
ARTICLE OPEN

XIAP deletion sensitizes mice to TNF-induced and RIP1-
mediated death
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XIAP is a caspase-inhibitory protein that blocks several cell death pathways, and mediates proper activation of inflammatory NOD2-RIP2
signaling. XIAP deficiency in patients with inflammatory diseases such as Crohn’s disease, or those needing allogeneic hematopoietic
cell transplantation, is associated with a worse prognosis. In this study, we show that XIAP absence sensitizes cells and mice to LPS- and
TNF-mediated cell death without affecting LPS- or TNF-induced NF-κB and MAPK signaling. In XIAP deficient mice, RIP1 inhibition
effectively blocks TNF-stimulated cell death, hypothermia, lethality, cytokine/chemokine release, intestinal tissue damage and
granulocyte migration. By contrast, inhibition of the related kinase RIP2 does not affect TNF-stimulated events, suggesting a lack of
involvement for the RIP2-NOD2 signaling pathway. Overall, our data indicate that in XIAP’s absence RIP1 is a critical component of TNF-
mediated inflammation, suggesting that RIP1 inhibition could be an attractive option for patients with XIAP deficiency.
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INTRODUCTION
X-chromosome-linked inhibitor of apoptosis (XIAP) is an IAP protein
that controls cell death induced by a variety of stimuli and
mediates inflammatory signaling. XIAP was originally identified as a
caspase-inhibitory protein that can block extrinsic and intrinsic
apoptotic cell death [1]. However, XIAP also plays important roles in
tumor necrosis factor (TNF)- or lipopolysaccharide (LPS)-stimulated
necroptosis and inflammatory cell death [2–4]. In particular, in the
absence of XIAP, LPS stimulation leads to RIP3-dependent cell
death and release of IL-1β [3, 5, 6]. In addition, XIAP is a critical
mediator of NOD2-RIP2 signaling [7]. Activation of NOD2 leads to
RIP2 recruitment and engagement of XIAP to promote K63-linked
and linear RIP2 ubiquitination [8]. These posttranslational modifica-
tions enable activation of NF-κB and MAPK signaling, and the
production of multiple inflammatory cytokines and chemokines
[7–9]. Preventing XIAP-RIP2 interactions with either IAP selective
antagonist XB2m54 or the RIP2 kinase inhibitor GSK583 blocks
XIAP-mediated RIP2 ubiquitination and activation of inflammatory
signaling [9]. NOD2 mutations are associated with Crohn’s disease
[10, 11], suggesting that aberrant NOD2-RIP2-XIAP signaling may
contribute to inflammatory bowel disease (IBD).
XIAP is mutated in several inflammatory diseases, including

X-linked lymphoproliferative syndrome type II (XLP-2) [12, 13]. XLP-
2-associated mutations are found throughout the XIAP protein,
and affected boys often present with early onset inflammatory
symptoms [13–16]. For patients needing hematopoietic cell
transplantation (HCT), XIAP deficiency can promote graft-versus-
host disease (GVHD) driven by donor T cell activation [17]. Indeed,

XIAP deficiency is regarded as a high risk for allogeneic HCT and
leads to suboptimal outcomes [16, 18]. Loss-of-function XIAP
mutations have also been reported in male patients with early-
onset Crohn’s disease [19, 20]. Typically, Crohn’s disease in patients
with XIAP deficiency is severe and difficult to treat [15, 21]. The
intestinal microbiota has been shown to contribute to intestinal
inflammation when XIAP is absent [22, 23].
Given the strong genetic link between XIAP deficiency and

inflammatory diseases, including Crohn’s disease, plus poor clinical
outcomes for patients bearing deleterious XIAP mutations, we
explored inhibition of RIP1-dependent cell death as a therapeutic
option. We show that XIAP loss sensitizes cells and mice to LPS- and
TNF-induced cell death, while sparing NF-κB and MAPK signaling.
Furthermore, we demonstrate that RIP1 inhibition effectively blocks
TNF-stimulated cell death, hypothermia, lethality, cytokine and
chemokine release, intestinal tissue damage and granulocyte
migration in XIAP deficient mice. Inhibition of the related kinase
RIP2 did not affect TNF stimulated events, suggesting a lack of
involvement for the RIP2-NOD2 signaling pathway. Our data indicate
that the kinase activity of RIP1 is a critical for TNF-mediated
inflammation in XIAP-deficient mice. Therefore, it is worth exploring
whether XIAP-deficient patients might benefit from RIP1 inhibition.

