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Galectin-3 promotes secretion of proteases that decrease
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Galectin-3 is a galactoside-binding protein that is commonly overexpressed in many epithelial cancers. It is increasingly recognized
as a multi-functional, multi-mode promoter in cancer development, progression, and metastasis. This study reports that galectin-3
secretion by human colon cancer cells induces cancer cell secretion, in an autocrine/paracrine manner, of a number of proteases
including cathepsin-B, MMP-1 and MMP-13. The secretion of these proteases causes disruption of epithelial monolayer integrity,
increases its permeability and promotes tumour cell invasion. This effect of galectin-3 is shown to be mediated through induction
of cellular PYK2-GSK3α/β signalling and can be prevented by the presence of galectin-3 binding inhibitors. This study thus reveals
an important mechanism in galectin-3-mediated promotion of cancer progression and metastasis. It provides further evidence to
the increased realization of galectin-3 as a potential therapeutic target for the treatment of cancer.
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INTRODUCTION
Proteases are a family of proteolytic enzymes that play funda-
mental roles in the progression and metastasis of cancers of
epithelial origins [1]. The concentrations of proteases are generally
low in physiological conditions, but are substantially increased in
cancer [2]. Higher amounts of proteases in the tumour micro-
environment promote tumour cell invasion at the primary tumour
site and increase tumour cell metastasis to distant organs [2].
Proteases are broadly classified into seven groups according to

their catalytic actions: aspartic, glutamic, metalloproteases, serine,
cysteine, threonine, and asparagine peptide lyases. Proteases in
the first three groups use a water molecule as a nucleophile to
attack the peptide bond of the substrate, while the other groups
of proteases use an amino acid residue as a nucleophile. Each
group of proteases acts on different protein substrates and is
involved in regulating different stages in the progression of
cancer. For example, cysteine proteases (e.g. the cathepsin family
of proteases) can degrade both intracellular and extracellular
matrix (ECM) proteins [3], and assist tumour cell invasion into
nearby tissues, blood and lymph vessels [4]. Serine proteases can
degrade extracellular matrix proteins as well as growth factors
such as epidermal growth factor (EGF), fibroblast growth factor-2
(FGF-2) and hepatocyte growth factor/scatter factor (HGF-SF) [5]
and are involved in tumour cell invasion, angiogenesis and
metastasis [6]. Aspartic proteases, which have two highly
conserved aspartates in their catalytic site [7], can cleave
chemokines and reduce the anti-tumoural immune response
and promote cancer cell migration [8]. They can also cleave
natural protease inhibitory proteins, such as plasminogen
activator inhibitor-1, and stimulate the activation of plasminogen
activators in favour of cancer progression [9]. Threonine proteases

are normally the catalytic subunits of the proteasome which
degrades a variety of proteins through polyubiquitination [10].
Matrix metalloproteases (MMPs) primarily catalyse the degrada-
tion of ECM, but can also act on a range of other substrates such
as growth factors and other proteases [11]. Many MMP members
such as MMP-1, MMP-2, and MMP-9 are overexpressed in cancer
[12] and contribute to cancer cell growth, apoptosis, angiogenesis,
invasion and metastasis [13].
Galectin-3 is a β-galactoside-binding protein and is over-

expressed in various types of epithelial cancer including colorectal,
breast, lung, prostate, pancreatic, head and neck cancer and
melanoma [14]. Galectin-3 overexpression is often associated with
metastasis and poor prognosis [15]. Higher levels of circulating
galectin-3 are seen in cancer patients, in particularly those with
metastases [16]. Many studies have shown that overexpression of
galectin-3 promotes multiple steps in cancer progression and
metastasis such as cancer cell adhesion, invasion, angiogenesis
and immune suppression [17]. Many of these cancer-promoting
actions of galectin-3 have shown to be associated with galectin-3
interaction with galactoside-terminated cell surface glycoproteins.
For example, binding of galectin-3 to the oncofoetal Thomsen-
Friedenreich Galβ1,3GalNAcα-Thr/Ser (TF antigen) on the trans-
membrane mucin protein MUC1 [18] enhances circulating tumour
cell homotypic aggregation and survival [19] and increases
tumour cell heterotypic adhesion to vascular endothelium [20].
Binding of galectin-3 to CD146 via N-linked glycans on the
endothelial cell surface enhances secretion of the metastasis-
promoting cytokines IL-6 and G-CSF [18]. The broad influence of
galectin-3 on promotion of cancer progression led us to
hypothesise that galectin-3 overexpression and secretion by
cancer cells may influence the cellular secretion of proteases
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and thus contribute to tumour cell invasion and metastasis. A
series of studies was conducted in this study to test this
hypothesis and the results strongly support this notion.

