ammerbuch, Germany) at a flow rate of 3 µl/min in 100%
buffer A (0.1% formic acid in LC-MS grade water). After loading, peptides
were separated using a 120min stepped gradient from 6% to 50% of
solvent B (0.1% formic acid, 80% ACN in LC-MS grade water; solvent A:
0.1% formic acid in LC-MS grade water) at 350 nL/min flow rate. The Q
Exactive HF-X was operated in data-dependent mode (DDA), automatically
switching between MS and MS2. Full-scan MS spectra were acquired in the
Orbitrap at 120,000 (m/z 200) resolution after accumulation to a target
value of 3,000,000. Tandem mass spectra were generated for up to 18
peptide precursors in the Orbitrap (isolation window 0.8m/z) for
fragmentation using higher-energy collisional dissociation (HCD) at a
normalized collision energy of 32% and a resolution of 45,000 with a target
value of 50,000 charges after accumulation for a maximum of 96ms.

Protein identification, quantification, and statistical analysis
Raw MS spectra were processed by MaxQuant (version 1.6.0.1) for peak
detection and quantification. MS/MS spectra were searched against the
Uniprot mus musculus reference proteome database (downloaded on
October 22nd, 2018) by the Andromeda search engine enabling
contaminants and the reversed versions of all sequences with the
following search parameters: Carbamidomethylation of cysteine residues
as fixed modification and Acetyl (Protein N-term), Oxidation (M) as variable
modifications. Trypsin/P was specified as the proteolytic enzyme with up
to 3 missed cleavages allowed. The mass accuracy of the precursor ions
was decided by the time-dependent recalibration algorithm of MaxQuant.
The maximum false discovery rate (FDR) for proteins and peptides was
α= 0.01 and a minimum peptide length of eight amino acids was required.
Quantification mode with isobaric labels (TMT 10plex) was selected. All
other parameters are defined as default settings in MaxQuant.

Proteomic data preprocessing and bioinformatic analysis
By filtering out contaminant proteins, as indicated by MaxQuant analysis,
and using the corrected reporter intensity for analysis, all proteins with at
least one missing expression value in one of the samples were removed,
leaving 2278 proteins for subsequent analysis. This stringent cutoff was
chosen as visual inspection of the data showed that missingness increases
with reporter intensity, thus protein expression. We computed the ratio per
p protein j on the basis of its sample’s expression s (pj,s) and the samples-
matching protein expression in the TMT10plex isotope reference channel r
(rj) according to (1+pj,s)/(1+rj). One outlier sample was removed after this
stage. Robust quantile normalization was applied to the data using the
MSnSet R package, resulting in final normalized expression ratios used for
statistical analysis. For the identification of differentially regulated proteins
per time point (1, 2, 4, 6, 8, and 10 weeks) when compared to the control
time point (0 weeks), we used a multivariate linear model with time-point
specific dummy variables and protein ratio as a response. To call
differential expression, we subjected p-values of all proteins separately
per coefficient to multiple testing corrections with the Benjamini Hochberg
procedure, also referred to as False-Discovery Rate. The proteome data is
uploaded to the Proteome Xchange Consortium via PRIDE (Access number:
PXD030956). Differential expression per time-point was set to FDR below
α= 0.05.

Multi-omics network inference and analysis
The multi-omic network inference was performed using KiMONo [17]. This
novel versatile tool can use any kind and any amount of omic data by

leveraging prior knowledge. By doing so KiMONo generates a multi-level
network around an omic type of interest, simplifying downstream analysis,
i.e., pathway analysis. In the final multi-level network, nodes represent
features like proteins, genes, or clinical variables and the connections
between them denote effects identified within the input data. Here, we
used KiMONo to generate three networks centered around the three given
data types and combined them to enhance the signal within the time-
resolved data. This was done by only reporting effects that were found in
all three multi-omic networks. To infer each network, we used three
different priors providing information about already known relations
between the transcriptomic, proteomic, and clinical data. In KiMONo the
priors serve as a rough blueprint, reducing the complexity and improving
the algorithm’s performance. The first priority was obtained via the Biomart
tool annotating genes to proteins. The second priority is based on the
BioGRID database to include information about protein-protein relations
[26]. As a third priority, we used all previous annotations to identify indirect
gene-protein interactions. This was done by using BioGRID interactions
information also to annotate genes to proteins of their coding protein.
Finally, we set off to generate a prior, which would annotate the omic
information to our clinical data. Therefore, we first inferred the
transcriptomic and proteomic centered networks and used the information
about all potential effects of clinical features prior to the clinical centered
network inference. The importance of network nodes was estimated via
the network’s betweenness centrality. This measure is estimated by
determining the shortest path between all nodes within the graph. The
betweenness centrality for a node is then estimated by the number of
shortest paths that pass through a node. Small modules (2–3 nodes) were
manually functionally annotated to biological function using the
GeneCards database [27], avoiding false positives during the annotation
process. All other modules were first annotated using the online pathway
analysis tool PathwaX II [28] and the KEGG [29] and Reactome [30]
pathways. Significantly, enriched pathways (FDR < 0.05) were manually
curated to identify overarching functional themes which were assigned as
labels to modules. Moreover, we also manually annotated small modules
(2–3 elements) via literature search.