RESULTS
XIAP deficiency enhances LPS- and TNF-mediated cell death
We investigated the role of XIAP in LPS- or TNF-mediated cell
death using bone marrow-derived macrophages (BMDMs) from
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wild-type (WT) or Xiap knockout (Xiap−/−) mice. Compared to WT
BMDMs, Xiap−/− BMDMs exhibited increased cell death in
response to LPS, LPS plus pan-caspase inhibitor emricasan (LE),
or LPS plus pan-caspase inhibitor zVAD (LZ) (Figs. 1A and S1A). LPS
alone, and to a lesser extent LE, promoted the release of IL-1β
from Xiap−/− BMDMs, but not WT BMDMs (Fig. 1B). LPS also
induced processing of caspases 3, 7 and 8 in Xiap−/− BMDMs,
which was reduced by the addition of emricasan (Fig. S1B). As
expected, caspase inhibition promoted RIP3 and MLKL phosphor-
ylation, hallmarks of necroptosis signaling (Fig. S1B). Loss of XIAP
did not alter LPS-induced NF-κB and MAPK signaling (Fig. S1C).
Xiap−/− mice treated with LE exhibited more severe hypothermia
than WT mice at 8 h after dosing, and this correlated with
increased serum IL-6 and TNF (Fig. 1C). Xiap−/− mice were also
more susceptible than WT mice to liver damage induced by LPS
plus the transcriptional inhibitor D-galactosamine (GalN), exhibit-
ing elevated serum AST and ALT at 5 h after treatment (Fig. S1D).
These results indicate that loss of XIAP sensitizes BMDMs and mice
to LPS-mediated cell death and tissue damage.
Treatment with TNF alone, or in combination with zVAD (TZ), also

induced more cell death in Xiap−/− BMDMs than WT BMDMs, and
the XIAP-deficient cells released more IL-6 and IL-1β (Fig. 1D, E).
Intestinal organoids derived from Xiap−/− mice also exhibited more
cell death in response to TZ than WT organoids (Fig. 1F).
Nevertheless, TNF induced NF-κB and MAPK signaling was normal
in Xiap−/− BMDMs (Fig. S1E). Thus, altered NF-κB and MAPK
signaling is not responsible for the enhanced sensitivity of XIAP-
deficient BMDMs and organoids to TNF-mediated cell death.

XIAP deletion sensitizes mice to TNF toxicity
Xiap−/− mice were also more sensitive than WT mice to high dose
TNF or TZ, exhibiting more severe hypothermia, enhanced
production of serum IL-6 and CXCL1, increased intestinal damage,
and more animals had to be euthanized (Fig. 2A–H). Consistent with
this genetic experiment, TNF toxicity in WT mice was exacerbated
by the XIAP selective antagonist XB2m54 [9] (Fig. S2A, B), albeit
XB2m54 did not have as dramatic an effect as XIAP deficiency.
Importantly, XB2m54 did not affect c-IAP1/2 levels in mice (loss of c-
IAP1/2 is a readout for c-IAP1/2 antagonism [24]), thus confirming
that compound’s effect is limited to XIAP (Fig. S2C). XB2m54 also
enhanced TZ-induced hypothermia in WT mice (Fig. S2D).