MATERIALS AND METHODS
Materials
Crystal violet solution (1%) and SIGMAFAST™OPDwere obtained from Sigma
(Gillingham, UK). Bovine Serum Albumin (BSA) was obtained from Tocris
(Bristol, UK). Matrixgel matrix® (phenol red-free), Trans-wells with 8.0 µm PET
membrane and 0.4 µm polyester membrane were purchased from Corning
(ME, USA). Biotinylated-anti-galectin-3 (BAF1154) antibody and antibodies
against galectin-3 (MAB1154), STAT1 (MAB1490), Phospho-STAT1(MAB2894),
STAT3 (MAB1799), Phospho-STAT3 (MAB4934), PYK2 (AF4589), phosphor-
PYK2 (MAB6210), GSK3α/β (AF2157), Phospho-GSK3α/β (AF1590); Proteome
Profiler Human Protease Array (ARY021B), Proteome Profiler Human
Phospho-Kinase Array (ARY003C); Human MMP-13 DuoSet ELISA (DY511),
Human Cathepsin-B DuoSet ELISA (DY2176) PYK2 inhibitor PF-431396 (4278)
and GSK3α/β inhibitor SB 216763 (1616/1) were all purchased from R&D
Systems (Abingdon, UK). Peroxidase-conjugated secondary antibodies were
purchased from Cell signalling (Massachusetts, USA).

Cells
Human colon cancer SW620, HCT116, Caco-2 and HT29 cells, were all
obtained from European Collection of Cell Cultures (Salisbury, UK). All the
cells (except HCT116) were cultured in Dulbecco′s Modified Eagle′s Medium
(DMEM) (Gibco, Loughborough, UK) containing 200mM L-glutamine, 0.4%
penicillin and streptomycin and 10% foetal calf serum (FCS). HCT116 cells
were cultured in McCoy’s medium (Gibco, Loughborough, UK) containing
200mM L-glutamine, 0.4% penicillin and streptomycin and 10% foetal calf
serum. The cell lines were last authenticated in 2020 by DNA profiling at the
Cell Line Authentication Facility, University of Liverpool.
Galectin-3 knockdown SW620-shGal3 and control SW620-shCon cells

were generated using galectin-3 shRNA and control shRNA from SW620 as
previously described [21].

Cell invasion
Trans-well inserts (0.8 µm pore size) in 24-well plates were coated with
100 µl Matrigel matrix proteins (20 µg/ml) for 2 h at 37 °C. After a gentle
wash with phosphate buffered saline (PBS), they were introduced with

150 µl cell suspension (1 × 105 cells/ml) containing 10 µg/ml recombinant
galectin-3 or 10 µg/ml BSA (control) in 1% FCS medium. Five hundred µl
culture medium containing 10% FCS was added to the bottom wells of the
plates. After 16 h incubation at 37 °C, the matrix and uninvaded cells
inside the inserts were gently removed with cotton swabs. The inserts were
washed once with PBS and fixed in 2% formaldehyde/PBS for 20min. After
one wash with PBS, the inserts were stained with 0.5% crystal violet
solution for 5–10min. The cells at the bottom side of the membrane were
then counted in three to five randomly selected fields of view (FOVs) under
a microscope (Olympus B51, Olympus, Tokyo, Japan) with a ×20 objective.

Measurement of proteases secretion by slot blot
Cells (1.5 × 106) were cultured in six-well plates until they were 80–90%
confluent. The cells were washed with PBS and introduced with serum-free
medium containing 1% BSA with different concentration of galectin-3 or
BSA. After 24 h culture, the medium was collected, and 250 μl was loaded
onto a slot blot. After one wash with PBS, the nitrocellulose membranes
were incubated with blocking buffer (1% BSA/PBS) for 1 h at room
temperature before incubation with antibodies against Cathepsin-B (20 μg/
ml), MMP-13 (2 μg/ml), or MMP-1 (40 μg/ml) overnight at 4 °C. The blots
were washed three times with 0.05% Tween-20 in PBS and incubated with
peroxidase-conjugated secondary antibody (1:5000) for 1 h. After six
washes with 0.05% Tween-20 in PBS, the blots were developed using
chemiluminescence SuperSignal™ kit (Thermo Fisher, Warrington, UK) and
visualized with Molecular Imager® Gel Doc™ XR System (Biorad,
Hempstead, UK). The density of the blots was quantified using Imagelab
version 3.0.1 (Biorad, Hempstead, UK).

Measurement of protease secretion by ELISA
Cells (1 × 106) were cultured in 6-well plates until 80–90% confluence. The
cells were washed with PBS and introduced with serum-free medium
containing 1% BSA without or with galectin-3 (10 μg/ml), lactose (100 μM) or
asialofetuin (ASF) (20 μg/ml) for different times at 37 °C. The culture medium
was collected, centrifuged at 5000 rpm for 5min and the concentrations of
proteases or galectin-3 in the supernatants were analysed by ELISA kits
according to the manufacturer’s protocol.