Comparative analysis with available mouse and human
cohorts
We obtained 1034 human samples across 11 liver disease-related datasets
(different etiologies) via NCBI’s Gene Expression Omnibus (GEO), see
Supplemental Table 3. Significant differentially expressed (DE) genes
(FDR < 0.1) have been extracted by using the GEO2R interface and its
default settings. Further, we identified mouse orthologous genes using the
Inparanoid 8 databases [31]. For further validation, we analysed the
identified 210 tolerance genes with liver expression data of a human cohort
of different stages of chronic liver diseases (GSE139602) including early
fibrosis and compensated cirrhosis as well as mice of different ages upon
long-term CCl4 treatment (GSE167216).

Hepatic hydroxyproline determination
Hydroxyproline (HYP) was determined colorimetrically in triplicates from
snap-frozen liver lobes as described in Fels [32] with modifications. Briefly,
approximately 100 mg of tissue from the caudate liver lobe was
homogenized and hydrolyzed in 2 ml of 6 N HCl at 110 °C for 16 h. HYP
content was then measured photometrically at 558 nm. Based on relative
HYP (per 100 mg of the frozen liver), total hepatic HYP was calculated
(total liver, as obtained by multiplying liver weights with relative
hepatic HYP).

Liver histology and Immunohistochemistry
The left lobe was fixed in 5ml 4% PFA at 4 °C for 2 days for paraffin
embedding. Formalin-fixed, paraffin-embedded (FFPE) liver sections were
stained with hematoxylin and eosin (H&E) for assessment of liver structures
and inflammation. For assessment of hepatic fibrosis, FFPE sections were
stained with Sirius Red (Sigma, 365548-5 G). FFPE liver sections were
incubated with primary antibodies against α-smooth muscle actin (α-SMA)
(Abcam, ab5694, 1:100), rat anti-F4/80 (BioRad, MCA497R, 1:100), or rabbit
anti-CYP2E1 (Sigma, HPA009128, 1:100) to assess activated HSC, resident
macrophages, and pericentral hepatocytes, respectively. The slides were
scanned shortly after the staining procedure using the slide scanner Aperio
8 (Leica). Digital pathological analysis was performed using ImageJ (https://
imagej.nih.gov/ij/) on an equal number of pictures per mouse (10–15
images) under constant magnification (10X).
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Preparation of cryosections, staining of lipid droplet and
autophagy and lipophagy markers
Part of the median lobe was embedded in tissue-Tek (VWR, 25608-930) and
kept at −80 °C till cryosectioning. Cryosections (5μm thickness) were fixed
in 4% PFA for 15min, then briefly washed with running tap water and 60%
isopropanol. Then cryosections were incubated with Bodipy (Life
Technologies, D-3922, 1:250), LC3 (Abgent, AP1802a; 1:100), LAMP1
(Abcam, ab24170, 1:100), or PLIN3 (ProSci, 3883, 1:100) for 30min. After
rinsing steps with 60% isopropanol, cryosections were incubated for
30min with donkey anti-rabbit cy3 (Diannova, 711-166-152, 1:200). Finally,
the slides were incubated either with Draq5 (Cell Signaling Technology,
4084 L, 1:5000) or DAPI (Invitrogen, D1306, 1:1000). Two tile scans of 9
images each per mouse for quantification were acquired using confocal
microscopy (Leica SP8, UMM-Core facility Mannheim, Germany). Lipid
droplets quantification was performed using ImageJ (https://
imagej.nih.gov/ij/) on tile scans.

Statistical analyses
Statistical analyses and heatmaps were performed in Prism (Version 8,
GraphPad Software). Data are shown as mean ± SD of 3–6 mice per group
and the two-tailed Student’s t-test was calculated when shown.
p-values < 0.05 (*), < 0.01 (**), < 0.001 (***), < 0.0001 (****) are indicated.