XIAP deletion sensitizes cells and mice to RIP1-dependent
TNF-induced lethality and intestinal damage
We investigated the importance of the kinase activity of RIP1 in the
enhanced response of Xiap−/− BMDMs to TNF or TZ using the RIP1
inhibitor GNE684 [25] (Fig. S3A, B). The death of Xiap−/− BMDMs
after TNF or TZ treatment was reduced significantly by GNE684. By
contrast, the RIP2 inhibitor GSK583, which can prevent XIAP-RIP2
association [9, 26], had no discernible effect on TNF- or TZ-induced
death of WT or Xiap−/− cells (Fig. S3A, B). Similarly, inhibition of
RIP1, but not RIP2, suppressed TNF-induced morbidity and
hypothermia in Xiap−/− mice (Fig. 3A). Goblet cell loss, which
was observed after TNF dosing in Xiap−/− mice, but not WT mice,
was also ameliorated by GNE684 (Fig. 3B). RIP1 inhibition also
reduced levels of CXCL1 and CCL4 in the serum of Xiap−/− mice
(Fig. 3C). The lack of effect of RIP2 inhibition was not due to the
absence of RIP2, because we detected comparable levels of RIP2 in
WT and Xiap−/− intestines (Fig. 3D). RIP1 inhibitor GNE684 also
blocked LPS induced necroptotic cell death in Xiap−/− BMDMs (Fig.
S3C). Thus, in the absence of XIAP, TNF activates RIP1 to cause
tissue damage and the release of cytokines and chemokines.

XIAP deficiency promotes TNF-stimulated and RIP1-
dependent granulocyte migration but does not affect TNF-
induced gene expression
Next, we examined the spleens and livers of an independent
cohort of Xiap−/− mice at 3 h after dosing with TNF. Consistent

with our earlier results, Xiap−/− mice displayed RIP1-dependent
hypothermia, intestinal damage, goblet cell loss, and release of IL-
6 and CCL4 (Fig. 4A, B). We investigated if loss of XIAP or inhibition
of RIP1 affected TNF-induced gene expression. Small intestines
from WT and Xiap−/− mice expressed comparable amounts of
Icam, Tnf, Ccl2, Birc3, Nfkbia, and Cxcl1 mRNAs after TNF treatment,
and this was not altered by RIP1 inhibition (Fig. 4C).
IL-6 and CCL3 were also elevated in Xiap−/− livers (Fig. S4A).

CCL3 and CCL4 mediate granulocyte recruitment [27]. Therefore,
CCL3 or CCL4 might have contributed to the depletion of Xiap−/−

splenic granulocytes, while enhancing numbers of granulocytes in
the liver (Figs. 4D and S4A, B). Inhibition of RIP1, but not RIP2,
suppressed IL-6, CCL3, or CCL4 levels in Xiap−/− mice, and shifted
granulocyte numbers closer to those found in TNF-treated control
mice (Figs. 4B, D and S4A, B). We also explored the activation of
cell death signaling in liver tissues and observed TNF stimulation
dependent RIP1 phosphorylation and caspase-8 processing, and
these modifications were both blocked by RIP1 inhibition (Fig.
S4C). By contrast, we did not observe any differential processing of
caspases 3, 1, or 11; GSDMD; IL-1β; or loss of c-IAP1/2 (Fig. S4C).
Therefore, TNF treatment of Xiap−/− mice leads to RIP1 and

caspase-8 activation that is accompanied by severe intestinal
damage and depletion of granulocytes from spleen.

DISCUSSION
When XIAP was initially characterized, it represented the only
endogenous mammalian direct inhibitor of caspases 3, 7 and 9 [1].
This discovery prompted a broad effort by numerous organiza-
tions to find an antagonist of XIAP that could be used to stimulate
caspase activation and the death of cancer cells [24]. However, it
soon became evident that XIAP antagonism alone does not cause
sufficient cell death in tumors and that additional death triggers
are needed [28]. In addition, mice lacking XIAP had no overt
phenotype without any form of challenge [29, 30]. Nevertheless,
subsequent studies of Xiap−/− mice revealed a critical role for XIAP
in bacterial infections, in the NOD2-RIP2 signaling pathway, and in
the regulation of RIP3-dependent necroptosis [3, 5, 7, 8, 31]. It is
clear now that XIAP contributes to multiple signaling pathways
and is required for normal homeostasis in many organs, especially
the intestines [4, 22, 23].
The relevance of XIAP for human health is exemplified by