Immunoblotting
Cellular proteins were separated by SDS-PAGE followed by electro-transfer
onto nitrocellulose membranes. The membranes were incubated with
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Fig. 1 Galectin-3 induces the secretion of a number of proteases in human colon cancer cells. SW620 (A) and HCT116 (B) cells were treated
with 10 µg/ml galectin-3 or BSA for 24 h before the levels of 35 proteases were analysed by Proteome Profiler Human Protease Array. The ten
most changed proteases by the cells in response to galectin-3 are shown in heatmaps in (C) (SW620) and D (HCT116) (with changes ranked
from lowest to highest).
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blocking buffer (1% BSA/PBS) for 1 h before incubation with antibodies
against phospho-PYK2 (0.5 µg/mL), phospho-GSK3α/β (0.2 µg/mL), phospho-
STAT1 (0.5 µg/mL), phospho-STAT3 (0.5 µg/mL), MMP-1 (1 µg/mL), MMP-13
(0.5 µg/mL), or Cathepsin-B (0.5 µg/mL) overnight at 4 °C. The blots were
washed three times with 0.05% Tween-20 in Tris-buffered saline (TBS) before
incubation with peroxidase-conjugated secondary antibody (1:5000) for 1 h.
After six washes with 0.05% Tween-20 in TBS, the blots were developed
using chemiluminescence SuperSignal™ kit and visualized with Molecular
Imager® Gel Doc™ XR System. The blots were stripped by stripping buffer
(Tris-HCl 62.5mM, Mercaptoethanol 100mM and SDS 2%) and reprobed
with antibodies against PYK2 (1 µg/mL), GSK3α/β (0.1 µg/mL), STAT1 (1 µg/
mL), or STAT3 (0.1 µg/mL). The density of the protein bands was quantified
using Imagelab.

Human protease profile array
Fifty-percent confluent cells were incubated with 10 µg/ml galectin-3 or
BSA for 24 h at 37 °C in serum-free medium. The culture medium was
collected and centrifuged at 5000 rpm for 10min and the levels of 35
common proteases were analysed by Proteome Profiler Human Protease
Array according to the manufacturer’s protocols. The density of the blots
was quantified by Imagelab Software.

Human protein kinase profile array
Cells were seeded at 1 × 106 cells/ml into 6-well plate and cultured to 80%
confluence. The cells were washed three times with PBS and introduced
with serum-free medium containing 1% BSA with 10 μg/ml galectin-3 or
10 μg/ml BSA for 30min at 37 °C. The cells were washed three times with

0.05% Tween-20/PBS and lysed in SDS-sample buffer. The phosphorylation
Levels of 37 most common kinases in cell signalling were analysed by the
Proteome Profiler Human Phospho-Kinase Array according to the
manufacturer’s protocols.

Assessments of cell–cell junction integrity and permeability
Caco-2 cells (5 × 105/ml) were seeded into 0.4 μm pore size trans-wells and
cultured for various times at 37 °C for cell monolayer formation. The
monolayer integrity was measured with an ohmmeter until transepithelial
electrical resistance (TEER) reached plateau (approximately 3000Ωcm2).
HCT116, SW620-shGal3/SW620-shCon cells (1 × 105/ml) were cultured in
24-well plates for 3 days at 37 °C. The culture medium was collected and
centrifuged at 5000 rpm for 5min and used as conditioned media (CM).
The culture medium in the trans-wells was removed and replaced with
0.5 ml/well CM. The cells in trans-wells were cultured at 37 °C for various
times and monolayer integrity was measured with an ohmmeter.
For assessment of the cell monolayer permeability, 1mg/ml FITC-dextran

(20 kDa) was introduced to the tight cell monolayers (TEER, approximately
3000Ωcm2) in the trans-wells for 30min at room temperature. The culture
medium in the bottom wells was collected and centrifuged at 5000 rpm for
5min and the fluorescence intensity was measured using a fluorescence
microplate reader GENios Plus (TECAN, Reading, UK).

Statistical analysis
One-way analysis of variance (ANOVA) followed by Bonferroni correction
were used for multiple comparisons. Differences were considered
significant when P < 0.05.
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Fig. 2 Galectin-3 induces protease secretion in human colon cancer cells in a dose- and time-dependent manner. SW620 and HCT116 cells
were treated with galectin-3 or BSA (10 µg/ml) for different times before the concentrations of Cathepsin-B were analysed (A) by ELISA. SW620
and HCT116 cells were treated with different concentrations of galectin-3 for 24 h (B–D) before the levels of Cathepsin-B (B), MMP-1 (C), MMP-
13 (D) in the medium were analysed by slot blotting. The slot densities from three independent experiments were quantified and are shown in
the bottom panels. Data are presented as mean ± SD of three independent experiments, each in triplicate. ***P < 0.001, *P < 0.05 (ANOVA).
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RESULTS
Galectin-3 induces protease secretions in human colon cancer
cells
To assess effect of galectin-3 on protease secretion from cancer
cells, human colon cancer SW620 and HCT116 cells were first