RESULTS
Liver response program switches after six weeks of induced
fibrosis
Liver fibrosis is induced by repetitive injections of CCl4 for
10 weeks (Fig. 1a). The survival analysis shows that within the first
six weeks each week, 5% of CCl4-administered mice died,
resulting in a total loss of 10% of the tested animals. Interestingly,
the repeated injuries caused no further mortality after week six
(Fig. 1b), suggesting that post-six-week survivors developed an
injury-tolerant response program. During the same treatment
period (weeks 0–6), all mice treated with CCl4 had a significant
liver-to-body weight gain (Supplemental Fig. 1a and b). Moreover,
we observed that the alterations in survival rate were accom-
panied by an oscillating increase of well-established liver damage
biomarkers—serum alanine aminotransferase, ALT (p < 0.05), and
aspartate-transaminase, AST (Fig. 1c) (p < 0.05). ALT levels peaked
after two weeks of treatment, while we detected no further
increase of AST after week six. Markers for bile duct damage
(alkaline phosphatase, ALP) and kidney function (blood urea
nitrogen, BUN) showed no significant alterations compared to the
control (Supplemental Fig. 1c, d). Blood triglyceride (TG) levels
presented a continuous increase in a time-dependent manner
until week five (Fig. 1c) and returned to control levels towards
week ten.
Additionally, we observed a trend for a decrease in glucose and

total protein content (Supplemental Fig. 1f) but no significant
changes in blood cholesterol (Chol) (Fig. 1c). These blood level
analysis findings represent a first response to the CCl4-induced
fibrosis within weeks zero to six. Combined with the phenotypic
information and the survival rate, it suggests a switch of the liver
response program between weeks five and seven to a tolerable
fibrosis phase.

The longitudinal tissue-based analysis suggests three liver
response phases
We performed a comprehensive histological and biochemical
analysis to examine the liver response dynamics on a structural
level. We determined the protein level (Fig. 1d, CYP2E1) and
mRNA expression of Cytochrome P4502e1 (CYP2E1), the key
metabolizing enzyme of CCl4, using RT-PCR (Supplemental
Fig. 1g). Both mRNA and protein levels showed constant levels
of CYP2E1 even after week six of repeated liver injury, indicating a
stable and lower metabolic capacity of the liver. Quantitative
morphometric assessment of alpha-smooth muscle actin (α-SMA
positive), representing activated hepatic stellate cells (HSC),

revealed massive accumulation during the first six-week period
of repeated CCl4 exposure (Fig. 1d, α-SMA). Despite the
continuous CCl4 administration, no further increase in α-SMA
positivity was observed at the later time points (Fig. 1d, α-SMA
positive area). Likewise, the ECM deposition analyzed by
quantifying picrosirius red (PSR) positive areas showed the same
behavior and did not increase beyond six weeks of exposure
(Fig. 1d, PSR). Using a biochemical assay, we evaluated the
hydroxyproline liver levels, HYP, a major component of collagen,
to show that the ECM-related changes are not local or sparse
events but organ-wide alterations caused by continuous CCl4
administration (Fig. 1e). Finally, H&E staining demonstrated
marked cell necrosis, inflammatory reaction, and formation of
septal damage (Fig. 1d, HE). The significant non-linear fibrotic
tissue accumulation corresponds to METAVIR stage 2 or 3 of
fibrogenesis. Hence, this result aligns with a previous report
showing an increase in METAVIR stage is associated with a
progressive non-linear increase in the fibrosis area [10]. This
biochemical and histopathological analysis underpins the notion
of different response phases. Moreover, the findings show a
response phase that tolerates repeated injuries after six weeks,
independent of the metabolic bioactivation of CCl4.