mutations that are associated with several inflammatory diseases
[14, 15]. Initially, XIAP mutations were found in a relatively rare
XLP-2 syndrome [12], but XIAP mutations are now correlated with
a worse prognosis for GVHD patients and very early onset IBD
[16–21]. These findings have prompted us to investigate novel
treatment options for patients with deleterious XIAP mutations.
Given that XIAP suppresses apoptotic and necroptotic cell death,
we investigated whether blocking cell death dependent on the
kinase activity of RIP1 might ameliorate the consequences of XIAP
deficiency. Inhibition of RIP1 with GNE684 was effective at
ameliorating TNF-induced intestinal damage in mice lacking XIAP,
whereas inhibition of RIP2 was not. This result is consistent with
the NOD2-RIP2 signaling pathway not being a major modulator of
cell death signaling by TNF or LPS.
Several RIP1 inhibitors have been and are currently being tested

in clinical trials for the treatment of diverse inflammatory and
neurodegenerative diseases [32]. Trials with GSK2982772 have not
benefited patients with rheumatoid arthritis, ulcerative colitis or
psoriasis, but it is possible that patients with active RIP1 were not
enrolled in these studies [32]. Our data suggest that patients with
XIAP mutations and suffering from inflammatory conditions would
likely have active RIP1. RIP1 activation is predicted to be
associated with tissue damage and there is increasing evidence
of tissue damage-associated inflammatory conditions in patients
with XIAP mutations [16, 25]. Further study of RIP1 activation in
XIAP mutant patients, especially in the intestinal tissues, may
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**p < 0.01, ***p < 0.005.
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provide important insights and pave the way for the eventual
treatment with RIP1 inhibitors in inflammatory bowel disease and
related pathologies.

MATERIALS AND METHODS
Reagents and antibodies
Human recombinant TNF, BV6, GNE684, and GSK583 were all synthesized
at Genentech. Emricasan was purchased from Selleck Chemicals (S7775),
zVAD from ABclonal and LPS from InvivoGen (tlrl-3pelps). The primary
antibodies used were directed against: RIP1 (610459, BD Biosciences),
pRIP1 S166 (#31122, Cell Signaling Technology (CST)), RIP3 (#15828, CST),
pRIP3 (#91702, CST), MLKL (#MABc604, Millipore), pMLKL (#37333, CST),

FADD (#05-486, Millipore), RIP2 (#22763, Santa Cruz), XIAP (M044-3, MBL,
66800-1-Ig, Proteintech), c-IAP2 (Genentech), c-IAP1/2 (#3400, R&D),
caspase-1(Genentech), caspase-3 (#9661, 9662, CST), caspase-7(#9491,
CST), caspase-8 (#8592, 9429, 4927, CST), caspase-11(#14340, CST), GSDMD
(#50928, CST), IL-1b (AF-401-NA, R&D), JNK(#9252, CST), pJNK (#4668, CST),
p65(#8242, CST), p-p65(#3033, CST), IkBa (#9242, CST), p-IkBa (#2859, CST),
p38 (#9212, CST), p-p38 (#9211, CST), ERK (#4695, CST), p-ERK (#4370, CST),
actin (A3853, Sigma), GapDH (#2118, CST), HSP90 (#4877, CST).