analysed with protease arrays. SW620 and HCT116 cells were
cultured in the presence or absence of 10 μg/ml galectin-3, a
concentration that is close to that seen in the circulation of
colon cancer patients with metastasis [22] for 24 h, and the
concentrations of proteases in the media was measured by the
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Fig. 3 Galectin-3 expression and secretion by cancer cells promotes protease secretion. Amounts of galectin-3 expression and secretion in
galectin-3 knockdown SW620-shGal3 and control SW620-shCon cells were assessed by immunoblotting (A) and galectin-3 ELISA (B). SW620-
shCon cells secreted higher concentrations of cathepsin-B (C) and MMP-13 (D) than SW620-shGal3 cells when assessed by ELISA. The galectin-
3-mediated cathepsin-B secretion was inhibited by the presence of galectin-3 inhibitors lactose (E) and ASF (F). Data are presented as
mean ± SD from three independent experiments, each in triplicate. ***P < 0.001, **P < 0.01, *P < 0.05 (ANOVA).
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Fig. 4 Galectin-3 expression and secretion promotes protease secretion and cell invasion of HT29 colon cancer cells. A HT29 cells were
separated into invasive (HT29-I) and less/non-invasive (HT29-N) sub-populations. HT29-I cells express (B) and secrete (C) higher amounts of
galectin-3 than the non-invasive HT29-N cells when assessed by immunoblotting (B) and ELISA (C). Representative blots from four
experiments are shown in B (Top panels) with band densities shown as percentage galectin-3 expression (Bottom panels) HT29-I cells secrete
higher amounts of MMP-13 (D) and CTSB (E) than HT29-N cells when assessed by ELISA. Data are presented as mean ± SD from three
independent experiments, each in triplicate. ***P < 0.001, **P < 0.01, *P < 0.05 (ANOVA).
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Proteome Profiler Human Protease Array which covers 35
common proteases. In comparison to cells treated with control
BSA, treatment of the cells with galectin-3 resulted in increased
secretion of several proteases from both SW620 and HCT116 cells
(Fig. 1A, B). Among the 35 proteases, 10 proteases showed
increases in the galectin-3-treated cells in both SW620 and
HCT116 cells in comparison to the controls (Fig. 1C, D). The five
proteases shown the highest increases in response to galectin-3
were MMP-12 (2.25-fold), Cathepsin-B (2.04-fold), MMP-1 (2.04-
fold), MMP-13 (1.97-fold) and Kallikrein 13 (1.94-fold) in SW620
cells and MMP-1 (4.66-fold), Kallikrein 13 (4.1-fold), DPPIV/
CD26 (2.62-fold), MMP-13 (1.94-fold) and MMP-2 (1.93-fold) in
HCT116 cells.
To further investigate the effect of galectin-3 on protease

secretion, SW620 and HCT116 cells were treated with various
pathological galectin-3 concentrations and the secretion of the
three most highly affected proteases MMP-1, MMP-13 and
cathepsin-B was analysed by ELISA and slot blotting. The presence
of galectin-3 caused time- (Fig. 2A) and dose- (Fig. 2B) dependent
increases in cathepsin-B secretion in both SW620 and HCT116
cells. After 24 h treatment with 10 μg/ml galectin-3, a 2.1- and 2.0-
fold increase was seen in SW620 and HCT116 cells, respectively,
when assessed by ELISA (Fig. 2A). When the secreted levels of
these proteases in the culture medium were assessed by slot
blotting, a 2.5- and 1.7-fold increase was seen in SW620 and
HCT116 cells, respectively, after 24 h treatment with galectin-3 in
comparison to control cells (Fig. 2B).
The levels of MMP-13 and MMP-1 secretion by SW620 and

HCT116 cells were below the accurate measurement threshold by

ELISA. Therefore, the levels of those proteases secreted to the
culture media in cell response to different pathological galectin-3
concentrations were measured using slot blot. The presence of
galectin-3 caused dose-dependent increases in MMP-13 and
MMP-1 secretion in both SW620 and HCT116 cells (Fig. 2C, D).
At 5 µg/ml, galectin-3 induced 1.25- and 1.36- fold increases of
MMP-13 and 1.73- and 1.98- fold increases of MMP-1 secretion
from SW620 and HCT116 cells, respectively. When cellular
expression of these three proteases was analysed in SW620 and
HCT116 cells by immunoblotting, their expression level in cells
was not affected by the presence of galectin-3, except MMP-1
which showed a small 27% increase in cell response to treatment
with 10 µg/ml (Supplemental Fig. S1). This indicates that galectin-3
predominantly enhances the secretion, but not the expression, of
MMP-1, MMP-13, and cathepsin-B by those cells.