Transcriptomics and proteomics divide the identified
regulatory programs of liver fibrosis into the initiation,
progression, and tolerance phase
The dynamics of structural changes detected at the tissue level
indicate underlying molecular alteration best studied at the
transcriptional and proteomic levels. Therefore, we profiled the
transcriptome of 18 mice across weeks two, four, six, eight, and
ten using Affymetrix microarrays (Supplemental Table 1) and RT-
PCR for several fibrogenic genes (Supplemental Fig. 2). Differen-
tially expressed (DE) genes between control and two, six, and ten
weeks were identified using an FDR < 0.05 and absolute log fold
change > 1.5 (Fig. 2a). The highest number of 1812 DE genes was
observed at week six (Fig. 2b, c), supporting the tissue-level
analysis (We also detected the highest structural alteration during
the sixth week). Based on a Principal Component Analysis (PCA),
we grouped the time points shaping three phases of early liver
fibrosis—phase I (week zero–three), phase II (week four–six), and
phase III (week seven–ten) (Supplemental Fig. 3a). Pathway
annotation of each phase’s DE geneset identified several
metabolic pathways and the ECM pathway as enriched (Supple-
mental Fig. 3a). These are activated throughout phases I & II and
stabilized or reduced during the last phase III (Supplemental
Fig. 3). Between these DE sets, 467 genes were commonly
regulated and enriched for ECM and inflammation pathways
(Fig. 2c). We identified reduced molecular regulation (210 unique
DE genes, Fig. 2d) in phase III, reflecting previous findings and
marking an adaptation to repeated injuries; hence we coined
phase III—the tolerance phase. Analysis of time-resolved expres-
sion of the tolerant DE genes (Fig. 2e) underlines the dynamics of
fibrogenic genes, e.g., Actin alpha 2, smooth muscle (Acta2),
Collagen type I alpha 1 chain (Col1a1), and Collagen type I alpha 2
chain (Col1a2), until week six and a decreased regulation during
the tolerance phase. Additionally, we can observe an increase in
fatty acid synthase (Fasn) (lipogenic gene) during the late
tolerance state (Fig. 2d, e).
Proteomic measurements were performed by multiplexing

using isobaric labeling with TMT 10-plexes followed by MS/MS
analysis, which identified 4222 proteins. For 2278 proteins,
expression values were detected in all samples and subjected to
bioinformatics and statistical analysis. We derived significant
(FDR < 0.05) differentially regulated proteins by comparing control
to weeks one, two, four, six, eight, and ten (n= 20) (Fig. 3a).
Overall we observed similar regulation patterns as in the
transcriptomics analysis. We found only six and 34 deregulated
proteins in weeks one and two, while 225 and 221 proteins were
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differentially regulated in weeks four and six and only 64 and 86 in
weeks eight and ten (Fig. 3b). The relative number of identified
regulated proteins compared to the total number of proteins
identified by MS/MS was in line with the observed transcriptomic
changes. We identified 22 common deregulated proteins shared
between all phases and 23 specific to the tolerance phase
(Fig. 3c, d). The pathway enrichment based on proteomic results
also showed several enriched metabolic pathways and an induced
ECM pathway during phase I and phase II, which is in line with our
transcriptomics findings (Supplemental Fig. 3). Time-resolved
expression analysis of selected proteins (Fig. 3e) showed a
dynamic increase of fibrogenic genes, e.g., collagens, baculoviral
IAP repeat-containing protein 6 (BIRC6; anti-apoptotic gene), fatty
acid synthase protein (FASN), and stability of metabolic genes like
cytochrome P450, family 2, subfamily f, polypeptide 2 (CYP2F2)
and glutamine synthetase (GLUL) during the tolerance state.
Interestingly, almost all phase I altered genes (95%) and proteins

(75%) were also deregulated in the other phases indicating a
stereotypical liver response to stress (Figs. 2d and 3d, Heatmaps).
Together with the previous results obtained at the different
analysis levels, the pattern of differentially regulated genes and
proteins suggests a dynamic early liver response in three phases.
These were coined: (i) initiation phase (weeks one–two) as
immediate response patterns to repeated injuries; (ii) progression
phase (weeks four–six) of accumulating molecular changes upon
repeated injuries; (iii) tolerance phase (weeks eight–ten) to endure
repeated injury.

Multi-level network analysis of liver tolerance captures human
liver disease profiles
To dissect key factors determining the response of the liver to
repeated injuries, we generated a fully integrated map combining
transcriptomic, proteomic, biochemical, and histopathological
data. We incorporated and analyzed all available data using the

Fig. 2 Time-resolved transcriptome analysis of liver exposed to CCl4. a Volcano plots illustrate identified DE genes of weeks two, six, and
ten of CCl4 exposure. b The number of DE genes is visualized in the bar chart. Time points are grouped into three phases characterized by the
disease dynamics of liver fibrosis. c Venn diagrams show the unique and shared amount of genes between the phases. d Heatmap of 210
phase III specific DE genes (n= 3 mice per time point). e Diagram visualizing the regulation in a time-resolved manner of the genes; Acta2,
Col1a1, Col1a2, and Fasn.
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recently published multi-omic network inference strategy—
KiMONo (pipeline Fig. 3f, result Fig. 4a, b) [17]. This analysis
strategy allowed us to identify molecular patterns that covary with
tissue-level histological parameters. In this inferred multi-level
fibrosis network, nodes represent proteins, genes, or biochemical
parameters, and connections denote statistically identified effects
between them. We trimmed the generated network by excluding
all node models with low goodness of fit (R^2 < 0.1) and all effects
weaker than beta < 0.002. The filtered network contained 8199
nodes connected via 16398 links. We identified tolerance phase-
specific network modules via extracting nodes associated with
deregulated unique genes and proteins within the phase. This
resulted in 13 distinct network modules consisting of 68 injury-
tolerant specific nodes. The minor consists of 2 nodes, while the
largest comprises 29 nodes (Fig. 4a, b). On average, functional
annotation identified 22.6 significantly (FDR < 0.05) enriched