Cells, organoids, and viability assays
BMDMs were extracted from femur and tibia of adult mice. Cells were
cultured for 6 days in DMEM High Glucose supplemented with 10% heat
inactivated fetal bovine serum, 2mM GlutaMAX (Gibco), 100 U/ml Penicillin
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Fig. 2 XIAP deletion sensitizes mice to TNF induced lethality in vivo. A WT (n= 12) and Xiap−/− (n= 12) mice were injected with TNF
(500 μg/kg). Survival (left) and body temperature (right) were monitored for 10 h. X indicates animals that had to be euthanized. B Serum
levels of indicated cytokines from WT (n= 6 mice for 2 h and n= 8 for 4 h treatment) and Xiap−/− mice (n= 4 mice for 2 h and n= 8 for 4 h
treatment) post TNF injection were analyzed by Luminex. C, D Hematoxylin and eosin-stained small intestines of WT and XIAP−/− mice 4 h post
TNF injection (C) and quantification of the histology score (D) (n= 4 mice per each condition). Size bar = 100 μm. E WT (n= 12) and Xiap−/−

(n= 10) mice were injected with TNF (300 μg/kg) and zVAD-FMK (10mg/kg). Survival (left) and body temperature (right) were monitored for
10 h. X indicates animals that had to be euthanized. F Serum levels of indicated cytokines from WT (n= 6) and Xiap−/− (n= 5) mice 3 h post
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and 100 μg/ml Streptomycin (Gibco), and 50 ng/ml recombinant murine
M-CSF (Genentech). The cells were cultured on non-treated plates.
Organoids were developed from small intestines of WT and XIAP−/−

mice following procedures described previously [33], and using IntestiCult
Organoid Growth mouse Medium (Stemcell Technologies). Organoid
viability was assessed by MTT assay as described previously [34].

Cell death was analyzed using Incucyte ZOOM and S3 (Essen BioSciences)
using Sytox Green nucleic acid stain (S7020, ThermoFisher). 200 μg/ml
digitonin (Sigma Aldrich) was used to lyse all cells at the end of the assay and
this value was used to normalize each measurement to the total amount of
cells in a given culture vessel. Additional cell death assays were done using
quantifying lactate dehydrogenase (LDH) release (G1780, Promega).
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Western blot analysis
For western blot analyses tissues were lysed in Triton or Urea buffers.
Triton buffer: 1% Triton X-100, 25 mM Tris-HCl buffer (pH 7.5), 150 mM
NaCl, 1 mM EDTA, Halt Protease and Phosphatase Inhibitor Cocktail
(Thermo Scientific). Cells were lysed on ice for 30 min and centrifuged
at 14,000 rpm for 10 min at 4 °C [35]. 6 M urea containing buffer: 20 mM
Tris–HCl pH 7.5, 135 mM NaCl, 1.5 mM MgCl2, 1 mM EGTA, 1% Triton X-
100, 6 M urea and Halt Protease and Phosphatase Inhibitor Cocktail

(Thermo Scientific). Tissues were lysed for 30 min at RT and centrifuged
at 14,000 rpm for 10 min at 16 °C. Lysates were resolved on SDS-PAGE
and immunoblotted with the indicated antibodies.

Mice for animal studies
Xiap−/− mice were described previously [30]. All animals were dosed and
monitored according to guidelines from the Institutional Animal Care and
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Use Committee (IACUC) on study protocols approved by the Laboratory
Animal Resource Committee at Genentech. Whenever possible, littermates
were used, and all animals were randomized during group allocation.
Pathologists assessed the samples in a blinded fashion. All data were
analyzed by appropriate statistical tools (listed with the description of
different methods/models) and all experiments included control groups.
All individuals participating in animal care and use were required to
undergo training by the institution’s veterinary staff.

TNF induced SIRS
Systemic inflammatory response syndrome (SIRS) was induced in male
littermates by intravenous (iv) injection of mouse TNF (Genentech) alone or
together with zVAD-FMK (10 mg/kg) (APExBIO). Mice were grouped
according to genotypes and the studies were unblinded. Body tempera-
ture was monitored using a rectal probe and a digital thermometer. Mice
were euthanized if their body temperature was below 25 °C or if severely
lethargic. Statistical analyses were done using Student’s t test (body
temperature) or Mantel–Cox (log rank; for comparison of survival curves)
were performed using the GraphPad Prism software.