Higher galectin-3 expression and secretion is associated with
higher protease secretion in colon cancer cells
To dissect the relationship between galectin-3 expression and
protease secretion in the cells, galectin-3 expression in SW620
cells was suppressed using shRNA. Galectin-3 shRNA suppression
led to 99% reduction of galectin-3 expression in the cells in
comparison to transfection with control shRNA (Fig. 3A). Galectin-
3 shRNA suppression was associated with significant reduction of
galectin-3 secretion by the cells (Fig. 3B). Suppression of galectin-3
expression also resulted in significant reductions in Cathepsin-B
and MMP-13 secretion (Fig. 3C, D). 40% (Fig. 3C) and 49% (Fig. 3D)
lower levels of cathepsin-B and MMP-13 were produced by
SW620-shGal3 than SW620-shCon cells after 72 h culture.

Fig. 5 Galectin-3-mediated protease secretion increases cancer cell invasion. Introduction of exogenous galectin-3 increased invasion of
both HT29-N (A) and HT29-I (B) cells. Replacing the culture medium in HT29-N cells with conditioned medium from HT29-I (I-CM) increased
HT29-N cell invasion (C) while replacing the culture medium in HT29-I with conditioned medium from HT29-N (N-CM) led to reduction of
HT29-I cell invasion (D). The presence of lactose deceased secretion of cathepsin-B (E) and MMP-13 (F) by HT29-I cells but had little effect on
that of HT29-N cells. G The introduction of lactose inhibited the HT29-I cell invasion but had less effect on HT29-N cell invasion. H HCT116 cell
invasion was assessed in the presence or absence of 10 µg/ml galectin-3, or with conditioned medium from SW620-shGal3 (CM-SW620-
shGal3) and SW620-shCon (CM-SW620-shCon). Culture of the cells with galectin-3 or medium from CM-SW620-shCon, but not from CM-
SW620-shGal3, increased HCT116 cell invasion. Data are presented as mean ± SD from three independent experiments, each in triplicate.
***P < 0.001, **P < 0.01, *P < 0.05 (ANOVA).
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The presence of galectin-3 inhibitors lactose (Fig. 3E) or
asialofetuin (Fig. 3F) caused dose-dependent inhibition of
cathepsin-B secretion from SW620-shCon cells but had no/less
effect on SW620-shGal3 cells. This suggests that galectin-3-
mediated reduction of protease secretion by the cells is
predominately mediated by the extracellular action of galectin-3.
To further determine the relationship between galectin-3

expression and protease secretion, we separated the heteroge-
nous HT29 colon cancer cells into invasive and none-invasive sub-
populations by culturing the cells in trans-wells. The cells that
remained in the trans-wells (non/less-invasive HT29-N) after 24 h
culture and the cells which invaded to the bottom side of the
trans-wells (invasive HT29-I) were collected. When these two sub-
populations of HT29 cells were re-seeded into new trans-wells,
HT29-I cells showed 2.4-fold higher invasion than HT29-N cells
(Fig. 4A). The invasive HT29-I cells were found to express 12- and
1.55-fold, respectively, higher levels of galectin-3 than the non/
less-invasive HT29-N cells in sub-confluent and fully confluent cells
(Fig. 4B). HT29-I cells secreted significantly higher levels of
galectin-3 than the HT29-N cells (Fig. 4C). At 72 h, a 1.9-fold
higher level of galectin-3 was secreted by HT29-I than HT29-N
cells. Much higher levels of MMP-13 (Fig. 4D) and Cathepsin-B
(Fig. 4E) were secreted by HT29-I than HT29-N cells. At 72 h, 89%

and 43% higher MMP-13 and Cathepsin-B levels were secreted by
HT29-I cells than HT29-N cells. These results, together with the
results demonstrated above with 1) the use of exogenous
galectin-3 (Figs. 1 and 2), lactose and asialofetuin and (Fig. 3E, F)
and conditioned medium of HT29-N and HT29-I (Fig. 5A–F),
strongly suggest that galectin-3 expression and secretion by colon
cancer cells promote cathepsin-B and MMP-13 secretion, auto-
crinely or paracrinely, and this effect of galectin-3 is predominately
mediated through the extracellular action of galectin-3.