pathways per module. Based on this annotation, we themed the
most prominent modules into Inflammation, Lipid metabolism,
Pathways in Cancer, Carbohydrate module, NF-kappa B signaling,
and Immune system. Even though functions/modules like
inflammation have been previously associated with liver fibrosis
progression and regression [33], we also detected multi-level
evidence for novel mechanisms like lipid metabolism and
carbohydrate modules (Fig. 4a, b). These were also the most
extensive multi-modal modules and would have been overlooked
by only analyzing the different measurements independently. The
most extensive module was enriched for Pathways in Cancer,
encompassing well-known cancer-related genes orthologous to
humans, like Serine/threonine-protein kinase 1 (Pak1), Cell division
control protein 42 homolog (Cdc42), or Cyclin-dependent kinase 5
(Cdk5) (Fig. 4a, Supplemental Tables 4 and 5—Module 11) [34–37].
We compared these findings to significant (FDR < 0.05) DE genes

Fig. 3 Time-resolved proteomic analysis of liver exposed to CCl4. a Volcano plots of differentially regulated proteins in weeks two, six, and
ten. b The number of differentially regulated proteins is visualized via the bar charts. Time points are grouped into three phases characterizing
the disease course of liver fibrosis. c Venn diagrams illustrate the unique and overlapping amount of proteins between the three phases.
d Heatmap of uniquely deregulated proteins during phase III (n= 2–3 mice per time-point). e The longitudinal regulation of the proteins
BIRC6, CYP2F2, FASN, and GLUL. f KiMONo models performed integration of proteomic, transcriptomic, blood, and tissue measurements.
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Fig. 4 Tolerance specific modules in CCl4-induced fibrosis. a We identified 13 tolerance phase-specific modules within the multi-omic fibrosis
network by extracting differential regulated genes, proteins, and network neighbors. Network nodes are only connected when statistical effects
are detected within the data. Node sizes refer to their importance within the network, which relate to the high or low effects of CCl4 treatment.
b Functional annotation and average regulation of network nodes for initiation, progression, and tolerance phase. Significant (FDR < 0.05)
downregulation (blue) and upregulation (red) are visualized within the heatmap. Bold node names denote uniquely differential regulation within
the tolerance phase. c Significantly (FDR < 0.05) differentially expressed genes of seven human studies investigating fatty liver disease (steatosis),
non-alcoholic fatty liver disease (NASH), alcoholic liver disease (ALD), and hepatocellular carcinoma (HCC).
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of several human liver diseases. DEGs were computed separately
for each human disease, thus comparing a gene’s expression to its
matched control sample cohort. We identified concordant
expression patterns (regulation of human DEG per disease
matching mouse direction of regulation) for most of our identified

modules, especially with alcoholic liver disease (ALD) and
hepatocellular carcinoma (HCC). Within the inflammatory and
immune system modules, we found Histocompatibility 2, Q region
locus 1 (H2-q1), General transcription factor II-I repeat domain-
containing protein 1 (Gtf2ird1), Retinoid X Receptor Alpha (Rxra),
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Jun Proto-Oncogene, Ap-1 Transcription Factor Subunit (Jun),
NEDD4 Binding Protein 2 (N4bp2), and B-cell lymphoma
3-encoded protein (Bcl3) as significantly upregulated genes in
human. However, less overlap of significant DE genes was
observed between our results, non-alcoholic fatty liver disease
(NASH), and steatosis. The profile comparison of lipid metabolism
to humans also showed that known key elements like Fasn, Ilk,
Ahsa1, Ughd, or Insig1 align with expression profiles from NASH,
ALD, and HCC. These findings are also in line with recent literature,
which associates these genes with liver diseases [38–41].