LPS+ Emricasan endotoxemia model
Littermates of both sexes were intraperitoneally injected with 20mg/kg
LPS (tlrl-3pelps, InvivoGen) and 2.5 mg/kg Emricasan (S7775, Selleck
Chemicals). The mice were subsequently monitored for 8 h and body
temperature was determined every 2 h using a rectal temperature probe.

LPS+GalN liver injury model
Liver injury was induced in male mice by injecting them with LPS (700mg/
kg) and GalN (5 μg/kg) i.p. Serum was collected after 5 h, and ALT and AST
were measured in a serum chemistry analyzer (Beckman Coulter AU480).

Cytokine and chemokine detection
Sera of adult mice or cell supernatants were analyzed by Luminex (Bio-Plex
Pro Mouse Cytokine 23-plex assay, Bio-Rad).

Real-time quantitative PCR (RT-qPCR)
Total RNA was extracted from small intestines tissue samples using the
RNeasy plus mini kit (QIAGEN) following manufactures instructions. An on-
column DNase treatment was included. cDNA was generated from each RNA
sample using a Taqman Gene Expression Cells-to-CT kit (Thermo Fisher
Scientific). Gene expression assay for Tnf (Mm00443260_g1), Ccl2
(Mm00441242_m1), Birc3 (Mm01168413_m1), Nfkbia (Mm00477800_g1),
Cxcl1 (Mm04207460_m1) and GAPDH (Mm99999915_g1) were from Thermo
Fisher Scientific and for Icam1 (Mm.PT.58.43714327) was from IDT. All mRNA
expression levels were normalized to GAPDH gene expression.

Histology and immunohistochemistry (IHC)
Small intestinal histology was scored for villous atrophy (1, minimal brush
border irregularity; 2, cobblestoning with minimal atrophy; 3, villous
blunting and atrophy resulting in approximately 25-50% reduction in
expected height; 4, villous blunting and atrophy with an estimated >50%
reduction in height), crypt degeneration (1, rare pyknotic cells with no
architectural loss; 2, individual pyknotic cells in approximately >25% of
crypts with no architectural loss; 3, loss of crypt architecture in <25% of
crypts; 4, less of crypt architecture in ≥25% of crypts), and inflammation (1,
increased intravascular granulocytes; 2, aggregates of proprial granulo-
cytes with no crypt separation; 3, multifocal granulocyte aggregates

separate and elevate crypts; 4, extensive inflammatory infiltrates). Scores of
these 3 parameters were scored in each intestinal segment available, and
final scores represented the sum of all intestinal segments available per
mouse. Goblet cells were assessed on PAS/Alcian blue stained sections by
counting villous goblet cells in 10 villi/intestinal segment. Gr-1 immuno-
histochemistry was performed with a rat anti-Ly6G/Ly6C antibody
(Pharmigen, clone RB6-8C5) at 2.5 µg/ml with Target retrieval, an anti-rat
IgG rabbit linker antibody, and PowerVision polymer-based detection with
Fast Red and hematoxylin counterstain. Splenic Gr-1 labeling was scored
according to a 4-point matrix (1, low density of Gr-1 positive cells
distributed throughout the red pulp; 2, mildly increased number of labeled
cells in the red pulp; 3, moderately increased number of labeled cells in the
red pulp with focal aggregation; 4, markedly increased number of labeled
cells in the red pulp with prominent granulocyte aggregation). Hepatic Gr-
1 labeling was quantitatively accessed on whole-slide image that were
scanned on an Nanozoomer XR (Hamamatsu) using Matlab to quantify the
tissue area and labeled cell number with the assessment reported as cell
per square millimeter.

Statistical analysis
Statistical analysis was performed using the GraphPad Prism software. The
variance was assumed to be similar between the compared groups and
that groups have normal distribution. Unpaired two-tailed t test (for two
groups) or analysis of variance (for three or more groups) were used for all
statistical significance except for comparison of survival curves that was
analyzed by Mantel–Cox (log rank).

DATA AVAILABILITY
All data and materials reported in this study will be shared by the lead contact upon
request.
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