Galectin-3-induced protease secretion increases cancer cell
invasion
It is known that the presence of proteases in the tumour
microenvironment can aid primary tumour cell invasion by digestion
of basement proteins [23]. To determine the impact of galectin-3-
mediated protease secretion on cancer progression, we assessed the
influence of galectin-3-mediated protease secretion on tumour cell
invasion through basement proteins. Introduction of 10 μg/ml
exogenous galectin-3 to HT29 cells caused 2.5- and 2.2-fold,
respectively, increases of invasion of HT29-N (Fig. 5A) and HT29-I
(Fig. 5B) cells. When the culture medium of HT29-N cells was replaced
with conditioned medium from HT29-I cells, which contains higher
levels of proteases (Fig. 5C), HT29-N cell invasion was significantly

Fig. 6 Galectin-3-induced protease secretion disrupts epithelial integrity and increases monolayer permeability of Caco-2 cells. Caco-2
cells were cultured in trans-wells to confluence and the medium was replaced with culture media from SW620-shGal3 and SW620-shCon (A)
and HT29-I and -N (B) cells and TEER were measured. Caco-2 cells in trans-wells were cultured to confluence and the culture media was either
replaced with fresh culture medium (SM) or culture medium from SW620-shGal3 (SW620-shGal3-CM) and SW620-shCon (SW620-shCon-CM)
(C) or HT29-I (HT29-I-CM) and HT29-N (HT29-N-CM) (D) cells with addition of 1mg/ml FITC-dextran for 0.5 h and the fluorescence intensities in
the medium of the bottom wells were measured. E, F Similar assessments were made as in (C, D), but a combination of antibodies against
MMP-1, MMP-13 and CTSB were added into the conditioned media of SW620-shGal3 and SW620-shCon (E) or HT29-I and HT29-N (F) cells
before they were introduced to Caco-2 monolayers and subsequent analysis of the fluorescence intensity in the bottom wells. Data are
presented as mean ± SD of three independent experiments, each in triplicate. ***P < 0.001, **P < 0.01, *P < 0.05 (ANOVA).
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increased (162%) in comparison to the cells without medium change
(Fig. 5C). On the other hand, when the culture medium of HT29-I cells
was replaced with conditioned medium from HT29-N cells, which
contains less proteases (Fig. 5D), HT29-I cell invasion was significantly
reduced (46%) in comparison to cells without medium change
(Fig. 5D). Moreover, presence of the galectin-3 inhibitor lactose dose-
dependently inhibited the secretion of cathepsin-B (Fig. 5E) and MMP-
13 (Fig. 5F) as well as invasion (Fig. 5G) of HT29-I cells but had no
significant effect on that of HT29-N cells.
Furthermore, when conditioned medium from SW620-shGal3

and SW620-shCon cells, which contain different amounts of
galectin-3 (Fig. 3B), was used to assess the invasion of HCT116
cells, HCT116 cell invasion was significantly higher when
cultured in the conditioned medium from SW620-shCon cells
than in the conditioned medium from SW620-shGal3 cells
(Fig. 5H). Again, introduction of exogenous galectin-3 signifi-
cantly increased HCT116 cell invasion. Together, these results
suggest that galectin-3-induced protease secretion promotes
tumour cell invasion through basement proteins.

Galectin-3-induced protease secretion disrupts cancer cell–cell
contact and increases cell monolayer permeability and
leakage
It is known that some proteases such as cathepsin-B can degrade
cell surface adhesion molecules and disrupt cell–cell contacts
[24–26]. For example, cathepsin-B can cleave E-cadherin at the cell
surface and disrupt cell–cell junctions of epithelium [27]. To test

the influence of galectin-3-induced protease secretion on cell–cell
contact and epithelium integrity, Caco-2 cells, which can form
tight cell–cell junctions in culture and which are frequently used
as a model to study epithelial integrity and the paracellular
movement of compounds across an epithelium [28], were cultured
to form a tight monolayer in trans-wells. Monolayer integrity was
monitored after introduction of conditioned media containing
different amounts of proteases induced by galectin-3. It was found
that introduction of the conditioned medium from SW620-shCon
cells caused a significant reduction in the transepithelial electric
resistance (TEER) in comparison to that from SW620-shGal3 cells
(Fig. 6A). Introduction of conditioned medium from HT29-I cells
also resulted in reduction of cell TEER in comparison to that from
HT29-N cells (Fig. 6B). This indicates that galectin-3-mediated
protease secretion disrupts tumour cell–cell contacts.
To further assess the impact of galectin-3-mediated protease

secretion on epithelial cancer cell monolayer integrity, FITC-
dextran was introduced as a paracellular transport marker in the
assessment. Penetration of FITC-dextran through the Caco-2
monolayer to the bottom of the trans-wells was seen to be two-
fold higher when the cells were cultured in conditioned
medium from SW620-shCon cells than that from SW620-
shGal3 cells (Fig. 6C). The penetration of FITC-dextran through
the Caco-2 monolayer was also seen to be 1.5-fold higher when
the cells were cultured in conditioned medium from HT29-I cells
than from HT29-N cells (Fig. 6D). In comparison to the cells
cultured in normal medium, introduction of 1000 pg/ml
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exogenous recombinant cathepsin-B or MMP-13 also signifi-
cantly increased FITC-dextran penetration through the Caco-2
monolayer (Fig. 6C, D). Moreover, introduction of a combination
of antibodies against MMP-1, MMP-13 and cathepsin-B sig-
nificantly reduced FITC-dextran penetration induced by culture
in CM from SW620-shcon (Fig. 6E) and HT29-I (Fig. 6F) cells, but
had minimal effect on that cultured in CM from SW620-shGal3
and HT29-N cells, respectively. Together, these results indicate
that galectin-3-induced protease secretion causes significant
disruption of cell–cell contact and increases epithelial cell
monolayer permeability and leakage.