Histological and biochemical validation of multi-level modules
identifies lipid metabolism and mild inflammation in
tolerance phase
To validate the detected modules, we first focused on the known
association between inflammation and liver disease progression
(Supplemental Fig. 4a, b). Histological staining of F4/80 (a marker
for resident macrophages) and gene expression (ADGRE1)
revealed F4/80 positive cells infiltrated the injured liver tissue,
but no further infiltration was observed during the tolerance
phase (Supplemental Fig. 4a, b). These results show that we can
validate KiMONo’s multi-level modules not only via literature and
external data but also experimentally. We focused on the multi-
level Lipid metabolism module in a second validation step. This
mechanism was identified as being altered explicitly in the
tolerance phase. Therefore, we applied immunofluorescence (IF),
immunohistochemistry (IHC), and RT-PCR to confirm these
findings. Using HE, PSR, ɑ-SMA, and F4/80 staining, we uncovered
voids in tissue accumulated within the fibrotic areas (Fig. 5a). By
histopathological analysis, we observed that these voids were
overloaded with hepatocytes with lipid droplets (LD, Fig. 5b). To
investigate intracellular LD further, we established Bodipy staining
using cryosections. The results aligned with the multi-level
analysis and showed a major increase in intracellular lipid
accumulation in a time-dependent manner (Fig. 5c). We under-
pinned this using quantification of LD (Bodipy positive areas),
showing a significant (p < 0.005) lipid accumulation after six
weeks, in agreement with the in-silico analysis of KiMONo (Fig. 5c).
Next, we validated the gene nodes within the lipid metabolism
module via RT-PCR. Here we focused on central regulators of de
novo lipogenesis, namely Fasn, sterol regulatory element-binding
transcription factor 1 (Srebp-1c), and stearoyl-CoA desaturase 1
(Scd1). These were significantly upregulated within the tolerance
phase of CCl4-induced fibrosis (Fig. 5d). To further validate that the
lipid metabolism is mainly disturbed during the tolerance phase,
we analyzed the expression of carnitine palmitoyltransferase 1
(Cpt1), and acyl-CoA oxidase 1 (Acox1), and peroxisome
proliferator-activated receptors (PPAR-ɑ and γ). All three showed
a downregulation during the initiation and progression phase and
recovery to the basal level during the tolerance phase (Supple-
mental Fig. 5a). Finally, we used a STelic Animal Model (STAM,
steatosis-NASH-based mouse model) to compare the size of LD of
CCl4-tolerated livers as a positive control for LD recognition (Fig.
5e). This comparison shows that LD in CCl4-tolerated livers were
small compared to the LD inSTAM mice (Fig. 5e). Overall, the
validation experiments indicate a tuning down of inflammatory

processes during the tolerance phase and confirm the accumula-
tion of tiny LD in CCl4-tolerated liver hepatocytes. As a result,
these modulations of liver response protect the liver from further
CCl4-induced damages. LD accumulation is controlled by the
balance between lipogenesis and degradation, therefore, we
investigated whether lipid degradation is also modulated during
initiation or progression stage by auto(lipo)phagy as possible LD
degradation mechanism. IF staining (Fig. 5f) and RNA analysis
(Fig. 5g) of typical autophagy parameters LC3, PLIN3 and
LAMP1 showed no significant alteration between initiation,
progression and tolerance phases. The data were in agreement
with enrichment plots of autophagy and phagosome components
from time-resolved analysis of the array data (Supplemental
Fig. 5b). This indicates that de novo synthesis of lipid represents
the main factor for droplet accumulation during tolerance phase.
To investigate whether the expression of the 210 identified

tolerance genes remain altered upon long-term intoxication, we
analysed the data of a mouse cohort (GSE167216) that was
challenged with CCl4 for up to one year [42]. We found 168 shared
genes in our dataset (GSE222576) and GSE167216. From these,
several displayed similar expression profiles at 2 and 6 months
after CCl4 exposure (proposed tolerant phase), but showed altered
expression profiles at the 12 months time points i.e., among others
Hsd17b2, Emcn, Apon, Ugdh, Slc43a1 ggta1, Acss2 Acss3, Abdh4
(Supplemental Fig. 6a, heatmap, red asterisk). Next, to investigate
the clinical relevance of identified 210 genes (GSE222576) in CLD
cohort of patients (GSE139602; [43] including early chronic liver
disease (eCLD, n= 5) and compensated cirrhosis (CC, n= 8)
compared with healthy (n= 6) livers (Supplemental Fig. 6b, Venn
diagram). Surprisingly, we found that 15 genes (ACACA, COX5B,
IL1RN, MMP7, INSIG1, RALGPS1, TSKU, EFHD2, ACSL5, CCDC159,
FAM69A, PMVK, SLC35D2, HSDL2, and SPATS2) overlapped with
the genes of CC patients, in contrast only 5 genes (S1PR1, PAK1,
CLCN6, ACPP and EMCN) overlapped with genes of eCLD patients
[43]. In conclusion, our data indicate that the identified and
hypothesized tolerance phase upon repeated CCl4 intoxication is
associated with accumulation of tiny LD and mild inflammation.
The tolerance phase starts at around 8 weeks and remains for at
least 6 months to cope with repetitive insults and maintain liver
function. Our analysis opens a new venue on the presence of gene
signatures that are related to compensate against ongoing
damage, similarly in mice and patients with liver diseases that
could be targeted to interfere with disease progression. Further
functional studies are warranted to get further evidence for our
hypothesis.