Galectin-3 induces protease secretion through activation of
PYK2-GSK3α/β signalling
To gain insight into the molecular mechanism of galectin-3-
mediated protease secretion, the phosphorylation profile of 37
key signalling proteins in SW620 cell response to galectin-3 was
analysed using a Proteome Profiler Human Phospho-Kinase Array.
Galectin-3 treatment led to changes in the expression of several
kinases (Fig. 7A). Phosphorylation of four kinases, namely Protein
tyrosine kinase 2 (PYK2), Glycogen synthase kinase-3 (GSK3α/β),
Signal transducer and activator of transcription 1 (STAT1) and
Signal transducer and activator of transcription 3 (STAT3) showed
over 50% changes in response to galectin-3. Three of these
kinases, PYK2 (82%), GSK3α/β (52%) and STAT1(51%), showed
increases in phosphorylation while STAT3 showed a decrease
(59%) in phosphorylation.
To confirm the effects of galectin-3 on activation of these

kinases indicated by the protein array, SW620 cells were treated
with galectin-3 for various times and the phosphorylation status of
each of the kinases was measured. Galectin-3 treatment caused
time-dependent and rapid increases in the activation of PYK2,
STAT1 and GSK3α/β, while phosphorylation of STAT3 was
unaffected (Fig. 7B, C). Introduction of the GSK3α/β inhibitor
SB216763 (10 µM) decreased the galectin-3-associated increase in
GSK3α/β phosphorylation but had little effect on galectin-3-
associated phosphorylation of PYK2, STAT1 and STAT3 (Fig. 7D, E).
The presence of the PYK2 inhibitor PF431396 (10 µM) on the other
hand reduced phosphorylation of both PYK2 and GSK3α/β but
caused no/little effect on STAT1 and STAT3 phosphorylation
(Fig. 7D, E). These results suggest that activation of GSK3α/β and
PYK2 are both involved in the cell response to galectin-3, and

PYK2 activation is probably an upstream mediator of GSK3α/β in
galectin-3-mediated signalling transduction.
To investigate the relationship between PYK2 and GSK3α/β

activation and protease secretion mediated by galectin-3,
cathepsin-B secretion in SW620 and HCT116 cells were analysed
in the presence or absence of galectin-3, PYK2 inhibitor SB216763
and GSK3α/β inhibitor PF431396. The galectin-3-induced secretion
of cathepsin-B was shown to be completely inhibited by the
presence of 10 µM PF431396 in both SW620 (Fig. 8A) and HCT116
(Fig. 8B) cells. The presence of SB216763 at this concentration also
completely abolished galectin-3-induced cathepsin-B secretion in
SW620 cells but only partly inhibited that in HCT116 cells at this
concentration. These results suggest that PYK2-GSK3α/β activation
is critically involved in galectin-3-mediated secretion of proteases,
at least for cathepsin-B in those cells.

DISCUSSION
This study shows that galectin-3 expression and secretion by
human colon cancer cells induces cell secretion of several
proteases in an autocrine or paracrine manner through activation
of PYK2-GSK3α/β signalling. The secretion of these proteases
enhances cancer cell invasion through basement proteins, as well
as reduces cancer cell–cell contact and increases epithelium
monolayer permeability.
Over 900 protease genes are estimated to exist in the human

genome [29]. Under normal physiological conditions, the amount
of these proteases is low and tightly controlled [30] and their
proteolytic actions contribute to the maintenance of homeostasis
[1]. Overexpression of proteases occurs in various cancers [2], and
facilitates tumour cell invasion and spreading [31]. It is believed
that degradation of ECM by various proteases [32] is a very early
step in tumour cell invasion at primary tumour sties [33]. In this
study, the secretion of several proteases including cathepsin-B,
MMP-1 and MMP-13 by cancer cells was shown to be significantly
increased in response to the presence of galectin-3. Cathepsin-B is
overexpressed in various cancers such as breast, colorectal, gastric,
lung, prostate cancer and gliomas [34]. It is particularly highly
expressed at the invasive edge of the tumours [35, 36] and
promotes cancer cell invasion [37]. MMP-1 and MMP-13 are
primarily responsible for ECM degradation in cancer progression
[38]. MMP-1 and MMP-13 are both often overexpressed in