DISCUSSION
This study identified lipid metabolism and mild inflammation as
potent multi-level liver response protection mechanisms against
fibrosis. CCl4-induced liver fibrosis is a commonly used and highly
reproducible model in rodents. CYP2E1 metabolizes CCl4 to highly
reactive free radical metabolites, particularly trichloromethyl and
trichloromethyl peroxy free radicals which attack polyunsaturated
fatty acids in membranes causing membrane disruption [44]. We
established a fibrosis-induced mouse model with CCl4 injections

Fig. 5 Validation of lipid metabolism induction during the liver response’s tolerance phase. a Voids appeared as whitish areas in the liver
tissue. The spatial distribution of these voids was along fibrotic regions. HE and PSR staining show the specific circular void structure and, in
some cases, small nuclei. Additionally, we found that these voids are surrounded by α-SMA or F4/80 positive cells (arrowhead). b Using a
specific lipid droplet staining, namely Bodipy, we show that these voids are part of hepatocytes overloaded with lipid droplets. c Longitudinal
Bodipy staining to visualize and analyze lipid droplet accumulation in a time-resolved manner. Scale bars are 100 µm. d mRNA levels validated
by RT-PCR of lipid metabolism-related targets Srbp-1c, Scd1, and Fasn. e Lower magnification images comparing CCl4-induced fibrosis week
eight to week six Stellic animal model (steatosis-NASH based model as a positive control for lipid droplet recognition). f IF staining of lipid
droplets with bodipy (green), microtubule-associated protein 1 A/1B-light (LC3, red), lysosomal-associated membrane protein (LAMP1, red),
and prellipin 3 (PLIN3, red). Scale bars are 25 µm. g mRNA expression of LC3, PLIN3 and LAMP1 across the different time points.
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twice a week, for ten weeks. Even though all mice were genetically
identical, 10% were unable to cope with acute injury of CCl4. This
loss might occur due to the inter-individual liver responses, which
could be further investigated using single-cell technologies but
remains unexplored and unexplained.
Our study design aimed for a matched multi-level data

generation to decrease potential biases and variation between
the measurements. Therefore, we performed weekly phenotypic,
histological, biochemical, and biweekly transcriptomic and pro-
teomic measurements. We applied each measurement technique
in the same lobe to reduce the biological variation between
samples. Lobe samples were collected once a week over ten
weeks. Control samples were collected on weeks one and ten
using oil-administered mice. These groups were merged after
statistical analysis, which revealed no significant difference
between them, increasing the statistical power 2-fold.
The measured levels of circulating liver enzymes ALT and AST

indicate a dynamic range of liver response. ALT and AST levels in
weeks four and six are in accordance with the previous reports
[33]. Also, fibrosis and inflammation features are pronounced at
weeks four and six, which was reported before across a similar
period (day two & week four) [33].
Independent state-of-the-art proteome and transcriptome

analysis was performed, and using PCA, we identified three
different liver disease phases: initiation, progression, and toler-
ance. Statistical power was sufficient to extract significant DE
genes in each phase, even though protein and transcriptome data
were measured biweekly. However, additional work will be
needed to explore how long the tolerance phase progresses after
ten weeks of CCl4 exposure. Our pathway enrichment analyses
detected that ECM and other metabolism-related pathways were
active for ten weeks, in line with other recent studies [13].
Noteworthy is that we observe similar pathway activity in our
model even though Tuominen et al. [13] used half the dose of CCl4
(0.8 g/kg). Also, Knockaert and co-workers observed lipid droplets
3 hours after CCl4 administration [45]. Furthermore, in a long-term
study (1 year; GSE167216), Ghallab and co-workers also showed
that lipid metabolism is induced in CCl4-exposed mice [42].
In primary hepatocytes, it is reported that steatotic conditions

enhance the inhibition of metabolic enzymes compared to non-
steatotic situation [46]. Moreover in human, acetaminophen
toxicity is higher in non-obese (BMI: 18.5–24.9 kg/m2; 37.5%) than
the obese ones (BMI: ≥30 kg/m2; 27.5%) [47]. Similar pathways
were also confirmed as activated in other model organisms, e.g.,
rat [48]. This suggests that the observed liver response might be
dose, species and strain-independent. Our transcriptomic and
proteomic analysis indicates a point where the injured organ
cannot cope with excessive ECM accumulation and switches the
program to be more tolerant to further damage. However, such
complex multi-level liver responses haven’t been covered in other
studies [49–51].
We integrated and overlaid evidence at multiple levels,

obtaining more profound insights into the liver response
regulatory mechanisms. By using our novel knowledge-guided
multi-omic network inference tool KiMONo, we integrated all
measured information levels in the form of a network. We further
extracted 13 modules specific to the tolerance phase and themed
them accordingly. Even though the inferred CCl4 injury network
has the potential to shed light on the initiation phase and
progression phase effects as well, we focused on the tolerance
phase to identify novel protection mechanisms. This tolerance
phase seems to start early after 6 weeks of intoxication (our
datasets) and lasts longer than 6 months as shown in Fig. 1 (PSR
images), Fig. 4 (pericentral and periportal genes) and Fig. 5 (CYPs
expression), by Ghallab et al. [42]. Future work on the initiation
and progression phase could lead to insights into first-responder
injury processes, like wound healing (ECM accumulation), that are
fascinating effects to be further investigated.

The literature validation of single nodes triggered a comparison
between our multi-level findings in our murine and human liver
disease datasets. Even though we initially obtained 29 different
disease data sets, we selected those studies with representative
sample sizes. This reduced the amount to seven comprehensive
studies on steatosis, NASH, ALD, and HCC. We found several genes
that were consistently deregulated in human liver diseases within
this data. Although our study has identified high confidence
candidate genes for fibrosis tolerance, follow-up with single-cell
data and knockdown/overexpression in specific cell types in the
liver will be required for functional validation.
So far, we have applied a series of validation experiments for

lipid metabolism. All are in line and revealed a significant
accumulation of small intracellular lipid droplets during the
tolerant phase. At these time points, several lipogenic genes
e.g., Srebp1c, Scd1, and Fasn, are significantly induced compared
to control and the progression phase. Furthermore, we detected
no significantly different regulation of PPAR-α and γ between the
initiation, progression, and tolerance phase. This contradicts a
previous study that has shown that PPARα is a key protein
involved in liver lipid metabolism, and its induction results in de
novo hepatic lipogenesis [52]. Next, we can show that several
genes were deregulated during compensated liver cirrhosis in
human indicating the clinical relevance of our findings.
Moreover, we confirmed sustained inflammatory processes,

identified by KiMONo, via staining and detecting F4/80 cells near
fibrotic areas. This tuning down of F4/80 expressing cells is due to
a fibrosis resolution CCl4-based model as reported previously [33].
Therefore, we assume that surviving mice after week six
experience a reversion of TG in the blood to an average level,
accompanied by increased microvesicular droplets as features of
liver tolerance.
In conclusion, we used a multi-level analysis to identify three

phases of early liver response to repeated toxic injuries (Fig. 6). (i)
The initiation phase; reflects the first treatment response. Acute
liver damage, fibrogenesis, and macrophages accumulation while
metabolizing enzymes are downregulated. (ii) The progression
phase; characterized by stabilizing all parameters or increasing
them slightly. (iii) The tolerance phase; No further mortality is
observed. Survivors developed a dysregulation of lipid metabo-
lism while all other parameters were normalized, which led us to

Fig. 6 A schematic diagram summarizes liver response to
repetitive toxic injuries. In the initiation phase, liver damage,
fibrosis, and macrophages were accumulated while down regulating
metabolizing enzymes. In the Progression phase, either further
accumulation or no change of these parameters compared with the
initiation phase. During the tolerance phase, except for dysregula-
tion of lipid metabolism, all parameters had a trend to be
normalized. Accumulation of intracellular lipid droplets is a key
feature of the tolerant phase and will be studied in the future.
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hypothesize that the liver has an active auto protection program
when harmed repeatedly.
Ultimately, we expect lipid metabolism to be a potential marker

for the state of human liver damage under chronic conditions,
potentially allowing subsequent studies to approximate the
individual point of no return of our otherwise regenerative liver.

DATA AVAILABILITY
All data generated or analyzed during this study are available from the
corresponding authors upon reasonable request.
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