Fig. 8 Galectin-3 induces CTSB secretion through PYK2-GSK3α/β activation. SW620 (A) and HCT116 (B) cells were treated with 10 µg/ml
galectin-3 or BSA without or with SB216763 (SB), PF431396 (PF) or DMSO overnight. The concentrations of cathepsin-B in the supernatants
were analysed by ELISA. Data are presented as mean ± SEM of three independent experiments. ***P < 0.001, **P < 0.01, *P < 0.05 (ANOVA).
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epithelial cancers such as breast, prostate, and gastric cancer
[32, 39]. They degrade extracellular matrix proteins and promote
tumour cell invasion, angiogenesis, and metastasis [12]. The
discovery in this study that galectin-3 increases the secretion of
Cathepsin-B, MMP-1, and MMP-13 by cancer cells suggests that
increasing the secretion of proteases is probably one of the
mechanisms behind galectin-3-mediated cancer promotion
reported in many previous studies [20, 40, 41].
Galectin-3 is now well recognized as a multi-functional

promoter of cancer progression and metastasis [42]. Galectin-3
is found intracellularly as well as extracellularly [21]. Cytoplasmic
galectin-3 interacts with Bcl-2 and prevents cell apoptosis [43].
Binding of extracellular galectin-3 to cell surface glycans on
growth factors [44], death receptors [45] and adhesion molecules
[46] promotes cancer cell adhesion, invasion, angiogenesis, and
tumour cell escape from immune surveillance [47].
Galectin-3 has previously been reported to increase secretion

of MMP-1 and −9 in melanoma cells [48] by binding to
lysosome-associated membrane protein-1 (LAMP1) [49, 50]. It
has also been reported to increase MMP-1 expression and
enhance invasion of gastric cancer cells [51]. The present study
shows that the presence of galectin-3 induces secretion of a
number of proteases including cathepsin-B, MMP-1 and
MMP13. This implies that the protease secretion mediated by
galectin-3 in different types of cancers may not be always the
same and may depend on the expressions of particular galectin-
3 binding glycans/receptors in different types of cancers. Many
cell surface glycoproteins such as growth factor receptors,
adhesion and signalling proteins are known to be recognized
by galectin-3 [52] and are differentially expressed by different
cancer types.
This study has shown that galectin-3-induced protease

secretion decreases epithelial monolayer integrity. Epithelium
monolayer integrity is crucial in maintaining tissue homeostasis
[53]. Disruption of epithelial integrity is a critical step in primary
tumour cell invasion [54]. E-cadherin is a key cell adhesion
molecule for maintaining tight cell–cell junctions in the
epithelium and can be proteolytically cleaved by cathepsins
[27]. Cathepsin-B can also bind to the annexin II heterotetramer
(AIIt) and activates other proteases such as matrix metallopro-
teinases and urokinase plasminogen activator (uPA) and
indirectly disrupts epithelial cell–cell contact and monolayer
integrity [55–57]. The increased cancer cell secretion of
cathepsin-B by galectin-3 reported in this study can therefore
decrease epithelium integrity and aid tumour cell break up at
primary tumour sites.
The present study has also demonstrated that galectin-3-

induced protease secretion enhances tumour cell invasion
through basement proteins. The basement proteins underneath
the epithelium are rich in protease substrates and can be
catalytically digested by proteases such as cathepsin-B [58],
MMP-1 [59] and MMP-13 [32]. Cathepsin-B can cleave laminin,
fibronectin, type IV collagen and tenanscin-C in matrix proteins to
aid tumour cell invasion [60]. MMP-1 and MMP-13 can also directly
degrade type I and III collagens enriched in ECM [12]. The
increased secretion of those proteases by galectin-3 in the tumour
microenvironment therefore supports tumour cell invasion
through the basement in tumour cell spreading.
Activation of several signalling molecules particularly PYK2

and GSK3α/β has been shown in this study to be involved in
galectin-3-induced protease secretion. PYK2 activation has been
reported previously to regulate cathepsin-B secretion from
human primary macrophages during the immune response
[61] and their activation have both shown to enhance cancer cell
invasion and metastasis [62, 63]. A rapid increase and decrease
of PYK2 activation in breast cancer cells has also been shown to
increase PYK2 complex formation with p190 RhoGAP (p190),
RasGAP, ErbB-2, and Src, leading to activation of the MAPK

signalling and increase of cancer cell invasion [64]. GSK3
activation has previously been reported to increase proliferation
and survival of ovarian cancer cells [65]. Administration of GSK3β
inhibitors showed to suppress cell proliferation and inhibit
tumour formation in mice [65, 66]. Thus, activation of PYK2 and
GSK3 signalling in cancer cells by galectin-3 may itself influence
cancer progression in addition to its effect through induction of
protease secretion.
Overall, this study suggests an important mechanism in

galectin-3-mediated promotion of cancer progression. It provides
further evidence to the increased realization of galectin-3 as a
potential therapeutic target for cancer treatment.
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